JPS62182673A - Capacity converter - Google Patents

Capacity converter

Info

Publication number
JPS62182673A
JPS62182673A JP2479286A JP2479286A JPS62182673A JP S62182673 A JPS62182673 A JP S62182673A JP 2479286 A JP2479286 A JP 2479286A JP 2479286 A JP2479286 A JP 2479286A JP S62182673 A JPS62182673 A JP S62182673A
Authority
JP
Japan
Prior art keywords
voltage
output
comparator
power supply
capacitance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2479286A
Other languages
Japanese (ja)
Other versions
JPH0511790B2 (en
Inventor
Tadashi Azegami
畔上 忠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP2479286A priority Critical patent/JPS62182673A/en
Publication of JPS62182673A publication Critical patent/JPS62182673A/en
Publication of JPH0511790B2 publication Critical patent/JPH0511790B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a capacity converter that is hardly affected by the scattering of electrons or a temperature by comparing the output of operation amplifying means and an operating voltage with each other to output a binary voltage and applying the voltage related to the binary voltage to a first input end. CONSTITUTION:The inverted input end (-) of a differential amplifier Q1 is connected to one end of a sensor capacity CM via a cable CB wherein a conductor CW is surrounded by a guard GD. The inverted input end (-) of a comparator Q2 is connected to the output end of the amplifier Q1 and an operating voltage V0 is applied to the non-inverted input end (+) of the comparator Q2 via a resistor R1. Switches S1 and S2 are connected between the positive power supply +E of the amplifier Q1 and a positive power supply end T1 and between the negative power supply -E and a negative power supply end T2, respectively. The closing and opening of the switches S1 and S2 are controlled by the output of the comparator Q2. A binary operating voltage V0 to which the output of a comparator Q3 is suitably divided is obtained at the output end of an amplifier Q4. Thus, a capacity converter that is hardly affected by the scattering of electrons of a temperature can be obtained.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、センサ容量を介して検出される圧力などのプ
ロセス変量を電気信号に変換する容量変換装置に係り、
特にセンサ容量を周波数信号に変換する容量変換装置に
関する。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a capacitance conversion device that converts a process variable such as pressure detected via a sensor capacitance into an electrical signal.
In particular, the present invention relates to a capacitance conversion device that converts sensor capacitance into a frequency signal.

〈従来の技術〉 第5図は従来の容量変換装置の構成を示すプロ、り図で
ある。
<Prior Art> FIG. 5 is a schematic diagram showing the configuration of a conventional capacitance conversion device.

CMは測定すべきセンサ容量であり、その一端はインバ
ータG1の入力端に接続されている。インバータG1の
入出力端の間には双方向定電流回路CCが接続され、そ
の出力端はまたインバータG2の入力端に接続されてい
る。インバータG2の出力端はセンサ容量CMの他端に
接続されている。Csl” s□はセンサ容量の一端、
他端と共通電位点COMとの間く形成される分布容量で
ある。各インバータG0゜G2は電源電圧+Eで付勢さ
れている。
CM is the sensor capacitance to be measured, one end of which is connected to the input end of the inverter G1. A bidirectional constant current circuit CC is connected between the input and output terminals of the inverter G1, and its output terminal is also connected to the input terminal of the inverter G2. The output end of the inverter G2 is connected to the other end of the sensor capacitor CM. Csl” s□ is one end of the sensor capacitance,
This is a distributed capacitance formed between the other end and the common potential point COM. Each inverter G0°G2 is energized by power supply voltage +E.

いま、インバータG2の出力が1H1(高レベル)とな
り、電圧+Eが生じているときは、この立上しによりセ
ンサ容量CMと分布容Jl[Cs 1の直列回路が急速
に充電され、分布容”slの端子電圧が急激に一定電圧
へ達することによ抄はぼ垂直に立上る。このときの充電
動作ではインバータG2の出力インピーダンスが極めて
小さいので分布容”s2の存在は無関係となる。また、
このときはインバータG0の出力は1L1(低レベル)
になっていると共にインバータG1の入出力端間に双方
内定it’を流回路CCが接続されているので、分布容
量Cslの電荷は双方向定電流回路CCとインバータG
工の出力インピーダンスを介して直ちに放電を開始する
が、この放電N流が双方向定電流回路CCにより一定電
流11に制限されることにより直線的にインバータG0
の入力端の電圧が低下する、インバータG1の入力端の
電圧がスレシホールドレペルvTHまで低下するとイン
バータG1の出力が1H1へ転じ、これによりインバー
タG2の出力はILlとなるため分布容量Cslの残留
電荷がセンサ容icを介して急速に放電し、インバータ
G0の入力端の電圧が垂直に低下した後、インバータG
1の出力端の@ Ilgにより双方向定電流回路CCを
経る一定電流iによって分布容量Cslが充電されイン
バータG工の入力端の電圧が直線的に上昇する。
Now, when the output of inverter G2 is 1H1 (high level) and voltage +E is occurring, this rise causes the series circuit of sensor capacitance CM and distributed capacitance Jl [Cs 1 to be rapidly charged, and the distributed capacitance increases. When the terminal voltage of sl suddenly reaches a constant voltage, the voltage rises almost vertically. In the charging operation at this time, the output impedance of the inverter G2 is extremely small, so the existence of the distributed capacitance "s2" becomes irrelevant. Also,
At this time, the output of inverter G0 is 1L1 (low level)
At the same time, the circuit CC is connected between the input and output terminals of the inverter G1, so the electric charge of the distributed capacitance Csl is connected between the bidirectional constant current circuit CC and the inverter G.
The discharge starts immediately through the output impedance of the inverter G0, but this discharge N current is limited to a constant current 11 by the bidirectional constant current circuit CC, so that it linearly flows to the inverter G0.
When the voltage at the input terminal of inverter G1 decreases to the threshold level vTH, the output of inverter G1 changes to 1H1, and as a result, the output of inverter G2 becomes ILl, so that the residual distributed capacitance Csl decreases. After the charge is rapidly discharged through the sensor capacitor IC and the voltage at the input end of the inverter G0 drops vertically, the inverter G0
The distributed capacitance Csl is charged by the constant current i passing through the bidirectional constant current circuit CC by @Ilg at the output terminal of the inverter G, and the voltage at the input terminal of the inverter G increases linearly.

インバータG1の入力端の電圧がスレシホールドレペル
v Vc達するとインバータG1の出力がILIH へ転じ、これによりインバータG2の出力Fi@ H1
となるため、再びインバータG2からの充電が行なわれ
る。以後、これを繰り返す。
When the voltage at the input terminal of inverter G1 reaches the threshold level vVc, the output of inverter G1 changes to ILIH, and thereby the output of inverter G2 Fi@H1
Therefore, charging from inverter G2 is performed again. Repeat this from now on.

ここで、スレシホールドレベルvTHを基準とした分布
容ic  の端子電圧変化e1は、光電時にセンサ容量
CMと分布容”slとでインバータG2の出力電圧十E
を分圧したものとなるので、M el−CM”ml  E          (t)で
示される。
Here, the terminal voltage change e1 of the distribution capacitor ic with respect to the threshold level vTH as a reference is the output voltage of the inverter G2, 1 E
Since it is the partial pressure of M el-CM''ml E (t).

また、端子電圧変化e1がスレシホールドレベルvTH
まで減少するのに必要な時間11/は双方向定電流回路
CCJC↓り規制される一定電流11により次式で示さ
れる。
Also, the terminal voltage change e1 is at the threshold level vTH
The time 11/ required for the voltage to decrease to 11/ is expressed by the following equation based on the constant current 11 regulated by the bidirectional constant current circuit CCJC↓.

11tt  =e1(CM+C,)         
(2)(1) 、 (2)式から時間11/を求めると
’1’ =CM−(3) なお、充放電が反復されるうちに分布容”slKはスレ
シホールドレペルvTHに応じた電荷が基準電位として
定められ、これを中心として充放電が行なわれるため、
充電側の端子電圧変化e1と放電側の端子電圧変化e2
とは等しくなり、この端子電圧変化82分の光電を双方
向定電流回路CCKよる一定電流1によって行なうこと
により、充電の所要時間t2′もt1′と等しくなる。
11tt = e1(CM+C,)
(2) Calculating time 11/ from equations (1) and (2), '1' = CM - (3) Note that as charging and discharging are repeated, the distribution capacity "slK" changes according to the threshold level vTH. The electric charge is determined as a reference potential, and charging and discharging are performed around this, so
Charging side terminal voltage change e1 and discharging side terminal voltage change e2
By performing the photoelectric charge corresponding to 82 terminal voltage changes with a constant current 1 from the bidirectional constant current circuit CCK, the required charging time t2' also becomes equal to t1'.

従って、発振周波数fは次式によって示される。Therefore, the oscillation frequency f is expressed by the following equation.

また、一定電流11と電源電圧等により定まる定数をK
とすれば、 となり、発振周波数fはセンサ容量0MK対応したもの
となり、分布容tc、c  の影響は排除さsl   
  s2 れる。
In addition, the constant determined by the constant current 11 and the power supply voltage is K
Then, the oscillation frequency f corresponds to the sensor capacitance 0MK, and the influence of the distribution capacitance tc,c is eliminated, sl
s2 will be.

〈発明が解決しようとする問題点〉 しかしながら、この様な従来の容量変換装置は双方向定
電流回路CCとして電界効果トランジスタなどの半導体
素子の定電流特性を用いて実現す〈問題点を解決するた
めの手段〉 この発明は、以上の問題点を解決するため、測定される
べきセンサ容量と、第1入力端は固定容量を介して出力
端に負帰還接続されると共にセンサ容量の一端が接続さ
れM2人入力端は操作電圧が印加され九演算増幅手段と
、この演算増幅手段の出力と操作電圧を比較して2値箪
圧を出方する比較手段と、この2値電圧に関連する電圧
を第1入力端へ印加する抵抗手段と、2値電圧が大刀さ
れ所定振幅をもつ2値の操作電圧を出方する電圧操作手
段とを具備し、センサ容量に対応した操作電圧を出力す
るように構成したものである。
<Problems to be solved by the invention> However, such conventional capacitance conversion devices are realized by using the constant current characteristics of semiconductor elements such as field effect transistors as a bidirectional constant current circuit CC. Means for Solving> In order to solve the above problems, the present invention provides a method in which the sensor capacitance to be measured and the first input terminal are connected in negative feedback to the output terminal via a fixed capacitor, and one end of the sensor capacitance is connected. An operating voltage is applied to the M2 input terminal, and a comparator means for comparing the output of the operational amplifying means and the operating voltage to output a binary pressure, and a voltage related to this binary voltage. A resistive means for applying a voltage to the first input terminal, and a voltage operating means for outputting a binary operating voltage having a predetermined amplitude by applying a binary voltage, so as to output an operating voltage corresponding to the sensor capacitance. It is composed of

〈作 用〉 この様な本発明の構成により、操作電圧の2値変化に伴
って固定容量とセンサ容量との容量比率で増幅された電
圧が演算増幅手段の出方に発生し、この出力が抵抗手段
からの注入電流により操作電圧の値まで引き戻される時
間を半サイクルとする繰り返しで発振を継続するように
作用する。
<Function> According to the configuration of the present invention, as the operating voltage changes in two values, a voltage amplified by the capacitance ratio of the fixed capacitance and the sensor capacitance is generated at the output of the operational amplification means, and this output is The oscillation is continued by repeating a half cycle of time during which the voltage is pulled back to the operating voltage value by the current injected from the resistance means.

〈実施例〉 以下、本発明の実施例について図面に基づき説明する。<Example> Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例を示すプロ。FIG. 1 is a diagram showing an embodiment of the present invention.

り図である。This is a diagram.

差動増幅器Q1の反転入力端(−)は心線CWの周囲が
ガードGDで囲われたケーブルCBを介してセン、す容
fCMの一端に接続されると共にその出力端との間に固
定容量CKを介して接続されている。差動増幅器Q0の
非反転入力端(+)はガードGDと共に操作電圧V。が
印加されている。差動増幅器Q1の正電源端Tと負電源
端T2の間にはコンデンサC0が接続されると共に負電
源端T2には操作電圧Vがメ/コンデンサC2を介して
印加されている。
The inverting input terminal (-) of the differential amplifier Q1 is connected to one end of the sensor fCM via a cable CB whose core wire CW is surrounded by a guard GD, and there is a fixed capacitance between it and the output terminal. Connected via CK. The non-inverting input terminal (+) of the differential amplifier Q0 is connected to the operating voltage V together with the guard GD. is applied. A capacitor C0 is connected between the positive power supply terminal T and the negative power supply terminal T2 of the differential amplifier Q1, and an operating voltage V is applied to the negative power supply terminal T2 via the main capacitor C2.

