JPS6133511B2 - - Google Patents

Info

Publication number
JPS6133511B2
JPS6133511B2 JP2553581A JP2553581A JPS6133511B2 JP S6133511 B2 JPS6133511 B2 JP S6133511B2 JP 2553581 A JP2553581 A JP 2553581A JP 2553581 A JP2553581 A JP 2553581A JP S6133511 B2 JPS6133511 B2 JP S6133511B2
Authority
JP
Japan
Prior art keywords
ultrasonic
piezoelectric film
ceramic piezoelectric
ceramic
excitation signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2553581A
Other languages
Japanese (ja)
Other versions
JPS57141199A (en
Inventor
Chihiro Kasai
Takeshi Mochizuki
Hiroaki Ookawai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Aloka Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aloka Co Ltd filed Critical Aloka Co Ltd
Priority to JP2553581A priority Critical patent/JPS57141199A/en
Publication of JPS57141199A publication Critical patent/JPS57141199A/en
Publication of JPS6133511B2 publication Critical patent/JPS6133511B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • B06B1/0607Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements
    • B06B1/0611Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements in a pile
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • G01N29/2437Piezoelectric probes
    • G01N29/245Ceramic probes, e.g. lead zirconate titanate [PZT] probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02854Length, thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/042Wave modes
    • G01N2291/0423Surface waves, e.g. Rayleigh waves, Love waves

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Ceramic Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Transducers For Ultrasonic Waves (AREA)
  • Circuit For Audible Band Transducer (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】 本発明は超音波探触子、特に超音波パルスビー
ムを送受信する超音波探触子に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an ultrasonic probe, and particularly to an ultrasonic probe that transmits and receives an ultrasonic pulse beam.

超音波ビームをパルス状に所定方向に放射し、
対象物からの反射エコーを受信する超音波探触子
が種々の測定に用いられ、探傷、測深、測距など
に好適であり、また近年においては、この種の超
音波ビームを被検体中に放射して生体内の臓器そ
の他を非観血的に画像表示する超音波診断装置に
用いられている。
Emit an ultrasonic beam in a pulsed manner in a predetermined direction,
Ultrasonic probes that receive reflected echoes from objects are used for various measurements, and are suitable for flaw detection, depth sounding, distance measurement, etc. It is used in ultrasonic diagnostic equipment that non-invasively displays images of internal organs and other organs by emitting radiation.

従来の超音波探触子はPZTなどのセラミツク圧
電体を振動子として用いているが、この従来の探
触子では、必ずしも満足できる超音波ビーム送受
信作用が得られないという問題があつた。
Conventional ultrasonic probes use ceramic piezoelectric materials such as PZT as transducers, but these conventional probes have had the problem of not necessarily achieving satisfactory ultrasonic beam transmission and reception effects.

第1図には、従来の超音波探触子が概略的に示
され、セラミツク圧電体10の両側面には励振電
極12,14が貼着あるいは焼付固定される。
FIG. 1 schematically shows a conventional ultrasonic probe, in which excitation electrodes 12 and 14 are attached or fixed by baking to both sides of a ceramic piezoelectric body 10.

この種の従来の探触子においては、セラミツク
圧電体10の音響インピーダンスが大きな値であ
るため、超音波診断における被検体のような音響
インピーダンスの小さい対象物との間ではインピ
ーダンスの不整合が生じ、超音波ビームの送受信
時の効率が低下するという問題がある。このため
に、従来装置では、第1図で示されるように、セ
ラミツク圧電体10の超音波ビーム放射面側にエ
ポキシその他の高分子材料から成る整合層16が
設けられ、前述した被検体とのインピーダンスマ
ツチングが図られている。
In this type of conventional probe, since the acoustic impedance of the ceramic piezoelectric body 10 is large, an impedance mismatch occurs between the probe and an object with a small acoustic impedance, such as a subject in ultrasound diagnosis. However, there is a problem in that the efficiency of transmitting and receiving ultrasonic beams decreases. For this purpose, in the conventional apparatus, as shown in FIG. 1, a matching layer 16 made of epoxy or other polymeric material is provided on the ultrasonic beam emitting surface side of the ceramic piezoelectric body 10, and the matching layer 16 is made of epoxy or other polymeric material. Impedance matching is achieved.

