JPH0448039B2 - - Google Patents
Info
- Publication number
- JPH0448039B2 JPH0448039B2 JP59040485A JP4048584A JPH0448039B2 JP H0448039 B2 JPH0448039 B2 JP H0448039B2 JP 59040485 A JP59040485 A JP 59040485A JP 4048584 A JP4048584 A JP 4048584A JP H0448039 B2 JPH0448039 B2 JP H0448039B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- probe
- transducer
- matching layer
- acoustic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000523 sample Substances 0.000 claims description 45
- 239000000463 material Substances 0.000 claims description 21
- 239000000919 ceramic Substances 0.000 claims description 3
- HFGPZNIAWCZYJU-UHFFFAOYSA-N lead zirconate titanate Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ti+4].[Zr+4].[Pb+2] HFGPZNIAWCZYJU-UHFFFAOYSA-N 0.000 claims description 2
- 239000010410 layer Substances 0.000 description 73
- 230000035945 sensitivity Effects 0.000 description 15
- 238000010586 diagram Methods 0.000 description 13
- 230000004044 response Effects 0.000 description 11
- 230000005540 biological transmission Effects 0.000 description 10
- 230000004043 responsiveness Effects 0.000 description 8
- 238000002604 ultrasonography Methods 0.000 description 8
- 238000000034 method Methods 0.000 description 6
- 239000002356 single layer Substances 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 230000002123 temporal effect Effects 0.000 description 2
- 229920001169 thermoplastic Polymers 0.000 description 2
- 229910005866 GeSe Inorganic materials 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 1
- 239000012790 adhesive layer Substances 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- NKZSPGSOXYXWQA-UHFFFAOYSA-N dioxido(oxo)titanium;lead(2+) Chemical compound [Pb+2].[O-][Ti]([O-])=O NKZSPGSOXYXWQA-UHFFFAOYSA-N 0.000 description 1
- 238000002592 echocardiography Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229920001084 poly(chloroprene) Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- -1 polyethylene Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10K—SOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
- G10K11/00—Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
- G10K11/02—Mechanical acoustic impedances; Impedance matching, e.g. by horns; Acoustic resonators
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Acoustics & Sound (AREA)
- Multimedia (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
- Ultra Sonic Daignosis Equipment (AREA)
- Transducers For Ultrasonic Waves (AREA)
Description
【発明の詳細な説明】
発明の背景
A 技術分野
本発明は超音波診断装置などに用いられる超音
波探触子に係り、とくに、圧電体の超音波出力面
に3層構造の音響整合層を装備した超音波探触子
に関する。
B 先行技術とその問題点
超音波の透過・反射特性を利用した例えば超音
波診断装置は、生体を解剖することなくその断層
像は実時間で観察することができる装置としてそ
の経済性・無侵襲性から近年、医療分野において
広く利用されている。この超音波診断装置は、所
謂パルスエコー法を用いており、被検体に超音波
パルスを発射し、この超音波パルスが被検体内部
の音響インピーダンスの不連続点で反射したエコ
ーを検出し、その到達時刻及びエコーの強さから
Bモードによる生体の二次元像を表示するもので
ある。
この超音波診断装置において、超音波の伝播方
向の分解能である時間分解能(距離分解能)は、
細部の正確な断層像を得る上で伝播方向と直角方
向の方位分解能と共に重要な因子の1つである
が、超音波探触子から生体へ送信する超音波パル
スのパルス幅が短い程、また、エコー受信時の超
音波探触子の応答性が速い程時間分解能は向上す
る。一つのトランスジユーサ(電気−音響変換素
子)で送受信を兼用する探触子ではインパルス応
答の改善で時間分解能の向上を図ることができ
る。
従来、探触子のインパルス応答を改善する方法
として行なわれているものの一つに、第1図に示
す如く、トランスジユーサ10の主面12,14
の内、超音波を送信する負荷(生体)16とは反
対側の背面14にトランスジユーサ10の音響イ
ンピーダンスに近い背面負荷材(バツキング材)
18を密着し、背面へ放射する超音波を吸収させ
る方法がある。この方法は、トランスジユーサ1
0の背面反射を超音波の送受信に有効利用するこ
とができず、ために探触子全体の感度が低下して
しまう欠点があつた。
インパルス応答を改善する他の方法は、第2図
の如くトランスジユーサ10と負荷16の間に厚
さλ/4(λは材料中における超音波の波長)の
音響整合層20を形成するものである。この方法
は、一般にトランスジユーサとして利用されてい
るジルコンチタン酸鉛系のセラミツク圧電体(所
謂PZT)の音響インピーダンスが約30×106(Kg/
m2・s)程度なのに対し、生体皮膚のそれは約
1.5〜1.6×106(Kg/m2・s)と大きく離れており、
両者を直接密着させたときトランスジユーサ10
の主面12と生体表面22との間で、超音波が何
度も反射し、結果として生体へ送信される超音波
が損失されて探触子の感度低下、応答性の劣化を
招くので、音響整合層を形成して前記多重反射を
緩和せんとするものである。音響整合層を1層又
は2層(第3図参照)にして感度・応答性を改良
したものは既に実用化が図られている。一方、3
層構造については
(1) 「Multilayer Impedance Matching
Schemes for Broadbanding of Water
Loaded Piezoelectic Transducers and High
Q Electric Resonators」(J.H.GOLL&B.A.
Auld,IEEE TRANSACTION ON SONICS
AND ULTRASONICS 1975 vol.SU−22.No.
1 pp.52〜53)
(2) 「The Design of Broad−Band Fluid−
Loaded Ultrasonic Transducers」(J.H.
