JPS62180692A - Signal processing circuit for image pickup device - Google Patents

Signal processing circuit for image pickup device

Info

Publication number
JPS62180692A
JPS62180692A JP61022542A JP2254286A JPS62180692A JP S62180692 A JPS62180692 A JP S62180692A JP 61022542 A JP61022542 A JP 61022542A JP 2254286 A JP2254286 A JP 2254286A JP S62180692 A JPS62180692 A JP S62180692A
Authority
JP
Japan
Prior art keywords
signal
gamma
output
signals
corrected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61022542A
Other languages
Japanese (ja)
Inventor
Shoichi Tanaka
正一 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP61022542A priority Critical patent/JPS62180692A/en
Publication of JPS62180692A publication Critical patent/JPS62180692A/en
Pending legal-status Critical Current

Links

Landscapes

  • Processing Of Color Television Signals (AREA)

Abstract

PURPOSE:To attain a gamma correction with a circuit structure which is attached with a good video reproductivity, and is simplified comparatively, by synthesizing a gamma correction luminance signal from a gamma correction chrominance signal, and synthesizing an output luminance signal by adding the low-pass component of the gamma correction luminance signal and the high-pass component of the gamma correction luminance signal. CONSTITUTION:Gamma correction chrominance signals (RL)', (GL)' and (BL)' outputted from gamma correction circuits 4b, 4c, and 4d are converted to a gamma correction luminance signal ¦Y¦'=0.3(RL)'+0.59(GL)'+0.11(BL)', a gamma correction color difference signal C1'=(RL)'-¦Y¦', and a gamma correction color difference signal C2'=(BL)'-¦Y¦'. And above stated gamma correction luminance signal ¦Y¦', and color difference signals C1' and C2' are band-limited at LPFs 6b, 6c, and 6d having frequency bands of about 0.5mHz, and are changed to the low-pass component Y'L=¦Y¦'L of an output luminance signal Y', and output color difference signals C1'L, and C2'L, then going to an output luminance signal Y'=Y'L+Y'H=¦Y¦'L+(Y)'H.

Description

【発明の詳細な説明】 技術分野 本発明は撮像装置の信号処理回路に関し、特にそのガン
マ補正回路の改良に関する。
TECHNICAL FIELD The present invention relates to a signal processing circuit for an imaging device, and more particularly to an improvement in a gamma correction circuit thereof.

背景技術 固体撮像素子または撮像管を使用する撮像装置の出力信
号は一般にT V受像機のブラウン管のガンマ特性を補
償するためにガンマ補正される必要がある。そして上記
のガンマ補正は−・般に撮像装置で実施される。従来技
術において、撮像装置の種類におうじて複数のガンマ補
正方式が使用されているか、撮像装置に入力される映像
に比較して撮像装置から出力されるガンマ補正色差信号
Y°と2種類のガンマ補正色差信号CI’、C2’の忠
実性は劣化していた。以下に従来の撮像装置のガンマ補
正方式を説明する。
BACKGROUND OF THE INVENTION The output signal of an image pickup device using a solid-state image pickup device or an image pickup tube generally needs to be gamma corrected to compensate for the gamma characteristics of the cathode ray tube of a TV receiver. The gamma correction described above is generally performed by an imaging device. In the prior art, multiple gamma correction methods are used depending on the type of imaging device. The fidelity of the corrected color difference signals CI' and C2' was degraded. A gamma correction method for a conventional imaging device will be explained below.

最も良好な第1のガンマ補正方式は撮像装置の出力信号
から3原色信号R,G、Bを分離または合成し、そして
上記の3原色信号R,G、Bをそれぞれガンマ補正して
ガンマ補正色信号R’、C’、B’を合成し、モして上
記のガンマ補正色信号R’、G“。
The best first gamma correction method is to separate or combine the three primary color signals R, G, and B from the output signal of the imaging device, and then perform gamma correction on each of the three primary color signals R, G, and B to obtain gamma-corrected colors. The signals R', C', and B' are combined to produce the above-mentioned gamma-corrected color signals R', G''.

Boからガンマ補正色差信号Y’== 0 、3 R’
−1−0590’−1−0,I IB’と所定の2種類
の色差信号CI”、C2’を合成ケる方式である。上記
のCI’。
Gamma-corrected color difference signal Y'== 0, 3 R' from Bo
-1-0590'-1-0,I This is a method of synthesizing IIB' and two predetermined types of color difference signals CI'' and C2'.The above CI'.

C2°は一般にR’−Y’、H’−Y’またはI’、Q
’である1、上記の3原色信号R,G、I3は3個の撮
像装置の出力信号から分離されろ事、2個の撮像装置の
出ノJ (、、g 、j;、から分離または合成されろ
事、1個の撮像装置の出力信号から分離または合成され
る事か周知である。このガンマ補正方式は以下において
3原色ガンマ補正方式と略称される。
C2° is generally R'-Y', H'-Y' or I', Q
1, the above three primary color signals R, G, I3 are separated from the output signals of the three imaging devices, and the output signals of the two imaging devices J (,, g, j;, It is well known that the signals are combined, separated from the output signal of one imaging device, or combined.This gamma correction method is hereinafter abbreviated as a three-primary-color gamma correction method.

第2のガンマ補正方式は撮像装置の出力信号から色差信
号Yと3Ki色信号R,G、Bを分離し、そして上記の
各信号Y、R,G、Bをそれぞれガンマ補正し、てガン
マ補正信号(Y )’ 、R’ 、G ’ 、R’を合
成し、そして上記のガンマ補正色差信号(Y)°を出力
用色差信号Y゛とし、そして上記のガンマ補正魚信ケR
°、G゛、I3°から2種類の出力用色差信号CI’、
C2°を合成する方式である。上記の色差信号Yと3原
色信号R、G 、 E(を3または4種類の撮像装置の
出力信号から分離または合成する事、2個の撮像装置の
出力信号から分離または合成すろ・j[、単板または中
管カラー撮像装置の出力信けから分離または合成する事
は周知である。この方式の利点は輝度部会Yのガンマ補
正回路たけを広帯域にし、3原色信号R,G、Bのガン
マ補正回路は狭帯域にできろ事である。この方式は以下
において、分離輝度3原色ガンマ補IE力式と略称され
ろ。一般に3個の狭帯域ガンマ補正回路には狭帯域3原
色信号R+、、 、 G L 、 B Lが入力され、
そしてそれからガンマ補正秋帯域魚信y RL °、 
c I、°、BL ’が出力されろ。
The second gamma correction method separates the color difference signal Y and the 3Ki color signals R, G, and B from the output signal of the imaging device, and performs gamma correction on each of the above signals Y, R, G, and B, respectively. The signals (Y)', R', G', and R' are combined, and the gamma-corrected color difference signal (Y)° is used as the output color-difference signal Y', and the gamma-corrected fish signal R is
Two types of output color difference signals CI' from °, G゛, I3°,
This is a method of synthesizing C2°. Separating or combining the above color difference signal Y and the three primary color signals R, G, E (from the output signals of three or four types of imaging devices, or separating or combining them from the output signals of two imaging devices. It is well known to separate or combine the output signals of a single-chip or medium-tube color image pickup device.The advantage of this method is that the gamma correction circuit of the luminance committee Y has a wide band, and the gamma of the three primary color signals R, G, and B is The correction circuit should be narrow-band.This method will be abbreviated as the separate luminance three-primary color gamma correction IE method below.Generally, the three narrow-band gamma correction circuits include narrowband three-primary color signals R+, , , GL, BL are input,
And then gamma correction fall band fish signal y RL °,
c I, °, BL' should be output.

第3のガンマ補正方式は単板または単管カラー撮像装置
の出力信号から色差信号Y11信号R1色信>613を
分離または合成し、そして上記の各信号(Y)’、R’
、+(°から出力用輝度信rU、 Y ’と2種類の出
力用色差信号シ−01’、C2°を合成する方式である
The third gamma correction method separates or combines the color difference signal Y11 signal R1 color signal>613 from the output signal of a single-chip or single-tube color imaging device, and then each of the above signals (Y)', R'
, +(°, output luminance signals rU, Y' and two types of output color difference signals C-01', C2° are combined.

一般に上記の色差信号Yの低域成分Y Lと1.記の魚
信シ′3iR1Bの低域成分RL 、 B Lをそれぞ
れガンマ補正してガンマ補正低域色差信号Y L ’と
ガンマ補11低域色信号RL”、 RL ’を合成し、
そしてl記のY L ’ 、RLo、RL’から2種類
の出力用色差信ぢ・C1’、C2°が合成されろ1.ム
ちるん、上記の急信pg、 「)の代わりに、魚信壮G
を使用する事し可能である、。
Generally, the low frequency component YL of the above color difference signal Y and 1. Gamma-correct the low-frequency components RL and BL of the Uoshinshi '3iR1B, respectively, and synthesize the gamma-corrected low-frequency color difference signal YL' and the gamma-compensated 11 low-frequency color signals RL'' and RL',
Then, two types of output color difference signals C1' and C2° are synthesized from YL', RLo, and RL' in 1. Muchirun, the above-mentioned Kyushin pg, instead of ``), Uoshinso G
It is possible to use .

第4のガンマ補正方式は単板または単管カラー撮像装置
の出力信号から色差信号Yと2種類の色差信号R−Y、
B−Yを分離または合成し、そして上記の各信号Y、R
−Y、B−Yをそれぞれガンマ補正してガンマ補正輝度
信シ゛コ’ (Y )’ 、(R−Y )’ 、1−Y
)°を合成し、そ1.て上記のガンマ補正信号(Y)’
 、(R−Y )” 、([3−Y )’から出力用色
差信号Y゛と2種類の出力用色差信号C1’、C2°を
合成する方式である。
The fourth gamma correction method generates a color difference signal Y and two types of color difference signals R-Y from the output signal of a single-chip or single-tube color imaging device.
B-Y is separated or combined, and each of the above signals Y, R
-Y, B-Y are gamma-corrected and the gamma-corrected luminance signals are '(Y)', (R-Y)', 1-Y.
)°, part 1. The above gamma correction signal (Y)'
, (RY)'', ([3-Y)', the output color difference signal Y'' and two types of output color difference signals C1' and C2° are synthesized.

一単板カラー固体撮像装置の出力借上から色差信号Yと
低域色信号RL 、 B Lを分離し、そして上記の色
差信号Yの低域成分YI、と4.記の色信号RL 。
4. Separate the color difference signal Y and the low range color signals RL, BL from the output of the single-chip color solid-state imaging device, and the low range component YI of the above color difference signal Y; The color signal RL shown below.

II Lから低域色イハt2・G Lを分離し、そして
−上記のRl、 、 C1,、、B Lを別々にガンマ
補正する事は、たとえば本出願人によって出願された特
開59−132286、特開60−5678に公知であ
る。
Separating the low gamut color Ihat2·GL from II L and separately gamma correcting the above Rl, , C1, , B L is described, for example, in Japanese Patent Laid-Open No. 59-132286 filed by the present applicant. , is known in Japanese Patent Application Laid-Open No. 60-5678.

更にそれらは上記の色差信号Yの高域成分Y Hをガン
マ補正してガンマ補正高域色差信号(YT−1)″を合
成する事も開示する。
Furthermore, they also disclose that the high frequency component YH of the color difference signal Y mentioned above is subjected to gamma correction and a gamma corrected high frequency color difference signal (YT-1)'' is synthesized.

従−・て、上記の固体撮像装置において、出力用色差信
号Y゛は0.3RL’+ 0.59CL’−10゜] 
] I3L’十(YH’)’になる事は明白である。
Therefore, in the above solid-state imaging device, the output color difference signal Y' is 0.3RL'+0.59CL'-10°]
] It is obvious that I3L'10 (YH')'.

特開60−3290は単板カラー固体撮像装置の出力信
号から色差信号Yと、色差信号Yの低域成分Y Lと、
低域色信号RL、BLを分離し、そして−上記の低域色
差信号YLと低域色信号RL、BI7から低域魚信壮G
を分離し、そして各低域色信号RL、CL、BLにエツ
ジ補正の為に上記の色差信号Yの高域成分Y Hがそれ
ぞれ加算されて色信号Rx=RL+YT−1,Gx=に
L+Y)I、Bx=BL。
Japanese Patent Laid-Open No. 60-3290 calculates a color difference signal Y from an output signal of a single-chip color solid-state imaging device, a low frequency component YL of the color difference signal Y,
Separate the low range color signals RL and BL, and - from the above low range color difference signal YL and low range color signal RL, BI7 to the low range color difference signal YL and low range color signal RL, BI7
The high frequency components YH of the above color difference signal Y are added to each of the low frequency color signals RL, CL, and BL for edge correction to produce color signals Rx=RL+YT-1, Gx=L+Y). I, Bx=BL.

+YHが合成され、そして上記の色信号Rx、Gx。+YH are combined and the above color signals Rx, Gx.

Bxをそれぞれガンマ補正して出力ゝ用色差信号Y゛の
低域成分Y ’ 1.と2種類の色差信号C1”、C2
゜を合成する事を開示する。そして出力用色差信号Yの
高域成分は上記の色差信号Yの高域成分Y 1−1が使
用される。
Bx is gamma-corrected and the low-frequency component Y' of the output color difference signal Y' is obtained.1. and two types of color difference signals C1'', C2
Disclose the synthesis of ゜. As the high frequency component of the output color difference signal Y, the high frequency component Y1-1 of the color difference signal Y described above is used.

特開60−125090は固体撮像装置の出力信号から
色差信号Yと3原色信号R,G、Bを分離または合成し
、そして上記の各信号Y、R,G、Hをそれぞれガンマ
補正してガンマ補正信号(Y)’、R’、G’、B’を
合成し、そして出力用色差信号Y′は(Y)“てあり、
そして2種類の出力用色差信号CI’、C2°は上記の
ガンマ補正色信号R’、G’、B’から合成する事を開
示する。従って、上記の各具体的先行技術例において、
単板カラー固体撮像装置の出力信号から色差信号Yと3
原色信号R,G。
Japanese Patent Laid-Open No. 60-125090 separates or combines a color difference signal Y and three primary color signals R, G, and B from the output signal of a solid-state imaging device, and performs gamma correction on each of the above signals Y, R, G, and H, respectively. The correction signals (Y)', R', G', and B' are combined, and the output color difference signal Y' is (Y)'.
It is also disclosed that two types of output color difference signals CI' and C2° are synthesized from the above-mentioned gamma-corrected color signals R', G', and B'. Therefore, in each of the above specific prior art examples,
Color difference signals Y and 3 are obtained from the output signal of the single-chip color solid-state imaging device.
Primary color signals R, G.

Bを出力する事、そして出力用色差信号の低域成分Y’
Lまたは/そして2種類の出力用色差信号CI’、C2
“を合成する事は周知である。
B, and the low frequency component Y' of the output color difference signal.
L or/and two types of output color difference signals CI', C2
It is well known to synthesize “.

発明の開示 上記の先行技術にも拘わらず、従来のガンマ補正方式は
輝度誤差または色差誤差を持ち、そして再生信号の色ま
たは輝度再現性は劣化した。しかし、今後映画と競合す
る高品位TV方式または光学スチルカメラと競合する電
子スチルカメラの実用化を考えると、より改良された映
像再現性を持っガンマ補正方式の開発が重要になる。従
って、本発明の第1の目的は良い映像再現性を持つガン
マ補正方式の開発である。また、良い映像再現性を持ぢ
、しかも比較的簡単な回路構造を持つガンマ袖1F:、
方式の開発ち重要である。従って、本発明の第2の1−
1的は良い映像再現性を持ち、そして比較的簡単な回路
構造を持つガンマ補正方式の開発であろっ一14記の目
的を達成4−ろために本明細書は2個の独立発明を開示
する。各独)r発明は同じ目的と密接な関連を持つので
一緒に開示される。
DISCLOSURE OF THE INVENTION Despite the above prior art, conventional gamma correction methods have brightness errors or color difference errors, and the color or brightness reproducibility of reproduced signals has deteriorated. However, considering the future practical use of high-definition TV systems that compete with movies or electronic still cameras that compete with optical still cameras, it will be important to develop a gamma correction system that has improved image reproducibility. Therefore, the first object of the present invention is to develop a gamma correction method that has good image reproducibility. In addition, the gamma sleeve 1F has good image reproducibility and a relatively simple circuit structure.
It is important to develop a method. Therefore, the second 1-
The first purpose is to develop a gamma correction method that has good image reproducibility and a relatively simple circuit structure.4-To achieve the objective of item 14, this specification discloses two independent inventions. do. The inventions are disclosed together because they have the same purpose and are closely related.

なお、本明細書において、色差信号Yは人体0゜3Rモ
0.59G十〇、I IRであり、YL、Yl(はその
低域、高域成分である。Y′はガンマ補正された出力用
色差信号であり、Y ’ L 、 Y ’ TIはその
低域、高域成分である。同様にR、G 、Rはそれぞれ
各原色信号てあり、RL 、G L 、BLとRI−1
Note that in this specification, the color difference signal Y is human body 0°3R, 0.59G10, IIR, YL, Yl (are its low frequency and high frequency components, and Y' is the gamma-corrected output. Y'L and Y'TI are the low-frequency and high-frequency components thereof.Similarly, R, G, and R are the respective primary color signals, and RL, GL, BL, and RI-1 are the primary color signals.
.

G II J3 TIはそれぞれ各原色信号の低域、高
域成分である。ガンマ補正輝度信U(Y)’は輝度信シ
上Yを直接ガンマ補正した信号であり、(Y )’ L
 、(Y )°1−1はその低域、高域成分である。ガ
ンマ補正された輝度信弓−:Yビは大体IYドビー0.
3R’−10゜590’J O,] IR’であり、1
Yl′L、:Yj′IIは:Y・°の低域、高域成分で
ある。
G II J3 TI are the low frequency and high frequency components of each primary color signal, respectively. The gamma-corrected luminance signal U(Y)' is a signal obtained by directly gamma-correcting the luminance signal Y, and (Y)' L
, (Y)°1-1 are its low and high frequency components. Gamma corrected brightness: Y Bi is approximately IY Dobby 0.
3R'-10°590'J O,] IR', and 1
Yl'L, :Yj'II are the low-frequency and high-frequency components of :Y.degree.

本発明のJ1ζ1的な特徴か以下上記載されろ。The J1ζ1 features of the present invention are described above.

(1)、撮像装置の出力(’rE ”’J’から色差信
号Yと3原色(1;号R,G、Hを分離または合成し、
そして上記の各信号Y、R,G、Rをそれぞれガンマ補
正してガンマ補正信号(Y)’、R’、G’、B”を合
成し、そしてJ1記のガンマ補II(信号(Y)’、R
’、G’、H’から出力用色差信号Y゛と2種類の出力
用色差信けC1’、C2°を合成オろ撮像装置の信号処
理回路において、 1〕記のガンマhli正魚信;・R’ 、 G”、B”
からガンマ補正輝度信i’;、 IY joを合成し、
そして上記のガンマ補正色差信号iYl’の低域成分l
Y:’!−と上記のガンマ補正色差信号(Y)′の高域
成分(Y)’Hを加算(7て出力用色差信号y’−:Y
i” ■、 + (y )“Hを合成樹る・11を特徴
とする撮像装置の信シマ処理回路。
(1) Separate or combine the color difference signal Y and the three primary colors (No. R, G, H) from the output of the imaging device ('rE'''J',
Then, each of the above signals Y, R, G, and R is gamma-corrected and gamma-corrected signals (Y)', R', G', B'' are synthesized, and the gamma correction signal (signal (Y) ',R
', G', H' to output color difference signal Y' and two types of output color difference signals C1', C2° are synthesized in the signal processing circuit of the imaging device.・R', G", B"
Synthesize the gamma-corrected luminance signal i';, IY jo from
And the low frequency component l of the above gamma-corrected color difference signal iYl'
Y:'! - and the high-frequency component (Y)'H of the above gamma-corrected color difference signal (Y)' (7) and add the output color difference signal y'-: Y
i" ■, + (y)" A signal processing circuit for an imaging device characterized by 11.

(2)、撮像装置の出力信号から分離または合成された
1゛記の各信号y、R,c、Bは人体等しい帯域を持−
J Jlを特徴とする第1項記載の撮像装置の信号処理
回路。、 (3)、撮像装置の出力信号から分離または合成された
上記の色差信号Yは同様に分離または合成された上記の
3原色信号R、G 、Bより広帯域である事を特徴とす
る第1項記載の撮像装置の信号処理回路。
(2) Each of the signals y, R, c, and B separated or combined from the output signal of the imaging device has a band equal to that of the human body.
2. The signal processing circuit for an imaging device according to claim 1, characterized by JJl. (3) The first color difference signal Y, which is separated or combined from the output signal of the imaging device, has a wider band than the three primary color signals R, G, and B which are similarly separated or combined. The signal processing circuit of the imaging device described in 1.

(4)、撮像装置の出力信号からガンマ補正されへ出ノ
J用色差信号Y°とガンマ補正された2種類の出力用色
差信号CI’、C2’を合成する撮像装置の信号処理回
路において、 撮像装置の出力信号から3色信号Rx、GxJ(xを分
離または合成し、そして−上記の3色信吋Rx、Gx、
BXは色差信号Yの高域成分Y I−Tと3原色信号R
1G、Rの各低域成分R1,、、G L 、 B I−
、の加算信号(Rx−RL+YH,Gx=Gl、+YH
,Bx=BL−+Y I−1)であり、そして上記の3
色信号Rx、Gx、BXをそれぞれガンマ補正してガン
マ補正色信号Rx’ 。
(4) In a signal processing circuit of an imaging device that synthesizes a gamma-corrected output J color difference signal Y° from an output signal of the imaging device and two types of gamma-corrected output color difference signals CI' and C2', Separate or combine the three color signals Rx, GxJ (x) from the output signal of the imaging device, and - the above three color signals Rx, Gx,
BX is the high frequency component Y of the color difference signal Y, I-T and the three primary color signals R
1G, R each low frequency component R1,, GL, BI-
, addition signal (Rx-RL+YH, Gx=Gl, +YH
, Bx=BL-+Y I-1), and the above 3
Each of the color signals Rx, Gx, and BX is gamma-corrected to produce a gamma-corrected color signal Rx'.

Gx’、Rx’を合成し、そして十、記のガンマ補正色
信号、 Rx’ 、G x’ 、B X’から少なくと
ち出ツノ用色差信号Y゛の低域成分Y ’ Lを合成し
、そして上記の色差信号Yを直接ガンマ補正したガンマ
補正色差信号(Y)゛の高域成分(Y )” Hによっ
て、または上記のガンマ補正色信号Rx’ 、G x”
 、 B x’から合成されたガンマ補IE色差信号1
Yxi’(= 0 、3 Rx’+0 。
Gx' and Rx' are synthesized, and from the gamma-corrected color signals Rx', Gx', and B , and the high-frequency component (Y)"H of the gamma-corrected color difference signal (Y)" obtained by directly gamma-correcting the above-mentioned color difference signal Y, or the above-mentioned gamma-corrected color signals Rx', Gx"
, B x', gamma-compensated IE color difference signal 1
Yxi'(= 0, 3 Rx'+0.

59 Gx’== 0 、 118X’)の高域成分I
Y X i’ TIによ−)で、または」1記の(Y’
)’HとIYXじ’Hを適当な比率で混合4′ろ事によ
−)で、出力用色差信号Y°の高域成分Y ’ Hを合
成する事を特徴とする撮像装置の信号処理回路。
59 Gx'== 0, 118X') high frequency component I
Y
) 'H and IY circuit.

(5)、撮像装置の広帯域の色差信号Yを分離または合
成し、モして1記の色差信号Yをガンマ補Iトしてガン
マ袖+E−輝度伝シ;−(Y ) ’を合成し、そして
上記のガンマ補正色差信号(Y)°の高域成分(Y)”
Hを出力用色差信号Y′の高域成分Y ’ IIと4゛
ろ事を特徴と4〜ろ第4項記載の撮像装置の信号処理回
路1、 (6)、上記のガンマ補正色部シ」lえX’ 、G X
’ 、Bx”から出力用輝度(+−i ”;、; Y 
”の低域成分Y ’ T、と高域成分Y ’ I!の両
方を合成する・]<を特徴と4−る第4項記載の撮像装
置の信号処理回路。
(5) