JPS6218561A - Formation of rugged surface - Google Patents

Formation of rugged surface

Info

Publication number
JPS6218561A
JPS6218561A JP60158744A JP15874485A JPS6218561A JP S6218561 A JPS6218561 A JP S6218561A JP 60158744 A JP60158744 A JP 60158744A JP 15874485 A JP15874485 A JP 15874485A JP S6218561 A JPS6218561 A JP S6218561A
Authority
JP
Japan
Prior art keywords
mask
film
forming
region
etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60158744A
Other languages
Japanese (ja)
Other versions
JPH052142B2 (en
Inventor
Masataka Shirasaki
白崎 正孝
Hiroki Nakajima
啓幾 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP60158744A priority Critical patent/JPS6218561A/en
Priority to CA000504383A priority patent/CA1270934A/en
Priority to US06/841,801 priority patent/US4806442A/en
Priority to DE8686400592T priority patent/DE3687845T2/en
Priority to EP86400592A priority patent/EP0195724B1/en
Publication of JPS6218561A publication Critical patent/JPS6218561A/en
Publication of JPH052142B2 publication Critical patent/JPH052142B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0005Production of optical devices or components in so far as characterised by the lithographic processes or materials used therefor
    • G03F7/001Phase modulating patterns, e.g. refractive index patterns

Abstract

PURPOSE:To expose a surface which is protected by masks and has high surface accuracy by providing the 1st mask to a region corresponding to recesses on a substrate the providing a film over the entire surface, providing the 2nd mask to the regions except the region corresponding to the recesses on the film, etching the film just before the 1st mask and finally removing the 1st and 2nd masks. CONSTITUTION:After the 1st mask 19 is preliminarily formed to the position where the recesses 2 are to be formed, the film 18 is formed and the 2nd mask is provided to the region on the film 18 where projecting parts 1 are to be formed. Since the film is etched from above said region, the film 18 under the 2nd mask remains without being etched at all and forms the projecting part 1. The region where there is no 2nd mask 22 is etched just before the 1st mask 19 and forms the recesses 2. The 1st mask 19 and the 2nd mask 22 are both removed by etching and therefore, the surface protected by the 1st and 2nd masks 19, 22 is exposed and the surface having the high surface accuracy is obtd.

Description

【発明の詳細な説明】 〔概要〕 基板上の凹部に対応する領域に第1のマスクを設けてか
ら、その上側から全面に膜を設け、該層の上の凹部に対
応する領域以外に第2のマスクを設け、エツチングを第
1のマスクの手前まで行ない、最後に第1、第2のマス
クを除去することで、マスクで保護された面精度の高い
面を露出させる。
[Detailed Description of the Invention] [Summary] A first mask is provided in the region corresponding to the recess on the substrate, a film is provided over the entire surface from above, and a first mask is provided in the region other than the region corresponding to the recess on the layer. A second mask is provided, etching is performed up to the front of the first mask, and finally the first and second masks are removed to expose the surface with high surface precision protected by the mask.

〔産業上の利用分野〕[Industrial application field]

本発明は、例えばDFBレーザ製造用の露光マスフのよ
うに、高い面精度を要する凹凸を多数存する製品の製造
方法に関する。
The present invention relates to a method for manufacturing a product that has many irregularities that require high surface precision, such as an exposure mask for DFB laser manufacturing.

〔通用品の例〕[Example of common goods]

第3図に示すようにDFBレーザは、半導体チ・7プ7
上に回折格子8を形成し、その上側に活性層9、電極1
0が形成された構造に−なっている。このレーザの正負
の電極間に通電すると、回折格子8および活性層9の部
分でレーザ発振を起こし、レーザ光を放出する。
As shown in Figure 3, the DFB laser consists of a semiconductor chip 7.
A diffraction grating 8 is formed on top, and an active layer 9 and an electrode 1 are formed above it.
It has a structure in which 0 is formed. When electricity is applied between the positive and negative electrodes of this laser, laser oscillation occurs in the diffraction grating 8 and active layer 9, and laser light is emitted.

ところが単に回折格子を形成しただけでは、回折格子に
おける位相関係がずれるため、DFBレーザの縦モード
が2つ発生するという不都合がある。これを解消するに
は、第4図のように、回折格子8のピッチをレーザ発振
の中心部Cを境にしてずらすことで、左右の位相関係を
予めずらしておくことが知られている。
However, simply forming a diffraction grating causes the phase relationship in the diffraction grating to shift, resulting in the inconvenience that two longitudinal modes of the DFB laser are generated. In order to solve this problem, it is known to shift the pitch of the diffraction grating 8 with the center C of laser oscillation as a boundary, as shown in FIG. 4, thereby shifting the left and right phase relationship in advance.

このように位相差を持った回折格子の作製方法として、
本発明の出願人は、先に特願昭60−57455号とし
て、第5図のような露光方法を提案した。
As a method for producing a diffraction grating with a phase difference like this,
The applicant of the present invention previously proposed an exposure method as shown in FIG. 5 in Japanese Patent Application No. 60-57455.

第5図の(イ)は基本構成を示す断面図、(ロ)はその
要部拡大図である。4は回折格子を形成する媒体であり
、その上にガラスなどの透明体マスク3が載置される。
FIG. 5(A) is a sectional view showing the basic configuration, and FIG. 5(B) is an enlarged view of the main parts. 4 is a medium forming a diffraction grating, and a transparent mask 3 made of glass or the like is placed thereon.

このマスク3は、発振中心部C上で、凸部1と凹部2間
の段差11がつき、その両側の光路長が異なる。あるい
は発振中心部C上を境にして、左右の屈折率が異なる構
成としてもよい。
This mask 3 has a step 11 between the convex portion 1 and the concave portion 2 on the oscillation center C, and the optical path lengths on both sides thereof are different. Alternatively, the refractive index may be different on the left and right sides with the oscillation center C as a boundary.

この媒体4の面に、前記マスク3を介して、2つの光束
5と6が照射される。その際光束5と6が角度2θの角
度をなして入射し、媒体4上で2つの光束の干渉が行な
われる。また2つの光束5と6の成す中心軸Aは、法線
vに対し角度φだけ傾き、非対称の状態で照射される。
Two light beams 5 and 6 are irradiated onto the surface of the medium 4 through the mask 3. At this time, the light beams 5 and 6 are incident at an angle of 2.theta., and interference between the two light beams occurs on the medium 4. Moreover, the central axis A formed by the two light beams 5 and 6 is inclined by an angle φ with respect to the normal line v, and the light beams are irradiated in an asymmetrical state.

第5図(ロ)に示すように、マスク3の厚さは、段差部
11を境にして異なり、左側の厚さtlより右側の厚さ
t2が小さい。そのため段差部11の左側と右側とでは
、光路長が異なり、また2つの光束5.6が角度φだけ
傾き非対称に照射されるので、段差部11を境にして干
渉縞の位相がずれる。その結果、2つの光束による干渉
縞を露光して形成される回折格子8も、段差部11を境
にして位相がずれる。
As shown in FIG. 5(B), the thickness of the mask 3 varies across the stepped portion 11, with the thickness t2 on the right side being smaller than the thickness tl on the left side. Therefore, the optical path lengths are different on the left and right sides of the stepped portion 11, and the two light beams 5.6 are irradiated asymmetrically with an angle φ, so that the phase of the interference fringes is shifted with the stepped portion 11 as a boundary. As a result, the phase of the diffraction grating 8, which is formed by exposing the interference fringes of the two light beams, is also shifted across the stepped portion 11.

この段差部11を有するマスク3は、実際には第6図の
ような方法で作製される。すなわち同時に多数のDFB
レーザを製造できるように、マスク3に、レーザの寸法
βと同じピッチで多数の段差部11・・・が形成されて
いる。2つの光束5.6を照射すると、それぞれの段差
部11・・・を境にして、両側の光路長が異なり、かつ
光束5.6の入射方向を法線■に対し角度φだけ傾けて
非対称に照射することで、それぞれの段差部11を境に
して位相のずれた回折格子が、媒体4上に形成される。
The mask 3 having this stepped portion 11 is actually manufactured by a method as shown in FIG. i.e. many DFBs at the same time
In order to manufacture a laser, a large number of stepped portions 11 are formed on the mask 3 at the same pitch as the laser dimension β. When two light beams 5.6 are irradiated, the optical path lengths on both sides are different with each stepped portion 11 as a boundary, and the incident direction of the light beams 5.6 is tilted by an angle φ with respect to the normal ■, making it asymmetrical. By irradiating the light beams on the medium 4, a diffraction grating whose phase is shifted with each stepped portion 11 as a boundary is formed on the medium 4.

露光して回折格子を形成した後に、段差部11が中心に
来るように、鎖線12・・・の位置で媒体4が切り離さ
れる。
After exposing to light to form a diffraction grating, the medium 4 is separated at the positions indicated by chain lines 12 . . . so that the stepped portion 11 is centered.

〔従来の技術とその問題点〕[Conventional technology and its problems]

ところで凸部1の面も凹部2の面も、光束5.6を照射
して干渉縞を形成するため、冑い面精度が要求される。
By the way, both the surface of the convex portion 1 and the surface of the concave portion 2 are required to have excellent surface precision because interference fringes are formed by irradiating the light beam 5.6.

凹凸面を形成するには、第7図のように、凸部1とすべ
き位置にマスク13を被せた状態で、化学エツチングま
たはドライエツチングを行なうことで、凹部2を形成し
た後、マスク13を除去することが考えられる。ところ
がこの方法では、凸部1の面は精度良く形成できても、
凹部2の底面はエツチング面がそのまま残るため、荒れ
た面になり、光束5.6を照射した際に、乱反射や散乱
を起こし、所期の干渉縞が得られない。
To form an uneven surface, as shown in FIG. 7, chemical etching or dry etching is performed with a mask 13 placed over the positions where the protrusions 1 are to be formed, thereby forming the recesses 2, and then removing the mask 13. It is possible to remove . However, with this method, although the surface of the convex portion 1 can be formed with high precision,
Since the etched surface remains on the bottom surface of the recess 2, the surface becomes rough, and when the light beam 5.6 is irradiated, diffuse reflection and scattering occur, making it impossible to obtain the desired interference fringes.

また段差部11も、切り立った段差でなく、なだらかな
傾斜面になってしまう。
Furthermore, the step portion 11 is not a steep step, but a gentle slope.

第8図のようにリフトオフ法を利用すれば、凹部2の面
精度は向上する。この図において、まず(イ)のように
凹部2となるべき位置に予めマスク14を形成し、その
上から、マスク3と同じ材質の膜15を蒸着などの手法
で形成する。その後、前記マスク14を溶剤で除去する
と、その上側の膜15も除去され、(ロ)の状態となる
。マスク14を除去した後の凹部2の底面は、面精度の
高い面となる。ところがリフトオフ法は、膜15の厚さ
が0.2μm程度の場合は有効であるが、本発明の対象
品などのように、厚さが2〜3μm程度になると、マス
ク14は除去されてもその上の膜15の除去が困難であ
る。そのため、マスク14の上側の除去部と、凸部1と
して残存する部分との間の段差部11に割れ16が発生
したりし、均一な仕上がりが得られない。
If the lift-off method is used as shown in FIG. 8, the surface accuracy of the recess 2 will be improved. In this figure, first, as shown in (A), a mask 14 is formed in advance at the position where the recess 2 is to be formed, and a film 15 made of the same material as the mask 3 is formed thereon by a method such as vapor deposition. Thereafter, when the mask 14 is removed with a solvent, the film 15 above it is also removed, resulting in the state shown in (b). The bottom surface of the recess 2 after removing the mask 14 becomes a surface with high surface accuracy. However, the lift-off method is effective when the thickness of the film 15 is about 0.2 μm, but when the thickness becomes about 2 to 3 μm, such as the product targeted by the present invention, even if the mask 14 is removed, It is difficult to remove the film 15 thereon. Therefore, cracks 16 may occur in the stepped portion 11 between the upper removed portion of the mask 14 and the portion remaining as the convex portion 1, making it impossible to obtain a uniform finish.

本発明の技術的課題は、従来の凹凸形成方法におけるこ
のような問題を解消し、凸部も凹部もまた段差部も精度
良く形成可能な方法を実現することにある。
A technical object of the present invention is to solve such problems in the conventional unevenness forming method and to realize a method that can form convex portions, concave portions, and stepped portions with high precision.

〔問題点を解決するための手段〕[Means for solving problems]

第1図は本発明による凹凸面形成方法の基本原理を工程
順に示す図で、A、B・・・の順に処理が行なわれる。
FIG. 1 is a diagram showing the basic principle of the method for forming an uneven surface according to the present invention in the order of steps, and the processes are performed in the order of A, B, . . . .

Eは凹凸面の完成状態であり、17は基板、18はその
上に積層された膜、1は凸部、2は凹部である。凹凸面
の形成に際しては、まずA工程のように、凹部2となる
べき領域に第1のマスク19を形成し、次にB工程のよ
うに、上側の全領域に膜18を形成する。次いでC工程
のように、凹部2となるべき領域以外の領域に第2のマ
スク22を形成した後、D工程のように、該第2のマス
ク22以外の領域の膜18を第1のマスク19の手前ま
でエツチングし、次に第1のマスク19、第2のマスク
22を除去することで、E工程に示されるように凹凸面
が形成される。
E shows the finished state of the uneven surface, 17 is the substrate, 18 is a film laminated thereon, 1 is a convex portion, and 2 is a concave portion. In forming the uneven surface, first, as in step A, a first mask 19 is formed in the region to become the recess 2, and then, as in step B, a film 18 is formed over the entire upper region. Next, as in step C, a second mask 22 is formed in a region other than the region to become the recess 2, and then, as in step D, the film 18 in the region other than the second mask 22 is formed with a first mask. By etching to the front of the mask 19 and then removing the first mask 19 and the second mask 22, an uneven surface is formed as shown in step E.

〔作用〕[Effect]

凹部2となるべき位置に予め第1のマスク19を形成し
てから、膜18を成膜し、かつ該層18の上の凸部1と
なるべき領域に、第2のマスクを設け、その上からエツ
チングするので、第2のマスクの下側の膜18は全くエ
ツチングされずに残り、凸部1となる。また第2のマス
ク22の無い領域は、第1のマスク19の手前までエツ
チングされ、凹部2となる。そして第1のマスク19と
第2のマスク22は、共にエツチングで除去されるので
、第1および第2のマスク19.22で保護されていた
面が露出し、面精度の高い面となる。
A first mask 19 is formed in advance at the position where the concave portion 2 is to be formed, and then the film 18 is formed, and a second mask is provided on the layer 18 in the region where the convex portion 1 is to be formed. Since etching is performed from above, the film 18 on the lower side of the second mask is not etched at all and remains, forming the convex portion 1. Further, the area without the second mask 22 is etched to the front side of the first mask 19, and becomes the recess 2. Since both the first mask 19 and the second mask 22 are removed by etching, the surfaces protected by the first and second masks 19, 22 are exposed, resulting in surfaces with high surface precision.

〔実施例〕〔Example〕

次に本発明による凹凸面形成方法が実際上どのように具
体化されるかを実施例で説明する。第2図は本発明によ
る凹凸形成方法の実施例を工程順に示す断面図であり、
この図にしたがって説明する。
Next, how the method for forming an uneven surface according to the present invention is actually implemented will be explained using examples. FIG. 2 is a cross-sectional view showing an embodiment of the unevenness forming method according to the present invention in the order of steps;
This will be explained according to this figure.

(a)  両面が光学研磨された厚さ1mmの石英平行
平板17に、フォトレジストのリフトオフを用いてスト
ライプ状のAl蒸着膜19を700人付ける。このスト
ライプは、幅300μm1間隔300μmの600μm
周期とする。
(a) A striped Al vapor deposition film 19 is applied by 700 people using photoresist lift-off to a parallel quartz plate 17 with a thickness of 1 mm, both sides of which have been optically polished. This stripe is 600 μm wide with a width of 300 μm and an interval of 300 μm.
Period.

(b)  その上にSing膜18をスパッタにより2
.14μm積層する。これは蒸着などの手法で行なって
もよい。
(b) A Sing film 18 is deposited on it by sputtering.
.. Laminated to a thickness of 14 μm. This may be done by a technique such as vapor deposition.

(C)  次に、その上にフォトレジストを塗布し、裏
面から光20を照射して露光することにより、いわゆる
セルファライン方法で、A1膜19の上側の領域だけフ
ォトレジストを残してフォトレジストパターン21とす
る。
(C) Next, a photoresist is applied thereon and exposed by irradiating light 20 from the back side, using the so-called self-line method to form a photoresist pattern, leaving the photoresist only in the upper area of the A1 film 19. 21.

(d)  この上にAff蒸着膜を1200人付け、前
に付けたフォトレジストパターン21を利用してリフト
オフにより、最初のAI!膜19の無い領域だけ2層目
のA1膜22を残す。
(d) Apply 1,200 Aff vapor deposited films on top of this, and perform lift-off using the photoresist pattern 21 that was previously applied to create the first AI! The second layer A1 film 22 is left only in the area where the film 19 is not present.

+e)  反応性イオンエツチングRIE”(0□5%
”CF4)を用いて、2層目のA2膜22の無い部分の
5in2膜を1層目のAAAl2O面までエツチングす
る。この時、A6膜22.19がマスクとなり、その下
側の5in2膜18および石英基板17はエツチングさ
れない。
+e) Reactive ion etching RIE” (0□5%
CF4) is used to etch the 5in2 film in the area where the second layer A2 film 22 is not present to the first layer AAAAl2O surface.At this time, the A6 film 22.19 serves as a mask and the 5in2 film 18 below it is etched. And the quartz substrate 17 is not etched.

(f)  最後に化学エツチングにより、Al成膜9.
22を除去する。
(f) Finally, chemical etching is performed to form an Al film 9.
22 is removed.

このようにして作製された凹部2と凸部1は共に、エツ
チングの際には、A1膜19.20で保護されているた
め、Al成膜9.20の化学エツチング後は、面精度の
高い光学面となる。
Both the concave portions 2 and the convex portions 1 produced in this way are protected by the A1 film 19.20 during etching, so after the chemical etching of the Al film 9.20, a high surface precision is obtained. It becomes an optical surface.

このような手法で製造した石英マスクを、第5図の透明
マスク3として使用することで、光の乱反射や散乱が発
生せず、所期の回折格子8が形成される。また下側のA
l成膜9に届くまでエツチングされるので、段差部11
も切り立った状態となる。
By using the quartz mask manufactured by such a method as the transparent mask 3 shown in FIG. 5, the desired diffraction grating 8 can be formed without causing diffuse reflection or scattering of light. Also, the lower A
Since it is etched until it reaches the film 9, the step part 11 is etched.
It is also in a steep state.

実施例では、第2のマスク22を作製するためのレジス
トパターン21を形成するのに、セルファライン法を使
用しているが、第2のマスク22は他の手法でも作製で
きることはいうまでもない。
In the example, the self-line method is used to form the resist pattern 21 for producing the second mask 22, but it goes without saying that the second mask 22 can be produced by other methods. .

なお実施例として、DFBレーザ製造用の露光マスクに
凹凸面を形成する場合について説明したが、本発明は、
他の用途の凹凸面を形成する場合にも適用できることは
言うまでもない。例えば凹部2の底面でエピタキシャル
成長を高精度に行なうような場合にも有効である。
As an example, the case where an uneven surface is formed on an exposure mask for manufacturing a DFB laser has been described, but the present invention
It goes without saying that the present invention can also be applied to forming uneven surfaces for other uses. For example, it is also effective when performing epitaxial growth on the bottom surface of the recess 2 with high precision.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、凹部2の底となる面に第
1のマスクを、凸部1の面に第2のマスクをそれぞれ設
け、エツチングの後に第1、第2のマスクを除去するの
で、凹部2の底面および凸部1は、エツチング時にマス
クで保護された高精度の平面となる。
As described above, according to the present invention, the first mask is provided on the bottom surface of the recess 2, and the second mask is provided on the surface of the convex portion 1, and the first and second masks are removed after etching. Therefore, the bottom surface of the concave portion 2 and the convex portion 1 become highly accurate planes that are protected by a mask during etching.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による凹凸面形成方法の基本原理を説明
する断面図、第2図は同凹凸面形成方法の実施例を示す
断面図、第3図はDFBレーザの断面図、第4図はDF
Bレーザの位相差回折格子を示す断面図、第5図は位相
差干渉縞の形成方法を示す断面図、第6図は同時に多数
の位相差回折格子を形成する方法を示す側面図、第7図
は典型的な凹部形成方法を示す図、第8図は厚膜のリフ
トオフによる凹部形成方法を示す断面図て゛ある。 図において、1は凸部、2は凹部、8は回折格子、17
は基板、18は膜、19は第1のマスク、22は第2の
マスクをそれぞれ示す。 特許出願人     富士通株式会社 代理人 弁理士   青 柳   稔 第1図 突 油液 第2図 DFBレーサ′−毬η゛6d 第3図 位相差金6った固抗裕ぞ壱示す断面旧 第4図 位相差チパ4島の形成方法 第5図 第6図 第7図 リフトオフによろ凹部形成力法 第8図
FIG. 1 is a sectional view explaining the basic principle of the uneven surface forming method according to the present invention, FIG. 2 is a sectional view showing an embodiment of the uneven surface forming method, FIG. 3 is a sectional view of a DFB laser, and FIG. 4 is DF
FIG. 5 is a cross-sectional view showing a method for forming phase difference interference fringes; FIG. 6 is a side view showing a method for simultaneously forming a large number of phase difference diffraction gratings; FIG. The figure shows a typical method for forming recesses, and FIG. 8 is a sectional view showing a method for forming recesses by lift-off of a thick film. In the figure, 1 is a convex part, 2 is a concave part, 8 is a diffraction grating, and 17
18 is a substrate, 19 is a first mask, and 22 is a second mask. Patent applicant: Minoru Aoyagi, agent for Fujitsu Limited, patent attorney: Figure 1: Oil fluid: Figure 2: DFB racer'-ball η゛6d Figure 3: Cross-section showing phase difference metal 6, solid resistance width 1 Figure 4: Method for forming four islands of phase difference chipping Figure 5 Figure 6 Figure 7 Force method for forming recesses by lift-off Figure 8

Claims (4)

【特許請求の範囲】[Claims] (1)、基板(17)上に凸部(1)と凹部(2)から
成る凹凸面を形成する方法であって、 基板(17)上の、凹部(2)と対応する領域に第1の
マスク(19)を形成して、その上側の全領域に膜(1
8)を形成し、 次いで該膜(18)上の、凹部(2)と対応する領域以
外の領域に第2のマスク(22)を形成した後、この第
2のマスク(22)以外の領域の膜(18)を、第1の
マスク(19)の手前までエッチングしてから、第1の
マスク(19)、第2のマスク(22)を除去すること
を特徴とする凹凸面形成方法。
(1) A method of forming an uneven surface consisting of a convex part (1) and a concave part (2) on a substrate (17), the method comprising: A mask (19) is formed, and a film (19) is formed over the entire area above the mask (19).
8), and then a second mask (22) is formed on the film (18) in a region other than the region corresponding to the recess (2), and then a second mask (22) is formed in the region other than the second mask (22). A method for forming an uneven surface, characterized in that the film (18) is etched up to just before the first mask (19), and then the first mask (19) and the second mask (22) are removed.
(2)、上記基板(17)、膜(18)を透明体で構成
し、第2のマスク(22)を形成するためのレジストパ
ターンを作製する際に、基板(17)の裏側から第1の
マスク(19)を介して露光する、セルフアライン法を
用いることを特徴とする特許請求の範囲第(1)項記載
の凹凸面形成方法。
(2) The substrate (17) and the film (18) are made of transparent materials, and when producing the resist pattern for forming the second mask (22), the first A method for forming an uneven surface according to claim 1, characterized in that a self-alignment method is used in which exposure is performed through a mask (19).
(3)、上記基板(17)、膜(18)がSiO_2で
あることを特徴とする特許請求の範囲第(1)頂または
第(2)項記載の凹凸面形成方法。
(3) The method for forming an uneven surface according to claim (1) or (2), wherein the substrate (17) and the film (18) are made of SiO_2.
(4)、前記膜(18)のエッチング手法が、CF_4
+O_2中のイオンビームエッチングであり、第1、第
2のマスク材(19)(22)がアルミニウムであるこ
とを特徴とする特許請求の範囲(1)項記載の凹凸面形
成方法。
(4), the etching method of the film (18) is CF_4
The method for forming an uneven surface according to claim 1, wherein the method is ion beam etching in +O_2, and the first and second mask materials (19) and (22) are aluminum.
JP60158744A 1985-03-20 1985-07-17 Formation of rugged surface Granted JPS6218561A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP60158744A JPS6218561A (en) 1985-07-17 1985-07-17 Formation of rugged surface
CA000504383A CA1270934A (en) 1985-03-20 1986-03-18 Spatial phase modulating masks and production processes thereof, and processes for the formation of phase-shifted diffraction gratings
US06/841,801 US4806442A (en) 1985-03-20 1986-03-20 Spatial phase modulating masks and production processes thereof, and processes for the formation of phase-shifted diffraction gratings
DE8686400592T DE3687845T2 (en) 1985-03-20 1986-03-20 SPATIAL PHASE MODULATION MASKS, METHOD FOR THE PRODUCTION THEREOF AND METHOD FOR THE FORMATION OF PHASE-SHIFTED GRADES.
EP86400592A EP0195724B1 (en) 1985-03-20 1986-03-20 Spatial phase modulating masks and production processes thereof, and processes for the formation of phase-shifted diffraction gratings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60158744A JPS6218561A (en) 1985-07-17 1985-07-17 Formation of rugged surface

Publications (2)

Publication Number Publication Date
JPS6218561A true JPS6218561A (en) 1987-01-27
JPH052142B2 JPH052142B2 (en) 1993-01-11

Family

ID=15678386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60158744A Granted JPS6218561A (en) 1985-03-20 1985-07-17 Formation of rugged surface

Country Status (1)

Country Link
JP (1) JPS6218561A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63287801A (en) * 1987-05-08 1988-11-24 財團法人韓國電子通信研究所 Geometrical formation of diffraction grating
JPS642008A (en) * 1987-06-24 1989-01-06 Mitsubishi Electric Corp Formation of diffraction grating

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63287801A (en) * 1987-05-08 1988-11-24 財團法人韓國電子通信研究所 Geometrical formation of diffraction grating
JPS642008A (en) * 1987-06-24 1989-01-06 Mitsubishi Electric Corp Formation of diffraction grating

Also Published As

Publication number Publication date
JPH052142B2 (en) 1993-01-11

Similar Documents

Publication Publication Date Title
US5238785A (en) Method of manufacturing a diffraction grating for a semiconductor laser
US4241109A (en) Technique for altering the profile of grating relief patterns
JPH0435726B2 (en)
JPS6218561A (en) Formation of rugged surface
JPH06174907A (en) Production of metallic grating
JPS62278508A (en) Manufacture of diffraction grating
JPS6325659B2 (en)
JPS59116602A (en) Production of chirped-grating
JP2537596B2 (en) Method of manufacturing diffraction grating
JPH02310986A (en) Semiconductor laser element, photomask and manufacture thereof
JPS627002A (en) Production of phase shifting diffraction grating
JPH033285A (en) Manufacture of semiconductor device
JPS613489A (en) Manufacture of semiconductor device
JP2735589B2 (en) Manufacturing method of diffraction grating
JPS61246701A (en) Formation of diffraction grating
JPH10178238A (en) Manufacture of semiconductor laser
JPH0685081B2 (en) Exposure method
JP3342881B2 (en) Diffraction grating
EP0490320A2 (en) A method for producing a diffraction grating
JPH02188702A (en) Formation of diffraction grating
JPH02219001A (en) Production of diffraction grating
JPH05343806A (en) Manufacture of phase-shifting diffraction
JPS62139503A (en) Production of diffraction grating
JPS6242103A (en) Manufacture of blaze grating
JPS6271907A (en) Grating optical device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term