GOLL、IEEE TRANSACTION ON
SONICS AND ULTRASONICS 1979.vol.
SU−26.No.6 pp.385〜393)
(3) 特開昭52−61987号公報など、数々の報告が
なされているものの、未だ1層又は2層構造の
特性を上回る最適な構成を有する3層音響整合
層の提案はなく、実用化がまたれているといつ
た現状である。
これとは別に、第4図に示す如き、トランスジ
ユーサ10の音響インピーダンスから生体表面2
2の音響インピーダンスまで連続的に変化する媒
介層24をトランスジユーサ10の生体16の間
に設ける提案がなされているが(特開昭54−
21082号公報)、実際上適切な材料の選択,製造が
極めて困難であるという不都合があつた。
発明の目的
したがつて本発明は、感度をそれ程損失するこ
となく、1層又は2層タイプの音響整合層より優
れた応答性を発揮することが可能で最適な3層音
響整合層構造を持つ超音波探触子を提供すること
を目的とする。
本発明によれば、この目的は次のような超音波
探触子によつて達成される。すなわち、この超音
波探触子は、圧電体としてジルコンチタン酸鉛系
のセラミツク圧電材を用いるとともに、音響整合
層として音響インピーダンスが7〜11×106Kg/
m2・sである第1の整合材、2.0〜4.0×106Kg/
m2・sである第2の整合材、1.6〜2.0×106Kg/
m2・sである第3の整合材を順次積層した3層構
造体である。
発明の具体的説明
次に、添付図面を参照して本発明の超音波探触
子につき詳細に説明する。
本発明は、超音波探触子を構成している各媒質
中を伝播する圧力波を理論解析し、受信波形を直
接求めて探触子の感度・応答性を算出することに
より最適な整合層を見い出したもので、第5図乃
至第11図にその解析原理を示す。まず、第5図
は、トランスジユーサ10の厚さをλ/2(λは
圧電材中での波長)、トランスジユーサ10と負
荷16との間に厚さλ′/4(λ′は整合層内での波
長)の音響整合層20を設け、背面側に背面負荷
材18を密着した構成を持つ超音波探触子30に
おいて、トランスジユーサ10両面の電極24,
26に、第7図に示す単パルス電圧Vioを掛けた
場合の圧力波の時間的変化を図式化して示す説明
図である。図中、縦軸は時間経過を表わす。トラ
ンスジユーサ10の両面からは4つの圧力波A1
〜A4が放出されるが単パルス電圧Vioが印加され
た時刻t=0に発生する圧力波(A1)0〜(A1)4
のそれぞれの振幅は次式で示される。
(A1)0=−hC・Vio・ZB/(ZB+ZT)
(A2)0=hC・Vio・ZT/(ZB+ZT)
(A3)0=hC・Vio・ZT/(ZT+ZM)
(A4)0=−hC・Vio・ZM/(ZT+ZM)
但し、hはトランスジユーサ10の厚さ方向の
圧電係数、Cは静電容量、ZB,ZT,ZM(=Z1)は
各々背面負荷材18、トランスジユーサ10、整
合層20の音響インピーダンスである。この4つ
の波が、各媒質の境界で、反射透過を繰返しなが
ら負荷16中に、圧力波AFを放出すなわち送信
する。
ここで、トランスジユーサ10は厚み振動によ
つて共振周波数でピストン運動を行なつているも
のとし、また、背面負荷材18の裏面からのエコ
ーは背面負荷材18に吸収されて殆んど無視で
き、更に、トランスジユーサ10、整合層20内
での減衰、電極24,26及び各媒質間の接着層
の厚さによる影響も殆んどないものとして扱う。
各媒質の境界において互いに干渉し合う圧力波
のピークが一致するので、A2〜A4及び負荷16
へ送信される圧力波AFは、次の漸化式で一般化
して表わすことができる。
(A2)o=RTB・(A3)o-1
(A3)o=RTM・(A2)o-1
+TTM・RMF・(A4)o-1
(A4)o=TMT・(A2)o-1
+RMT・RMF・(A4)o-1
(AF)o′=TFM・(A4)o
ここで、添字nは、圧力波の発生時刻がto=
n・t1であることを意味し、n′はtoよりt1/2だ
け遅れていることを表わす。t1は音波がトランス
ジユーサ10を片道伝搬する時間である。
また、RTB,RTM,RMF,TTM,TMT,TFMは媒質
境界での反射および透過係数で次式で与えられ
る。
RTB=(ZB−ZT)/(ZT+ZB)
,RTM=ZM−ZT)/(ZT+ZT)
RMF=(ZF−ZM)/(ZM+ZF)
TTM=2ZT/(ZT+ZM)
,TMT=2ZM/(ZM+ZT)
TFM=2ZF/(ZF+ZM)
一方、送信波AFを同一の探触子30で受信し
たとき、圧力波A1〜A4の時間的変化は、前述と
同様にして第6図に示す如くになり、(AF)o
″(添字n″はtoよりt1/2だけ前の時刻を意味す
る、即ち、n″=n′−1)が探触子に入射した場
合、toの時点でトランスジユーサ10に向かつて
作用する力は主面14側では(A2)o−(A3)o-1、
12側では(A3)o−(A2)o-1であるから、toの時
点で発生する受信電圧は、トランスジユーサ10
のピストン運動を考慮して、
Vo=K〔o
〓k=1
{(A2)k−(A3)k-1}+o
〓
〓k=1
{(A3)k−(A2)k-1}〕=K{(A2)o+(A3)o
}
但しKは比例定数
となる。(A2)o、(A3)oは、次の漸化式で与えら
れる。
(A2)o=RTB・(A3)o-1
(A3)o=RTM・(A2)o-1+TTM・RMF
・(A4)o-1+TMF・TTM・(AF)o″
(A4)o=TMF・(A2)o-1+RMT・RMF
・(A4)o-1+TMF・RMT・(AF)o″
以上の計算を行なえば、単パルス電圧Vioに対
する受信波形を求めることができる。
同様の考えのもとに、第8図,第9図に、トラ
ンスジユーサ10と負荷16との間に、厚さλ1/
4及びλ2/4(λ1,λ2は各々整合層内の波長)で
音響インピーダンスがZ1,Z2の第1整合層32及
び第2整合層34を形成した整合層が2層構造の
探触子40に対する送信時及び受信時の圧力波形
の時間変化を示す。前述と同様にして、送信時の
A2〜A5,AFの圧力波は次の漸化式で表わされ
る。
(A2)o=RTB・(A3)o-1
(A3)o=RT1・(A2)o-1+R12・TT1
・(A4)o-1+T12・TT1・(A5)o-1
(A4)o=T1T・(A2)o-1+R12・R1T
・(A4)o-1+T12・R1T・(A5)o-1
(A5)o=T21・R2F・(A4)o-1
+R21・R2F(A5)o-1
(AF)o=T21・TF2・(A4)o-1
+R21・TF2・(A5)o-1
また受信時の(A2)o,(A3)oは、次式で与えら
れる。
(A2)o=RTB・(A3)o-1
(A3)o=RT1・(A2)o-1+R12・TT1
・(A4)o-1+T12・TT1・(A5)o-1
(A4)o=T1T・(A2)o-1+R12・R1T
・(A4)o-1+T12・R1T・(A5)o-1
(A5)o=T21・R2F・(A4)o-1+R21・
R2F・(A5)o-1+T2F・(AF)o
更に、第10図,第11図は、トランスジユー
サ10と負荷16との間に、厚さλ1/4,λ2/
4,λ3/4(λ1,λ2,λ3は各々整合層内の波長)
で音響インピーダンスがZ1,Z2,Z3の三層構造の
第1乃至第3音響整合層42,44,46を形成
した探触子50に対する送信時及び受信時の圧力
波形の時間変化を示すもので、前述と同様にして
送信時のA2〜A6,AFの圧力波は
(A2)o=RTB・(A3)o-1
(A3)o=RT1・(A2)o-1+R12・TT1
・(A4)o-1+T12・TT1・(A5)o-1
(A4)o=T1T・(A2)o-1+R12・R1T
・(A4)o-1+T12・R1T・(A5)o-1
(A5)o=T21・R23・(A4)o-1+R21・R23
・(A5)o-1+R3F・T23・(A6)o-1
(A6)o=T21・T32・(A4)o-1+R21・T32・
(A5)o-1+R3F・R32・(A6)o-1
(AF)o′=TF3・(A6)o
また、受信時についても以下の漸化式で与えら
れる。
(A2)o〜(A4)4は送信時と同じ、
(A5)o=T21・R23・(A4)o-1
+R21・R23・(A5)o-1
+R3F・T23・(A6)o-1
+T3F・T23・(AF)o″
(A6)o=T21・T32・(A4)o-1
+R21・T32(A5)o-1
+R3F・R32・(A6)o-1
+T3F・R32・(AF)o″
但し、n″=n′−1
以上の解析法に基づき、背面負荷18が空気
(ZB≒0)でトランスジユーサ10及び負荷16
の音響インピーダンスを各々ZT=30,ZF=1.5×
106Kg/m2・sとした場合の各1層乃至3層構造
の探触子30,40,50について、受信波形を
求め、最大パルス高から相対感度S、時間軸上に
おける最大パルス周りの分散から応答性Dを算出
した。その結果を第12図乃至第16図に示す。
なお、2層構造の探触子40を例として解析して
得た受信波形は、実際の探触子を製作し、実測し
て得た波形と概ね一致する結果となり、本発明原
理の妥当なことがわかる。これを第17図乃至第
20図に示す。これらの図において図Aは実測波
形を示し、同Bは解析波形を示す。
第12図,第13図は、整合層が1層の探触子
30に関するもので整合層20の音響インピーダ
ンスZ1が種々に変化させてある。これによれば、
Z1=4×106Kg/m2・s付近で感度・応答性とも
に最高レベルとなつている。第14図は、2層タ
イプの探触子40の特性で、第1層の音響整合層
32の音響インピーダンスZ1パラメータとし、各
Z1の値毎に第2層のZ2を種々に変化させた様子を
示す。図から応答性の改善は、Z1を6〜7,Z2を
2.0〜2.2×106Kg/m2・s程度にするのが最適であ
り、この場合、相対感度は最適組合せ(Z1=5〜
6,Z2=1.7〜1.9×106Kg/m2・s)に比べて1%
程度しか低下していない。第15図,16図の×
印で示したデータは、上記2層タイプの探触子4
0の特性から、各Z1の値毎に最適となるZ2の組合
せを見出し、相対感度SとDをプロツトしたもの
で、グラフの数字はZ2の値を×106Kg/m2・sで
表わしている。第15図,第16図中の黒丸印で
示したデータは、3層タイプの探触子50の特性
を示すもので、各Z1の値毎に最適となるZ2,Z3の
組合せを見出し、SとDをプロツトしたもので、
グラフ中の数字の上段は、Z2の値、下段はZ3の値
を×106Kg/m2・sで表わしている。この結果、
前記2層タイプより更に応答性の改善がなされて
いる範囲は、概略次の範囲のものである。
第1整合層Z1:6〜12(×106Kg/m2・s)
第2整合層Z2:2〜4
第3整合層Z3:1.6〜2.0
この範囲での応答性は、約1.7〜2の値であり、
感度の最適組合せからの低下は数%以下である。
解析受信波形例を第21図,第22図に示す。
第23図,第24図は、トランスジユーサ10
の音響インピーダンスZTを20×106及び40×106
(Kg/m2・s)とした場合の各探触子30,40,
50の特性を前述と同様に算出したもので各々、
2層タイプより改善された応答性を示す3層タイ
プの範囲は次の通りである。[Detailed Description of the Invention] Background of the Invention A Technical Field The present invention relates to an ultrasonic probe used in an ultrasonic diagnostic device, etc., and in particular, a three-layer acoustic matching layer is provided on the ultrasonic output surface of a piezoelectric body. Regarding the equipped ultrasonic probe. B. Prior art and its problems For example, ultrasonic diagnostic equipment that utilizes the transmission and reflection characteristics of ultrasound waves is economical and non-invasive as a device that can observe tomographic images in real time without dissecting the living body. Due to its nature, it has been widely used in the medical field in recent years. This ultrasonic diagnostic device uses the so-called pulse echo method, which emits an ultrasonic pulse to the subject, detects the echo of this ultrasonic pulse reflected at a discontinuous point in the acoustic impedance inside the subject, and detects the echo. A two-dimensional image of the living body in B mode is displayed based on the arrival time and intensity of the echo. In this ultrasound diagnostic device, the time resolution (distance resolution), which is the resolution in the ultrasound propagation direction, is
This is one of the important factors along with the azimuth resolution in the direction perpendicular to the propagation direction in obtaining detailed and accurate tomographic images.The shorter the pulse width of the ultrasound pulse transmitted from the ultrasound probe to the living body, the more , the faster the response of the ultrasound probe when receiving an echo, the better the time resolution. In a probe that uses a single transducer (electro-acoustic conversion element) for both transmission and reception, it is possible to improve the time resolution by improving the impulse response. As shown in FIG. 1, one of the methods conventionally used to improve the impulse response of a probe is to
A backside load material (backing material) close to the acoustic impedance of the transducer 10 is placed on the back surface 14 on the opposite side from the load (living body) 16 that transmits ultrasonic waves.
There is a method in which the ultrasonic waves radiated to the back are absorbed by placing the 18 in close contact with each other. This method uses transducer 1
This has the disadvantage that the zero back reflection cannot be effectively used for transmitting and receiving ultrasonic waves, resulting in a decrease in the sensitivity of the entire probe. Another method for improving the impulse response is to form an acoustic matching layer 20 between the transducer 10 and the load 16 with a thickness of λ/4 (λ being the wavelength of the ultrasound in the material) as shown in FIG. It is. In this method, the acoustic impedance of lead zirconium titanate ceramic piezoelectric material (so-called PZT), which is generally used as a transducer, is approximately 30×10 6 (Kg/
m2・s), whereas that of biological skin is approximately
There is a large difference between 1.5 and 1.6×10 6 (Kg/m 2・s).
Transducer 10 when the two are brought into direct contact
The ultrasonic waves are reflected many times between the main surface 12 of the probe and the living body surface 22, and as a result, the ultrasonic waves transmitted to the living body are lost, leading to a decrease in the sensitivity and response of the probe. The purpose is to form an acoustic matching layer to alleviate the multiple reflections. Devices with improved sensitivity and response using one or two acoustic matching layers (see FIG. 3) have already been put into practical use. On the other hand, 3
Regarding the layer structure, see (1) “Multilayer Impedance Matching
Schemes for Broadbanding of Water
Loaded Piezoelectic Transducers and High
Q Electric Resonators” (JHGOLL & B.A.
Auld,IEEE TRANSACTION ON SONICS
AND ULTRASONICS 1975 vol.SU−22.No.
1 pp.52-53) (2) “The Design of Broad−Band Fluid−
"Loaded Ultrasonic Transducers" (JH
GOLL, IEEE TRANSACTION ON
SONICS AND ULTRASONICS 1979.vol.
SU-26.No.6 pp.385-393) (3) Although there have been many reports such as Japanese Patent Application Laid-open No. 52-61987, it is still difficult to find an optimal structure that exceeds the characteristics of a one-layer or two-layer structure. There has been no proposal for a three-layer acoustic matching layer, and the current situation is that it has not yet been put into practical use. Separately, the acoustic impedance of the transducer 10 as shown in FIG.
A proposal has been made to provide a mediating layer 24 between the living body 16 of the transducer 10 whose acoustic impedance changes continuously up to 2.
(No. 21082), the disadvantage is that it is extremely difficult to select and manufacture appropriate materials. Purpose of the Invention Therefore, the present invention has an optimal three-layer acoustic matching layer structure that can exhibit better response than a single-layer or two-layer type acoustic matching layer without significantly losing sensitivity. The purpose is to provide an ultrasonic probe. According to the invention, this object is achieved by an ultrasound probe as follows. That is, this ultrasonic probe uses a ceramic piezoelectric material based on zirconate lead titanate as a piezoelectric body, and has an acoustic impedance of 7 to 11×10 6 kg/cm as an acoustic matching layer.