比較器Qの反転入力端(−)は差動増幅器Q0の出力端
に接続されその非反転入力端(+)には抵抗R1を介し
て操作電圧Vが印加されている。
The inverting input terminal (-) of the comparator Q is connected to the output terminal of the differential amplifier Q0, and the operating voltage V is applied to its non-inverting input terminal (+) via a resistor R1.

差動増幅器Qの正電源+Eと正電源端T1との間、負電
源−Eと負電源端T2との間にはそれぞれスイ、チ81
.82が接続され、これ等のスイッチSi*Szは比較
器Q2の出力によりその開閉が制御される。
A switch and a switch 81 are connected between the positive power supply +E and the positive power supply terminal T1 and between the negative power supply -E and the negative power supply terminal T2 of the differential amplifier Q, respectively.
.. 82 are connected, and the opening and closing of these switches Si*Sz are controlled by the output of the comparator Q2.

非反転入力端(+)が共通電位点COMに接続された比
較器Q3の反転入力端(−)は比較器Q2の出力端に接
続されその出力端は抵抗R2を介して差動増幅器Q1の
反転入力端(−)に接続されると共に抵抗R3とR4で
形成された分圧回路の入力端に接続されている。
The inverting input terminal (-) of the comparator Q3, whose non-inverting input terminal (+) is connected to the common potential point COM, is connected to the output terminal of the comparator Q2, and the output terminal is connected to the differential amplifier Q1 via the resistor R2. It is connected to the inverting input terminal (-) and also to the input terminal of a voltage dividing circuit formed by resistors R3 and R4.

抵抗些3と84の分圧点はボルテージフォロワーとして
機能する増幅器Q4の入力端に接続されている。
The voltage dividing points of resistors 3 and 84 are connected to the input end of an amplifier Q4 which functions as a voltage follower.

増幅器Qの出力端には比較器Q3の出力を適当に分圧し
たz値の操作電圧Vが得られる。
At the output terminal of the amplifier Q, an operating voltage V having a z value is obtained by appropriately dividing the output of the comparator Q3.

比較器QQおよび増幅器Q4はそれぞれ正電源2’  
 3 +E、負電負電源−性勢されている。
Comparator QQ and amplifier Q4 are each connected to the positive power supply 2'
3 +E, negative voltage negative power supply - energized.

次に1以上の如く構成された第1図に示す実施例の動作
について第2図に示す波形図を用いて説明する。先ず、
分布容量の補償については省略して説明する。
Next, the operation of the embodiment shown in FIG. 1 having one or more configurations will be explained using the waveform diagram shown in FIG. 2. First of all,
A description of compensation for distributed capacitance will be omitted.

増幅器Q4Ω出力端の操作電圧V。が−Vから+Vに変
化した第2図(イ)の■で示す時点では、差動増幅器Q
1の出力の変化量をe2とすれば電荷変動を考慮して次
式のようになる。
Operating voltage V at the amplifier Q4Ω output terminal. At the point indicated by ■ in Figure 2 (a) when Q changes from -V to +V, the differential amplifier Q
If the amount of change in the output of 1 is e2, the following equation is obtained in consideration of charge fluctuation.

(e−(+v))CK= (+V−(−V))CM  
    (6)この状態では、比較器Q2の反転入力端
(−)は+Vより大きい正の電圧に71す(@2図−1
)非反転入力端←)は−Vから+vK変化するが、全体
として反転入力端(−)の正電圧が優勢となり比較器Q
2の出力端は−Eの1L″レベルとなる(第2図に))
。こノ@ 1. gレベルはコンデンサC3による正帰
還によりレベル反転を確実なものとするが、所定時間の
経過の後は比較器Q2の非反転入力端(+)の電圧は抵
抗R1を介しての操作電圧−vK整定される(第2図(
ハ))。
(e-(+v))CK= (+V-(-V))CM
(6) In this state, the inverting input terminal (-) of comparator Q2 is set to a positive voltage greater than +V (@2 Figure-1
) non-inverting input terminal ←) changes from -V to +vK, but as a whole, the positive voltage at the inverting input terminal (-) becomes dominant and comparator Q
The output terminal of 2 becomes -E 1L'' level (see figure 2))
. Kono@1. The positive feedback of the g level by the capacitor C3 ensures that the level is inverted, but after a predetermined period of time, the voltage at the non-inverting input terminal (+) of the comparator Q2 becomes the operating voltage -vK via the resistor R1. It is settled (Fig. 2 (
Ha)).

一方、比較器Q2の出力のレベル反転は比較器Q3の出
力レベルを+Eのl Hlレベルとする(第2図(ホ)
)ので、この+Eの電圧は抵抗R2を介して固定客1k
CKを電流12で充電する。このため差動増幅器Q1の
出力端の電圧は第2図仲)で示すように除々に低下する
。差動増幅器Q1の非反転入力端(+)の操作電圧+V
に比反転入力端(−)の電圧が達するとその出力端の電
圧レベルは反転し時点■に到る。その所要時間tは ’ −(e−(”v))CK/i2         
  (7)として与えられる。
On the other hand, the level inversion of the output of the comparator Q2 makes the output level of the comparator Q3 the +E l Hl level (Fig. 2 (E)).
), this +E voltage is applied to the fixed customer 1k via resistor R2.
Charge CK with current 12. Therefore, the voltage at the output terminal of the differential amplifier Q1 gradually decreases as shown in the middle part of FIG. Operating voltage +V at the non-inverting input terminal (+) of differential amplifier Q1
When the voltage at the ratio-inverting input terminal (-) reaches , the voltage level at the output terminal is inverted and reaches point (3). The required time t is '-(e-(''v))CK/i2
(7) is given as

(6) 、 (7)式から、 2V                (8)“= C
M′刀 となる。ここで第2図の0時点以後の半サイクルと0時
点以後の半サイクルでの抵抗R工の両端電圧はそれぞれ
(E−v ) 、 (−E−(−v))で示されるので
、電流12の大きさは、 となる。更に、操作電圧Vは比較器Q3の出力電圧を抵
抗R3,R4で分割したものであるので、その大きさ1
v1は となる。従って、(8)〜α0式より となる。この式は操作電圧■の半サイクルの時間幅tが
センサ容素CMと抵抗値で決まり電源電圧の変動の影響
をも受けないことを示している。
From equations (6) and (7), 2V (8) “= C
It becomes M' sword. Here, the voltages across the resistor R in the half cycle after time 0 and the half cycle after time 0 in Fig. 2 are respectively shown as (E-v) and (-E-(-v)), so the current The size of 12 is as follows. Furthermore, since the operating voltage V is the output voltage of the comparator Q3 divided by the resistors R3 and R4, its magnitude 1
v1 becomes. Therefore, it follows from equations (8) to α0. This equation shows that the time width t of a half cycle of the operating voltage (2) is determined by the sensor capacitor CM and the resistance value and is not affected by fluctuations in the power supply voltage.

次に、第3図に示すような差動増幅器Q1の内部に生ず
る分布容ffrcBAの補償について説明する。
Next, compensation for the distributed capacitance ffrcBA occurring inside the differential amplifier Q1 as shown in FIG. 3 will be explained.

スイッチS Sは比較器Q2の出力によりその開閉1’
   2 が制御され(第2図(へ))正電源端T1と負電源端T
2の電位を十に、−Eに固定する期間と、70ティング
期間とを作る。フローティング期間では、操作電圧V。
The switch S is opened and closed 1' by the output of the comparator Q2.
2 is controlled (see Figure 2), the positive power supply terminal T1 and the negative power supply terminal T
A period in which the potential of 2 is fixed at 10 and -E, and a period in which the potential of 70 is fixed are created. In the floating period, the operating voltage V.

によりコンデンサC2に充電された電圧で正電源端Tも
負電源端T2もともに2v(−v−(−v))ま たけ正にシフトされた電圧となる(第2図(ト)、(イ
)X差動増幅器Q1の非反転入力端←)は増幅器Q4の
出力電圧が印加され、その反転入力端(−)は非反転入
力端(+)の電位に追従し増幅器Q4の出力電圧と同一
となる。従って、第2図(イ)に示す増幅器Q4の出力
と第2図(ト)(イ)の変化が同一となるので、結局第
3図に示す分布容量C8Aの両端電圧には変化が生じな
い。また、分布容g#Cslの両端電圧は第1図に示す
ときと同様に常にゼロである。以上のことから分布容量
CCには電流が流れずその影響はsl’    SA 除去される。
With the voltage charged in the capacitor C2, both the positive power supply terminal T and the negative power supply terminal T2 become voltages shifted positive by 2v (-v-(-v)) (Fig. 2 (G), (I)). )X The output voltage of the amplifier Q4 is applied to the non-inverting input terminal ←) of the differential amplifier Q1, and its inverting input terminal (-) follows the potential of the non-inverting input terminal (+) and is the same as the output voltage of the amplifier Q4. becomes. Therefore, since the output of amplifier Q4 shown in Figure 2 (A) and the changes in Figures 2 (G) and (A) are the same, there is no change in the voltage across the distributed capacitor C8A shown in Figure 3. . Further, the voltage across the distributed capacitor g#Csl is always zero as in the case shown in FIG. From the above, no current flows through the distributed capacitance CC, and its influence is removed.

第4図はガードを形成する他の実施例を示すプロ、り図
である。(8)式では固定容量CKが消去されているの
で、これを利用してガードドライブを差動増幅器Q1の
出力で行なうことができる。この場合は分布容”slは
固定客fjlcKと並列に形成される。
FIG. 4 is a schematic diagram showing another embodiment of forming a guard. Since the fixed capacitance CK is eliminated in equation (8), guard driving can be performed using the output of the differential amplifier Q1 using this. In this case, the distribution volume "sl" is formed in parallel with the fixed customer fjlcK.

なお、差動増幅器Q1の入力部に形成される分布容量C
8Aが微少なときは、スイッチSl、82とコンデンサ
C2を削除して差動増幅器Q1を単に±Eで付勢しても
αカ式の結果となる。このときはガードドライブを第4
図に示すように差動増幅器Q1の出力で行ない、その非
反転入力端(+)への信号伝達は増幅器Q4の出力とは
無関係にできる。
Note that the distributed capacitance C formed at the input section of the differential amplifier Q1
When 8A is very small, the α-type result can be obtained by omitting the switch Sl, 82 and the capacitor C2 and simply energizing the differential amplifier Q1 with ±E. At this time, use the guard drive as the 4th
As shown in the figure, this is done using the output of the differential amplifier Q1, and the signal can be transmitted to its non-inverting input terminal (+) independently of the output of the amplifier Q4.

〈発明の効果〉 以上、実施例と共に具体的に説明した様に本発明によれ
ば、従来の如く半導体素子を用いた双方向定電流回路を
用いる代9に安定化の容易な抵抗を用いてセンサ容量に
比例した発掘周期つまり発振周波数を得ることができる
ので、素子のバラツキや温度による影響が受は難い容量
変換装置を実現することができる。
<Effects of the Invention> As specifically explained above in conjunction with the embodiments, according to the present invention, an easily stabilized resistor is used instead of the conventional bidirectional constant current circuit using a semiconductor element. Since it is possible to obtain an excavation period, that is, an oscillation frequency, which is proportional to the sensor capacitance, it is possible to realize a capacitance conversion device that is hardly affected by variations in elements or temperature.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示すブロック図、第2図は
第1図に示す実施例の各部の波形を示す波形図、第3図
は本発明の実施例におけるガード構成を説明する説明図
、第4図は本発明の実施例における。他のガード構成を
示す部分ブロック図、第5図は従来の容量変換装置の構
成を示すブロック図である。 CM・・・センサ容量、Ql・・・差動増幅器、Q2.
Q3・・・比較器、Q4・・・増幅器、CK・・・固定
容量、C3□Ic5AICs2・・・分布容量、CC・
・・双方向定電流回路。 代理人   弁理士  小 沢 信 助 :、・、、2
ノ 第2図
Fig. 1 is a block diagram showing an embodiment of the present invention, Fig. 2 is a waveform diagram showing waveforms of various parts of the embodiment shown in Fig. 1, and Fig. 3 explains the guard configuration in the embodiment of the present invention. The explanatory diagram, FIG. 4, shows an embodiment of the present invention. FIG. 5 is a partial block diagram showing another guard configuration. FIG. 5 is a block diagram showing the configuration of a conventional capacitance conversion device. CM...Sensor capacitance, Ql...Differential amplifier, Q2.
Q3...Comparator, Q4...Amplifier, CK...Fixed capacitance, C3□Ic5AICs2...Distributed capacitance, CC・
・Bidirectional constant current circuit. Agent Patent Attorney Shinsuke Ozawa: 2
Figure 2

Claims (1)

【特許請求の範囲】[Claims] 測定されるべきセンサ容量と、第1入力端は固定容量を
介して出力端に負帰還接続されると共に前記センサ容量
の一端が接続され第2入力端には操作電圧が印加された
演算増幅手段と、この演算増幅手段の出力と前記操作電
圧を比較して2値電圧を出力する比較手段と、この2値
電圧に関連する電圧を前記第1入力端へ印加する抵抗手
段と、前記2値電圧が入力され所定振幅をもつ2値の前
記操作電圧を出力する電圧操作手段とを具備し、前記セ
ンサ容量に対応した前記操作電圧を出力する容量変換装
置。
a sensor capacitance to be measured; a first input terminal connected to an output terminal via a fixed capacitor for negative feedback; and an operational amplifier means to which one end of the sensor capacitance is connected and an operating voltage is applied to a second input terminal. a comparison means for comparing the output of the operational amplification means with the operating voltage and outputting a binary voltage; a resistance means for applying a voltage related to the binary voltage to the first input terminal; A capacitance conversion device that outputs the operating voltage corresponding to the sensor capacitance, the voltage operating means receiving a voltage and outputting the binary operating voltage having a predetermined amplitude.
JP2479286A 1986-02-06 1986-02-06 Capacity converter Granted JPS62182673A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2479286A JPS62182673A (en) 1986-02-06 1986-02-06 Capacity converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2479286A JPS62182673A (en) 1986-02-06 1986-02-06 Capacity converter

Publications (2)

Publication Number Publication Date
JPS62182673A true JPS62182673A (en) 1987-08-11
JPH0511790B2 JPH0511790B2 (en) 1993-02-16

Family

ID=12148038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2479286A Granted JPS62182673A (en) 1986-02-06 1986-02-06 Capacity converter

Country Status (1)

Country Link
JP (1) JPS62182673A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005351885A (en) * 2004-05-12 2005-12-22 Seiko Instruments Inc Cv converter
JP2011137827A (en) * 2004-05-12 2011-07-14 Seiko Instruments Inc Cv conversion circuit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005351885A (en) * 2004-05-12 2005-12-22 Seiko Instruments Inc Cv converter
JP2011137827A (en) * 2004-05-12 2011-07-14 Seiko Instruments Inc Cv conversion circuit

Also Published As

Publication number Publication date
JPH0511790B2 (en) 1993-02-16

Similar Documents

Publication Publication Date Title
US4254376A (en) Apparatus for measuring the electric power or energy in an A-C network
US3944852A (en) Electrical switching device and modulator using same
JPS62182673A (en) Capacity converter
JPS639819A (en) Displacement transducing device
US3995178A (en) Pulse-width and frequency modulator circuit
US3484692A (en) Superregenerative circuit with switch means providing reference and measuring states
JPH02134575A (en) Power supply current measuring circuit
MY100773A (en) Frequency to current converter circuit.
JPS584254Y2 (en) charge amplifier
JPS6359106A (en) Pulse generating circuit
JP3874577B2 (en) Voltage controlled oscillator circuit
RU1803961C (en) Large resistance simulator
JPH0725715Y2 (en) Frequency measuring device
SU1485142A1 (en) Mean oscillatory rate meter
JPS6134474A (en) Testing of hysteresis range
SU543951A1 (en) Root frequency converter
JPS6111370B2 (en)
USRE29079E (en) Multiplier, divider and wattmeter using a switching circuit and a pulse-width and frequency modulator
SU1147993A2 (en) Converter of ac actual value to dc voltage
SU1615638A1 (en) Apparatus for tolerance check of resistance of contacts
SU714622A1 (en) Arrangement for shaping exponential voltage
JPS57106204A (en) Power amplifying device for musical instrument
JPS6020004Y2 (en) capacitive converter
JPS6116604A (en) Amplifying circuit
JPH0438289B2 (en)