更に超音波パルスビームの反射エコーを用いて
画像表示する超音波診断装置においては、距離方
向の分解能を上げるために、通常の場合、超音波
パルスの振動時間は短い方が良く、この振動時間
が増加するに従つて分解能が低下し、鮮明な画像
を得ることが困難となる。このために、圧電体1
0には励振電極12,14を介して短いパルス幅
の励振信号が印加されるが、周知のように、圧電
体10の機械的自由振動により実際の振動波形
は、第2図に示されるように、そのパルス幅Tが
長くなることが知られている。従来装置では、前
記機械的自由振動を制動するために、第1図で示
されるように、セラミツク圧電体10の背面側に
音波吸収材18が貼着されている。音波吸収材1
8により、前記圧電体10の機械的自由振動はあ
る程度制動され、第3図で示されるように、その
パルス幅Tを第2図と比して減少させることが可
能となる。しかしながら、この音波吸収材18を
有する探触子においても、セラミツク圧電体10
はその音響インピーダンスが音波吸収材18の5
〜10倍と大きいために、両者間の境界面において
大きな反射が生じ、第3図の振動波形も依然とし
て長いパルス幅となり、分解能を十分に改善する
ことができないという欠点があつた。
Furthermore, in ultrasonic diagnostic equipment that displays images using reflected echoes of ultrasonic pulse beams, in order to increase the resolution in the distance direction, it is usually better to shorten the vibration time of the ultrasonic pulse; As the number increases, the resolution decreases and it becomes difficult to obtain clear images. For this purpose, piezoelectric body 1
0, an excitation signal with a short pulse width is applied via the excitation electrodes 12 and 14, but as is well known, due to the mechanical free vibration of the piezoelectric body 10, the actual vibration waveform is as shown in FIG. It is known that the pulse width T becomes longer. In the conventional device, a sound wave absorbing material 18 is attached to the back side of the ceramic piezoelectric body 10, as shown in FIG. 1, in order to damp the mechanical free vibration. Sound wave absorber 1
8, the mechanical free vibration of the piezoelectric body 10 is damped to some extent, and as shown in FIG. 3, it becomes possible to reduce the pulse width T compared to FIG. 2. However, even in the probe having this sound wave absorbing material 18, the ceramic piezoelectric material 10
whose acoustic impedance is 5 of the sound wave absorbing material 18
Since it is ~10 times larger, a large reflection occurs at the interface between the two, and the vibration waveform shown in FIG. 3 still has a long pulse width, which has the disadvantage that the resolution cannot be sufficiently improved.

本発明は上記従来の課題に鑑みなされたもの
で、その目的は、送信される超音波パルス幅の短
縮化を図り超音波送受信特性を著しく改善した超
音波探触子を提供することにある。
The present invention has been made in view of the above-mentioned conventional problems, and an object thereof is to provide an ultrasonic probe with significantly improved ultrasonic transmission and reception characteristics by shortening the transmitted ultrasonic pulse width.

上記目的を達成するために、本発明は、励振信
号の印加によつて超音波パルスビームを放射する
セラミツク圧電体と、このセラミツク圧電体の放
射面側にセラミツク圧電体と被検体との間のイン
ピーダンスを整合する整合層として配設された高
分子圧電フイルムと、セラミツク圧電体で得られ
た超音波パルス波形の後端波形を打ち消すように
一定時間遅延された打消し励振信号を前記高分子
圧電フイルムに供給する打消し励振信号供給手段
と、を備えたことを特徴とする。
In order to achieve the above object, the present invention provides a ceramic piezoelectric material that emits an ultrasonic pulse beam by application of an excitation signal, and a radiation surface between the ceramic piezoelectric material and a subject on the radiation surface side of the ceramic piezoelectric material. A cancellation excitation signal delayed for a certain period of time is transmitted to the polymer piezoelectric film so as to cancel the rear end waveform of the ultrasonic pulse waveform obtained by the polymer piezoelectric film disposed as a matching layer for impedance matching and the ceramic piezoelectric material. The present invention is characterized by comprising a canceling excitation signal supplying means for supplying the film to the film.

以下、図面に基づいて本発明の好適な実施例を
説明する。
Hereinafter, preferred embodiments of the present invention will be described based on the drawings.

第4図には、本発明に係る超音波探触子の概略
構成が示され、第1図の従来装置と同一部材には
同一符号を付して説明を省略する。
FIG. 4 shows a schematic configuration of an ultrasonic probe according to the present invention, and the same members as those of the conventional device shown in FIG.

本発明において特徴的なことは、セラミツク圧
電体10の超音波ビーム放射面側に高分子圧電フ
イルム20が整合層を兼ねるように装着され、か
つこの高分子圧電フイルム20に超音波パルス幅
の短縮化を図る打消し励振信号を供給することで
あり、実施例においては、電極12に圧電フイル
ム20の一端面が貼着されている。実施例におけ
る高分子圧電フイルム20としてはポリフツ化ビ
ニリデン、ポリフツ化ビニル等およびこれらを主
成分とする共重合体、またセラミツクなどの無機
粉末を混合した圧電体などが好適であり、この高
分子圧電フイルム20はセラミツク圧電体10よ
り小さな音響インピーダンスを有し、その値はほ
ぼ被検体と近似した大きさにあり、本発明によれ
ば、この高分子圧電フイルム20を従来の整合層
16の代わりに用いることが可能となる。そし
て、この高分子圧電フイルムは従来の高分子整合
層16と異なり良好な可撓性を有し、例えば、超
音波探触子を直接被検体表面に密着させるような
場合、第4図の高分子圧電フイルム20を露出し
て被検体に密着することにより両者の馴染みを良
くし、超音波ビームの減衰を減少させることが可
能となる。
A characteristic feature of the present invention is that a polymer piezoelectric film 20 is attached to the ultrasonic beam emitting surface side of the ceramic piezoelectric body 10 so as to double as a matching layer, and the polymer piezoelectric film 20 has a shortened ultrasonic pulse width. In this embodiment, one end surface of a piezoelectric film 20 is attached to the electrode 12. Suitable examples of the polymer piezoelectric film 20 in the examples include polyvinylidene fluoride, polyvinyl fluoride, etc., copolymers containing these as main components, and piezoelectric materials mixed with inorganic powder such as ceramic. The film 20 has a smaller acoustic impedance than the ceramic piezoelectric material 10, and its value is approximately the same as that of the subject. According to the present invention, this polymeric piezoelectric film 20 is used in place of the conventional matching layer 16. It becomes possible to use it. Unlike the conventional polymer matching layer 16, this polymer piezoelectric film has good flexibility. By exposing the molecular piezoelectric film 20 and bringing it into close contact with the subject, it is possible to improve familiarity between the two and reduce attenuation of the ultrasound beam.

第4図の実施例では、前記高分子圧電フイルム
20を反射エコーの受信用として用いるため、圧
電フイルム20の放射面側に励振電極22が設け
られている。また実施例においては、高分子圧電
フイルム20の放射面側に音響レンズ24が配設
され、探触子の保護およびビームの集束その他を
行うことが可能となる。実施例において、セラミ
ツク圧電体10、高分子圧電フイルム20および
音響レンズ24のそれぞれの音響インピーダンス
は30×106Kg/m2s、4×106Kg/m2sおよび4〜1.5
×106Kg/m2sに設定されている。
In the embodiment shown in FIG. 4, since the polymer piezoelectric film 20 is used for receiving reflected echoes, an excitation electrode 22 is provided on the radiation surface side of the piezoelectric film 20. Further, in the embodiment, an acoustic lens 24 is disposed on the radiation surface side of the polymer piezoelectric film 20 to protect the probe, focus the beam, and perform other functions. In the example, the acoustic impedance of the ceramic piezoelectric material 10, the polymer piezoelectric film 20, and the acoustic lens 24 is 30×10 6 Kg/m 2 s, 4×10 6 Kg/m 2 s, and 4 to 1.5.
×10 6 Kg/m 2 s.

本発明の実施例は以上の構成から成り、前述し
たように、セラミツク圧電体10の放射面側に設
けられた高分子圧電フイルム20はセラミツク圧
電体10と被検体(音響インピーダンス1.5×106
Kg/m2s)との中間程度の音響インピーダンス値を
有するので、セラミツク圧電体10に対する良好
なインピーダンス整合層として作用し、超音波ビ
ームの送受信効率を著しく改善することができ
る。
The embodiment of the present invention has the above configuration, and as described above, the polymer piezoelectric film 20 provided on the radiation surface side of the ceramic piezoelectric body 10 is connected to the ceramic piezoelectric body 10 and the object to be examined (acoustic impedance 1.5×10 6
Since it has an acoustic impedance value intermediate between Kg/m 2 s), it acts as a good impedance matching layer for the ceramic piezoelectric body 10, and can significantly improve the transmission and reception efficiency of ultrasonic beams.

本発明においても、超音波ビームの送信は送信
回路とマツチングの良好なセラミツク圧電体10
により行われ、前述した第3図と同様の第5A図
で示される波形の振動作用を行い、第5A図の波
形は音波吸収体18によつてそのパルス幅Tが減
少されている。そして、本発明においては、励振
電極12,14間への送信用励振信号の印加と同
時に、または一定時間遅らせて電極12,22間
に第5B図で示される波形の打消励信信号を供給
し、セラミツク圧電体10の振動パルス幅を短縮
する作用を行う。すなわち、第5B図の打消励信
信号は第5A図の励振信号より若干遅延して電極
12,22間に供給され、またその極性が反転し
ているので、両信号の合成された超音波ビーム信
号は、第5C図で示されるように、そのパルス幅
Tが著しく減少した波形となることが理解され
る。すなわち、通常の励振信号の機械的自由振動
部である後端の信号波形を高分子圧電フイルム2
0で打ち消し、この結果、パルス幅の短い励振信
号を得ることが可能となる。
In the present invention, the ultrasonic beam is also transmitted using a ceramic piezoelectric material 10 that is well matched with the transmitting circuit.
5A, which is similar to that shown in FIG. 3 described above, and the pulse width T of the waveform shown in FIG. In the present invention, a canceling excitation signal having the waveform shown in FIG. 5B is supplied between the electrodes 12 and 22 at the same time as the transmission excitation signal is applied between the excitation electrodes 12 and 14, or after a certain period of delay. , which acts to shorten the vibration pulse width of the ceramic piezoelectric body 10. That is, the canceling excitation signal shown in FIG. 5B is supplied between the electrodes 12 and 22 with a slight delay from the excitation signal shown in FIG. It will be appreciated that the signal has a waveform whose pulse width T is significantly reduced, as shown in FIG. 5C. That is, the signal waveform at the rear end, which is the mechanically free vibration part of a normal excitation signal, is transferred to the polymer piezoelectric film 2.
As a result, it is possible to obtain an excitation signal with a short pulse width.

第6図には、前記励振信号と打消励信信号とを
セラミツク圧電体10および高分子圧電フイルム
20にそれぞれ供給するための好適な実施例回路
が示され、トリガ発生器26のトリガ信号によつ
て主送信回路28を動作させ、主送信回路28の
励振信号を電極14に供給することによつてセラ
ミツク圧電体10を励振駆動することができる。
一方、トリガ発生器26のトリガ信号は遅延線3
0を通つて補助送信回路32へ供給され、この遅
延線30と補助送信回路32により打消し励振信
号供給手段を構成する。従つて、補助送信回路3
2の遅延した打消励信信号を電極22に供給する
ことによつて高分子圧電フイルム20を励動駆動
することができる。
FIG. 6 shows a preferred embodiment circuit for supplying the excitation signal and the canceling excitation signal to the ceramic piezoelectric body 10 and the polymeric piezoelectric film 20, respectively, in response to a trigger signal from a trigger generator 26. By operating the main transmitting circuit 28 and supplying the excitation signal of the main transmitting circuit 28 to the electrode 14, the ceramic piezoelectric body 10 can be excited and driven.
On the other hand, the trigger signal of the trigger generator 26 is transmitted to the delay line 3
0 to the auxiliary transmitting circuit 32, and the delay line 30 and the auxiliary transmitting circuit 32 constitute canceling excitation signal supply means. Therefore, the auxiliary transmitting circuit 3
By supplying two delayed canceling excitation signals to the electrodes 22, the polymer piezoelectric film 20 can be excited and driven.

以上のように、本発明によれば、セラミツク圧
電体に装着された高分子圧電フイルムを用いてパ
ルス幅の短い超音波ビームによつて高分解能の画
像表示を行うことが可能となる。
As described above, according to the present invention, it is possible to display a high-resolution image using an ultrasonic beam with a short pulse width using a polymer piezoelectric film attached to a ceramic piezoelectric body.

更に本発明においては、探触子の反射エコー受
信時に従来と異なり、高分子圧電フイルム20を
用いることによつて、極めて良好な受信特性を得
ることができる。すなわち、反射エコーの受信時
には、高分子圧電フイルム20が受信用の振動子
として作用し、両電極12,22間から反射エコ
ーに対応した電気信号を取り出すことができる。
すなわち、本発明における高分子圧電フイルム2
0はその音響インピーダンスが被検体に近いた
め、そのQ値が1程度あるいはそれ以下とするこ
とができ、極めて広い周波数特性を有するととも
に、自由振動が急速に減少するという特徴があ
り、この結果、超音波反射エコーを忠実に電気信
号に変換する作用を行うことができる。すなわ
ち、高分子圧電フイルム20は反射エコーの受信
時において、従来のセラミツク圧電体10より極
めて優れた忠実度を有することとなる。
Furthermore, in the present invention, by using the polymer piezoelectric film 20, unlike the conventional method, when receiving the reflected echo of the probe, extremely good reception characteristics can be obtained. That is, when receiving a reflected echo, the polymer piezoelectric film 20 acts as a receiving vibrator, and an electrical signal corresponding to the reflected echo can be extracted from between the electrodes 12 and 22.
That is, the polymer piezoelectric film 2 in the present invention
Since the acoustic impedance of 0 is close to that of the subject, its Q value can be set to about 1 or less, and it has an extremely wide frequency characteristic and is characterized by a rapid decrease in free vibration. It is possible to faithfully convert ultrasound reflected echoes into electrical signals. That is, the polymer piezoelectric film 20 has extremely superior fidelity than the conventional ceramic piezoelectric material 10 when receiving reflected echoes.

第7図は反射エコーの受信波形を示し、第7A
図では、従来のセラミツク圧電体10を用いた場
合、そして、第7B図は本発明に係る高分子圧電
フイルム20を用いた場合を示す。
Figure 7 shows the received waveform of the reflected echo;
The figure shows a case where a conventional ceramic piezoelectric body 10 is used, and FIG. 7B shows a case where a polymer piezoelectric film 20 according to the present invention is used.

第7図から明らかなように、従来のセラミツク
圧電体10を受信用として用いた場合には、その
受信パルス幅が必要以上に増大し、受信時の分解
能が著しく低下することとなるが、本発明におけ
る高分子圧電フイルム10を用いれば、この受信
特性を容易に改善することが可能となる。そし
て、高分子圧電フイルム20はその音響インピー
ダンスが被検体と近いために、セラミツク圧電体
10と異なり、その受信時になんらのインピーダ
ンス整合層も必要としない利点を有する。
As is clear from FIG. 7, when the conventional ceramic piezoelectric body 10 is used for reception, the reception pulse width increases more than necessary, and the resolution during reception deteriorates significantly. By using the polymer piezoelectric film 10 of the invention, it is possible to easily improve this receiving characteristic. Since the polymer piezoelectric film 20 has an acoustic impedance close to that of the subject, it has the advantage that, unlike the ceramic piezoelectric material 10, it does not require any impedance matching layer during reception.

以上説明したように、本発明によれば、従来の
セラミツク圧電体放射面側に設けられた高分子圧
電フイルムにより、機械的自由振動によるパルス
を除去して良好な超音波送受信特性を得ることが
でき、これによつて分解能の高い鮮明な画像が得
られる。
As explained above, according to the present invention, it is possible to remove pulses caused by mechanical free vibration and obtain good ultrasonic transmission and reception characteristics by using a polymer piezoelectric film provided on the radiation surface side of a conventional ceramic piezoelectric material. This allows you to obtain clear images with high resolution.

また、本発明の高分子圧電フイルムが整合層と
しての役割を果たすので、小型化、低価格の超音
波探触子にて優れた特性を発揮することができ
る。
Further, since the polymer piezoelectric film of the present invention serves as a matching layer, it is possible to exhibit excellent characteristics in a compact, low-cost ultrasonic probe.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の超音波探触子を示す概略説明
図、第2図および第3図は第1図の探触子の励振
信号波形図、第4図は本発明に係る超音波探触子
の好適な実施例を示す概略説明図、第5図は第4
図の実施例における励振波形図、第6図は第4図
の送信時における励振回路図、第7図は本発明の
作用を示す波形図である。 10……セラミツク圧電体、20……高分子圧
電フイルム。
Fig. 1 is a schematic explanatory diagram showing a conventional ultrasonic probe, Figs. 2 and 3 are excitation signal waveform diagrams of the probe in Fig. 1, and Fig. 4 is an ultrasonic probe according to the present invention. A schematic explanatory diagram showing a preferred embodiment of the child, FIG.
FIG. 6 is an excitation waveform diagram in the embodiment shown in the figure, FIG. 6 is an excitation circuit diagram at the time of transmission in FIG. 4, and FIG. 7 is a waveform diagram showing the operation of the present invention. 10...Ceramic piezoelectric material, 20...Polymer piezoelectric film.

Claims (1)

【特許請求の範囲】 1 励振信号の印加によつて超音波パルスビーム
を放射するセラミツク圧電体と、このセラミツク
圧電体の放射面側にセラミツク圧電体と被検体と
の間のインピーダンスを整合する整合層として配
設された高分子圧電フイルムと、セラミツク圧電
体で得られた超音波パルス波形の後端波形を打ち
消すように一定時間遅延された打消し励振信号を
前記高分子圧電フイルムに供給する打消し励振信
号供給手段と、を備えたことを特徴とする超音波
探触子。 2 特許請求の範囲1記載の探触子において、セ
ラミツク圧電体は超音波ビームの送信用としてま
た高分子圧電フイルムは反射エコーの受信用とし
て用いられることを特徴とする超音波探触子。
[Claims] 1. A ceramic piezoelectric body that emits an ultrasonic pulse beam by applying an excitation signal, and a matching device that matches impedance between the ceramic piezoelectric body and a subject on the radiation surface side of the ceramic piezoelectric body. A cancellation method that supplies a cancellation excitation signal delayed for a certain period of time to the polymer piezoelectric film so as to cancel the rear end waveform of the ultrasonic pulse waveform obtained by the polymer piezoelectric film arranged as a layer and the ceramic piezoelectric material. An ultrasonic probe comprising: excitation signal supply means. 2. The ultrasonic probe according to claim 1, wherein the ceramic piezoelectric material is used for transmitting an ultrasonic beam, and the polymer piezoelectric film is used for receiving reflected echoes.
JP2553581A 1981-02-25 1981-02-25 Ultrasonic wave probe Granted JPS57141199A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2553581A JPS57141199A (en) 1981-02-25 1981-02-25 Ultrasonic wave probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2553581A JPS57141199A (en) 1981-02-25 1981-02-25 Ultrasonic wave probe

Publications (2)

Publication Number Publication Date
JPS57141199A JPS57141199A (en) 1982-09-01
JPS6133511B2 true JPS6133511B2 (en) 1986-08-02

Family

ID=12168702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2553581A Granted JPS57141199A (en) 1981-02-25 1981-02-25 Ultrasonic wave probe

Country Status (1)

Country Link
JP (1) JPS57141199A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5826263A (en) * 1981-08-10 1983-02-16 Olympus Optical Co Ltd Ultrasonic probe and its driving device
JPS5841456B2 (en) * 1982-10-04 1983-09-12 株式会社日立製作所 pressure transmitter
DE3309236A1 (en) * 1983-03-15 1984-09-20 Siemens AG, 1000 Berlin und 8000 München ULTRASONIC CONVERTER
JPH04128498U (en) * 1991-05-14 1992-11-24 日本無線株式会社 Ultrasonic transducer

Also Published As

Publication number Publication date
JPS57141199A (en) 1982-09-01

Similar Documents

Publication Publication Date Title
EP0104928B1 (en) Ultrasonic diagnostic imaging systems for varying depths of field
US4205686A (en) Ultrasonic transducer and examination method
US4084582A (en) Ultrasonic imaging system
US4207901A (en) Ultrasound reflector
US4248090A (en) Apparatus for ultrasonically imaging a body
JPH08238243A (en) Self testing method of ultrasonic wave picture processor andultrasonic wave picture processor with said test means
US7291108B2 (en) Ultrasonic transmission/reception apparatus for generating an image based on ultrasonic echoes and vibro-acoustic sounds
EP0366161A2 (en) Electro-sound transducer, and a probe unit or ultrasonic diagnostic apparatus using such a transducer
JPH043223B2 (en)
US4716765A (en) Ultrasonic measuring apparatus
GB2095951A (en) Transducers of improved resolution and systems for the transmission and reception of radiation
JPS6133511B2 (en)
GB2099997A (en) Apparatus for ultrasonic imaging
US4612809A (en) Curved-array ultrasonic probe using low-velocity fluid
JPS649012B2 (en)
JPH0360492B2 (en)
JPH021263B2 (en)
JPS622813B2 (en)
JP3009423B2 (en) Ultrasonic probe and ultrasonic device
JP2953909B2 (en) Ultrasonic fat thickness measurement device
JPH0448039B2 (en)
JPS6128301B2 (en)
JPS6215213B2 (en)
JPH0646495A (en) Ultrasonic probe
JPS5822047A (en) Ultrasonic diagnostic apparatus