m2・s first matching material, 2.0~4.0×10 6 Kg/
m2・s second matching material, 1.6~2.0×10 6 Kg/
This is a three-layer structure in which a third matching material having a diameter of m 2 ·s is sequentially laminated. DETAILED DESCRIPTION OF THE INVENTION Next, the ultrasonic probe of the present invention will be described in detail with reference to the accompanying drawings. The present invention theoretically analyzes the pressure waves propagating in each medium that makes up the ultrasonic probe, directly obtains the received waveform, and calculates the sensitivity and responsiveness of the probe, thereby creating an optimal matching layer. This was discovered, and the principles of its analysis are shown in Figures 5 to 11. First, in FIG. 5, the thickness of the transducer 10 is λ/2 (λ is the wavelength in the piezoelectric material), and the thickness between the transducer 10 and the load 16 is λ'/4 (λ' is the wavelength in the piezoelectric material). In an ultrasonic probe 30 having an acoustic matching layer 20 (wavelength within the matching layer) and having a back load material 18 in close contact with the back side, the electrodes 24 on both sides of the transducer 10,
8 is an explanatory diagram schematically showing a temporal change in a pressure wave when the single pulse voltage V io shown in FIG. 7 is applied to 26. FIG. In the figure, the vertical axis represents the passage of time. Four pressure waves A1 are generated from both sides of the transducer 10.
~A4 is released, but the pressure wave that occurs at time t=0 when the single pulse voltage Vio is applied (A1) 0 ~ (A1) 4
The amplitude of each is shown by the following equation. (A1) 0 = -hC・V io・Z B / (Z B + Z T ) (A2) 0 = hC・V io・Z T / (Z B + Z T ) (A3) 0 = hC・V io・Z T / (Z T + Z M ) (A4) 0 = -hC・V io・Z M / (Z T + Z M ) However, h is the piezoelectric coefficient in the thickness direction of the transducer 10, C is the capacitance, Z B , Z T , and Z M (=Z 1 ) are the acoustic impedances of the back load material 18, the transducer 10, and the matching layer 20, respectively. These four waves emit or transmit pressure waves AF into the load 16 while repeating reflection and transmission at the boundaries of each medium. Here, it is assumed that the transducer 10 is performing piston motion at a resonant frequency due to thickness vibration, and echoes from the back surface of the back loading material 18 are absorbed by the back loading material 18 and are almost ignored. Furthermore, it is assumed that there is almost no influence due to the attenuation within the transducer 10, the matching layer 20, the electrodes 24, 26, and the thickness of the adhesive layer between each medium. Since the peaks of pressure waves that interfere with each other at the boundaries of each medium coincide, A2 to A4 and load 16
The pressure wave AF transmitted to can be generalized and expressed by the following recurrence formula. (A2) o =R TB・(A3) o-1 (A3) o =R TM・(A2) o-1 +T TM・R MF・(A4) o-1 (A4) o =T MT・(A2 ) o-1 +R MT・R MF・(A4) o-1 (AF) o ′=T FM・(A4) oHere , the subscript n indicates the time of occurrence of the pressure wave when t o =
This means that n·t 1 , and n' means that t 1 /2 is behind t o . t 1 is the time for the sound wave to propagate one way through the transducer 10 . Furthermore, R TB , R TM , R MF , T TM , T MT , and T FM are reflection and transmission coefficients at the medium boundary, which are given by the following equations. R TB = (Z B - Z T ) / (Z T + Z B ), R TM = Z M - Z T ) / (Z T + Z T ) R MF = (Z F - Z M ) / (Z M + Z F ) T TM = 2Z T / (Z T + Z M ), T MT = 2Z M / (Z M + Z T ) T FM = 2Z F / (Z F + Z M ) On the other hand, the transmitted wave AF is transmitted from the same probe 30. When the pressure waves A1 to A4 are received at
'' (the subscript n'' means a time t 1 /2 before t o , i.e., n'' = n'-1), when t o is incident on the transducer 10, The force acting towards the main surface 14 is (A2) o − (A3) o-1 ,
On the 12 side, (A3) o - (A2) o-1 , so the received voltage generated at the time t o is the transducer 10
Considering the piston motion of _ _ _ _ }]=K{(A2) o +(A3) o
} However, K is a proportionality constant. (A2) o and (A3) o are given by the following recurrence formula. (A2) o =R TB・(A3) o-1 (A3) o =R TM・(A2) o-1 +T TM・R MF・(A4) o-1 +T MF・T TM・(AF) o ″ (A4) o =T MF・(A2) o-1 +R MT・R MF・(A4) o-1 +T MF・R MT・(AF) o ″ By performing the above calculation, the single pulse voltage V io The received waveform for can be obtained. Based on the same idea, in FIGS. 8 and 9, a thickness λ 1 /
4 and λ 2 /4 (λ 1 and λ 2 are the wavelengths within the matching layer, respectively), the matching layer has a two-layer structure in which the first matching layer 32 and the second matching layer 34 with acoustic impedances Z 1 and Z 2 are formed. 3 shows temporal changes in pressure waveforms during transmission and reception with respect to the probe 40. In the same way as above, when sending
The pressure waves of A2 to A5 and AF are expressed by the following recurrence formula. (A2) o = R TB・(A3) o-1 (A3) o =R T1・(A2) o-1 +R 12・T T1・(A4) o-1 +T 12・T T1・(A5) o -1 (A4) o = T 1T・(A2) o-1 +R 12・R 1T・(A4) o-1 +T 12・R 1T・(A5) o-1 (A5) o = T 21・R 2F・(A4) o-1 +R 21・R 2F (A5) o-1 (AF) o = T 21・T F2・(A4) o-1 +R 21・T F2・(A5) o-1 When receiving again (A2) o and (A3) o are given by the following equation. (A2) o = R TB・(A3) o-1 (A3) o =R T1・(A2) o-1 +R 12・T T1・(A4) o-1 +T 12・T T1・(A5) o -1 (A4) o = T 1T・(A2) o-1 +R 12・R 1T・(A4) o-1 +T 12・R 1T・(A5) o-1 (A5) o = T 21・R 2F・(A4) o-1 +R 21・R 2F・(A5) o-1 +T 2F・(AF ) λ 1 /4, λ 2 /
4, λ 3 /4 (λ 1 , λ 2 , λ 3 are each wavelength within the matching layer)
The time change of the pressure waveform during transmission and reception for the probe 50 formed with the first to third acoustic matching layers 42, 44, and 46 of the three-layer structure with acoustic impedances Z 1 , Z 2 , and Z 3 is shown below. Similarly to the above, the pressure waves of A2 to A6 and AF during transmission are (A2) o = R TB・(A3) o-1 (A3) o = R T1・(A2) o-1 +R 12・T T1・(A4) o-1 +T 12・T T1・(A5) o-1 (A4) o =T 1T・(A2) o-1 +R 12・R 1T・(A4) o-1 +T 12・R 1T・(A5) o-1 (A5) o =T 21・R 23・(A4) o-1 +R 21・R 23・(A5) o-1 +R 3F・T 23・(A6) o -1 (A6) o =T 21・T 32・(A4) o-1 +R 21・T 32・(A5) o-1 +R 3F・R 32・(A6) o-1 (AF) o ′=T F3・(A6) o Also, for reception, it is given by the following recurrence formula. (A2) o ~ (A4) 4 is the same as when sending, (A5) o = T 21・R 23・(A4) o-1 +R 21・R 23・(A5) o-1 +R 3F・T 23・(A6) o-1 +T 3F・T 23・(AF) o ″ (A6) o =T 21・T 32・(A4) o-1 +R 21・T 32 (A5) o-1 +R 3F・R 32・(A6) o-1 +T 3F・R 32・(AF) o ″ However, n″=n′-1 Based on the above analysis method, the back load 18 is air (Z B ≒ 0) and the transducer 10 and load 16
The acoustic impedance of Z T = 30, Z F = 1.5×
10 6 Kg/m 2 s, the received waveforms are calculated for each of the probes 30, 40, and 50 with a one-layer to three-layer structure, and the relative sensitivity S is calculated from the maximum pulse height, around the maximum pulse on the time axis. Responsiveness D was calculated from the variance of . The results are shown in FIGS. 12 to 16.
Note that the received waveform obtained by analyzing the two-layered probe 40 as an example generally matches the waveform obtained by actually manufacturing and measuring an actual probe, which indicates that the principles of the present invention are valid. I understand that. This is shown in FIGS. 17 to 20. In these figures, Figure A shows an actually measured waveform, and Figure B shows an analyzed waveform. 12 and 13 relate to a probe 30 having one matching layer, and the acoustic impedance Z1 of the matching layer 20 is varied in various ways. According to this,
Both sensitivity and responsiveness are at their highest levels around Z 1 =4×10 6 Kg/m 2 ·s. FIG. 14 shows the characteristics of the two-layer type probe 40, where the acoustic impedance Z of the first acoustic matching layer 32 is set as 1 parameter, and each
It shows how Z 2 of the second layer is changed variously for each value of Z 1 . From the figure, improvement in responsiveness is achieved by setting Z 1 to 6 to 7 and Z 2 to
It is optimal to set the relative sensitivity to about 2.0 to 2.2×10 6 Kg/m 2・s, and in this case, the relative sensitivity is the optimal combination (Z 1 = 5 to
6, Z 2 = 1.7 to 1.9×10 6 Kg/m 2・s)
It has only decreased to a certain extent. × in Figures 15 and 16
The data indicated by the mark is for the two-layer type probe 4 mentioned above.
From the characteristics of 0, we found the optimal combination of Z 2 for each value of Z 1 and plotted the relative sensitivity S and D. The numbers on the graph are the value of Z 2 × 10 6 Kg/m 2・It is represented by s. The data indicated by black circles in FIGS. 15 and 16 shows the characteristics of the three-layer type probe 50, and the optimum combination of Z 2 and Z 3 is determined for each value of Z 1 . The heading is a plot of S and D.
The upper row of numbers in the graph represents the value of Z 2 and the lower row represents the value of Z 3 in ×10 6 Kg/m 2 ·s. As a result,
The range in which the response is further improved than that of the two-layer type is roughly as follows. First matching layer Z 1 : 6 to 12 (×10 6 Kg/m 2 ·s) Second matching layer Z 2 : 2 to 4 Third matching layer Z 3 : 1.6 to 2.0 The response in this range is approximately It has a value of 1.7 to 2,
The decrease from the optimal combination of sensitivities is less than a few percent.
Examples of analyzed received waveforms are shown in FIGS. 21 and 22. 23 and 24 show the transducer 10
Acoustic impedance Z T of 20 x 10 6 and 40 x 10 6
(Kg/ m2・s), each probe 30, 40,
The 50 characteristics were calculated in the same manner as above, and each
The range of the three-layer type that exhibits improved responsiveness than the two-layer type is as follows.
【表】
従つて、トランスジユーサ10に用いる圧電材
が例えばPZTでZT=20〜40×106Kg/m2・sとす
るとき、2層タイプより改良される3層タイプの
構成範囲は、
第1整合層 5〜15(×106Kg/m2・s)
第2整合層 1.9〜4.4(×106Kg/m2・s)
第3整合層 1.6〜2.0(×106Kg/m2・s)
となる。
次表は、ZT=33.7×106Kg/m2・sのトランス
ジユーサ10を用いて、従来報告されている3層
タイプの探触子と本発明原理に基づいて最適化し
た探触子との特性を比較したもので、応答性が格
段に改善されていることが示されている。第25
図、第26図に示す従来法の3層タイプに対する
解析受信波形と、第27図に示す本発明に基づく
3層タイプの解析受信波形を較べても受信波形の
後引き部分が殆んど消えているがわかる。[Table] Therefore, when the piezoelectric material used for the transducer 10 is, for example, PZT and Z T =20 to 40×10 6 Kg/m 2 s, the configuration range of the three-layer type is improved over the two-layer type. First matching layer 5 to 15 (×10 6 Kg/m 2・s) Second matching layer 1.9 to 4.4 (×10 6 Kg/m 2・s) Third matching layer 1.6 to 2.0 (×10 6 Kg / m2・s). The following table shows the previously reported three-layer type probe and the probe optimized based on the principles of the present invention using a transducer 10 with Z T = 33.7 x 10 6 Kg/m 2 s. A comparison of the characteristics with that of children shows that responsiveness has been significantly improved. 25th
Comparing the analytical received waveform for the conventional three-layer type shown in Figure 26 and the analytical received waveform for the three-layer type according to the present invention shown in Figure 27, the trailing portion of the received waveform almost disappears. I can see that.
【表】
本発明による3層構造の探触子を実現するため
には、上記各整合層の音響インピーダンスの範囲
より例えば次の材料を使用すればよい。
第1整合層:GeSe,As2S3ガラス、エポキシ
樹脂とW粉の混合物、熱可塑性高
分子又は熱可塑性高分子とゴム状
弾性高分子からなる高分子物質と
無機粉末からなる混合物、等
第2整合層:ポリスチレン,ポリエチレン,ポ
リエステル,ABSポリカーボネ
ート,アクリル,エポキシ樹脂、
等
第3整合層:シリコーン・ゴム,ネオプレン・
ゴム、等
発明の具体的作用効果
以上のように本発明の超音波探触子によれば、
トランスジユーサと負荷との間に3層構造の音響
整合層を形成し、各整合層の音響インピーダンス
を最適化したことで、1,2層タイプの音響整合
層を有する探触子に比べ感度をそれ程損失するこ
となく、応答性の改善を図ることができる。従つ
て、より広帯域の超音波信号を送受信できるので
時間分解能が改善され装置の性能が向上する。[Table] In order to realize a probe with a three-layer structure according to the present invention, the following materials may be used, for example, according to the acoustic impedance range of each matching layer. First matching layer: GeSe, As 2 S 3 glass, a mixture of epoxy resin and W powder, a mixture of a thermoplastic polymer or a polymer material consisting of a thermoplastic polymer and a rubber-like elastic polymer and an inorganic powder, etc. 2 matching layers: polystyrene, polyethylene, polyester, ABS polycarbonate, acrylic, epoxy resin,
etc. 3rd matching layer: silicone/rubber, neoprene/
Rubber, etc. Specific effects of the invention As described above, according to the ultrasonic probe of the present invention,
By forming a three-layer acoustic matching layer between the transducer and the load and optimizing the acoustic impedance of each matching layer, sensitivity is improved compared to probes with one or two acoustic matching layers. It is possible to improve responsiveness without losing much. Therefore, since it is possible to transmit and receive ultrasonic signals in a wider band, the time resolution is improved and the performance of the apparatus is improved.
第1図乃至第4図は各々従来型の探触子を示す
概略図、第5図、第6図は1層タイプの探触子の
送受信時における圧力波の伝播の様子を示す説明
図、第7図は、トランスジユーサの両端に印加す
る信号波を示す図、第8図、第9図は2層タイプ
の探触子の送受信時における圧力波の伝播の様子
を示す説明図、第10図、第11図は3層タイプ
の探触子の送受信時における圧力波の伝播の様子
を示す説明図、第12図、第13図は各々1層タ
イプの探触子の感度及び応答性を示す線図、第1
4図は2層タイプの探触子の感度及び応答性特性
を示す線図、第15図、第16図は各々本発明に
係る3層タイプの探触子の感度及び応答性特性を
2層タイプと比較して示す線図、第17図乃至第
20図は2層タイプの探触子について解析して得
た受信波形と実測波形を比較して示す線図、第2
1図、第22図は本発明に係る最適化した3層タ
イプの探触子について解析して得た受信波形を示
す線図、第23図及び第24図は、トランスジユ
ーサの音響インピーダンスを変えた場合における
3層タイプの探触子の感度及び応答性特性を示す
線図、第25図、第26図は従来の3層タイプの
探触子につき解析して得た受信波形を示す線図、
第27図は本発明の3層タイプの探触子について
解析して得た受信波形を示す線図である。
主要部分の符号の説明、10…圧電体としての
トランスジユーサ、24,26…電極、42…第
1音響整合層、44…第2音響整合層、46…第
3音響整合層。
FIGS. 1 to 4 are schematic diagrams showing conventional probes, and FIGS. 5 and 6 are explanatory diagrams showing the propagation of pressure waves during transmission and reception of a single-layer probe. Figure 7 is a diagram showing the signal waves applied to both ends of the transducer, Figures 8 and 9 are explanatory diagrams showing the propagation of pressure waves during transmission and reception of a two-layer type probe, Figures 10 and 11 are explanatory diagrams showing the propagation of pressure waves during transmission and reception with a three-layer type probe, and Figures 12 and 13 are the sensitivity and responsiveness of a single-layer type probe, respectively. Line diagram showing, 1st
Figure 4 is a diagram showing the sensitivity and response characteristics of a two-layer type probe, and Figures 15 and 16 are diagrams showing the sensitivity and response characteristics of a three-layer type probe according to the present invention. Figures 17 to 20 are diagrams comparing received waveforms and measured waveforms obtained by analyzing two-layer type probes.
Figures 1 and 22 are diagrams showing received waveforms obtained by analyzing the optimized three-layer type probe according to the present invention, and Figures 23 and 24 are diagrams showing the acoustic impedance of the transducer. Figures 25 and 26 are lines showing the received waveforms obtained by analyzing the conventional three-layer type probe. figure,
FIG. 27 is a diagram showing received waveforms obtained by analyzing the three-layer type probe of the present invention. Explanation of symbols of main parts: 10...Transducer as a piezoelectric body, 24, 26...Electrode, 42...First acoustic matching layer, 44...Second acoustic matching layer, 46...Third acoustic matching layer.
Claims (1)
1対の電極の一方の電極上に設けられた音響整合
層とを有する超音波探触子において、 前記圧電体は、ジルコンチタン酸鉛系のセラミ
ツク圧電体であり、 前記音響整合層は、音響インピーダンスが7〜
11X106Kg/m2・sである第1の整合材、2.0〜
4.0X106Kg/m2・sである第2の整合材、1.6〜
2.0X106Kg/m2・sである第3の整合材を順次積
層した3層構造体であることを特徴とする超音波
探触子。[Scope of Claims] 1. An ultrasonic probe having a pair of electrodes formed on both sides of a piezoelectric body and an acoustic matching layer provided on one of the pair of electrodes, comprising: The body is a ceramic piezoelectric material based on lead zirconium titanate, and the acoustic matching layer has an acoustic impedance of 7 to 7.
11X10 6 Kg/m 2・s first matching material, 2.0~
4.0X10 6 Kg/m 2・s second matching material, 1.6~
An ultrasonic probe characterized in that it has a three-layer structure in which a third matching material having a yield of 2.0X10 6 Kg/m 2 ·s is sequentially laminated.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4048584A JPS60185499A (en) | 1984-03-05 | 1984-03-05 | Ultrasonic wave probe |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4048584A JPS60185499A (en) | 1984-03-05 | 1984-03-05 | Ultrasonic wave probe |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60185499A JPS60185499A (en) | 1985-09-20 |
JPH0448039B2 true JPH0448039B2 (en) | 1992-08-05 |
Family
ID=12581895
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4048584A Granted JPS60185499A (en) | 1984-03-05 | 1984-03-05 | Ultrasonic wave probe |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60185499A (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61194999A (en) * | 1985-02-23 | 1986-08-29 | Terumo Corp | Ultrasonic probe |
JPS62258597A (en) * | 1986-04-25 | 1987-11-11 | Yokogawa Medical Syst Ltd | Ultrasonic transducer |
KR101121369B1 (en) | 2006-11-08 | 2012-03-09 | 파나소닉 주식회사 | Ultrasound probe |
JP5681662B2 (en) * | 2012-04-12 | 2015-03-11 | 日立アロカメディカル株式会社 | Ultrasonic probe |
JP6186957B2 (en) | 2013-07-04 | 2017-08-30 | コニカミノルタ株式会社 | Ultrasonic probe and ultrasonic diagnostic imaging apparatus |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5261987A (en) * | 1975-11-17 | 1977-05-21 | Matsushita Electric Ind Co Ltd | Ultrasonic detector |
JPS5811000A (en) * | 1981-07-13 | 1983-01-21 | Toshiba Corp | Piezoelectric element |
-
1984
- 1984-03-05 JP JP4048584A patent/JPS60185499A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5261987A (en) * | 1975-11-17 | 1977-05-21 | Matsushita Electric Ind Co Ltd | Ultrasonic detector |
JPS5811000A (en) * | 1981-07-13 | 1983-01-21 | Toshiba Corp | Piezoelectric element |
Also Published As
Publication number | Publication date |
---|---|
JPS60185499A (en) | 1985-09-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3950755B2 (en) | Ultrasonic transducers that increase the resolution of imaging systems | |
US10013969B2 (en) | Acoustic lens for micromachined ultrasound transducers | |
US6049159A (en) | Wideband acoustic transducer | |
JP2758199B2 (en) | Ultrasonic probe | |
JPS6084099A (en) | Supersonic transducer | |
CN105793674A (en) | Ultrasonic transducer with backing having spatially segmented surface | |
Lafleur et al. | Acoustically active surfaces using piezorubber | |
EP0366161B1 (en) | Electro-sound transducer, and a probe unit or ultrasonic diagnostic apparatus using such a transducer | |
Foster et al. | The design and characterization of short pulse ultrasound transducers | |
WO2005095946A1 (en) | Supersonic transducer drive method | |
CN109758180A (en) | A kind of flexible ultrasonic probe and its supersonic diagnostic appts, method | |
JPH03133300A (en) | Composite piezoelectric ultrasonic wave probe | |
CN206020343U (en) | Ultrasonic probe gong type chip and the probe using ultrasonic probe gong type chip | |
JPH0448039B2 (en) | ||
WO2016138622A1 (en) | Ultrasonic transducer and manufacturing method thereof | |
CN108889589A (en) | Ultrasonic transducer and Vltrasonic device | |
JP3251328B2 (en) | Ultrasonic probe | |
JP4187993B2 (en) | Ultrasonic probe | |
CN208288392U (en) | Ultrasonic transducer and Vltrasonic device based on ultrasonic transducer | |
JPH0759769A (en) | Ultrasonic probe | |
Kamatham et al. | Design and optimization of a wearable sonomyography sensor for dynamic muscle activity monitoring | |
JP3667426B2 (en) | Sensor | |
JP2804561B2 (en) | Ultrasonic probe | |
JPS6133511B2 (en) | ||
Anson et al. | On the problem of coupling of ultrasonic receivers to layered structures for process control |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |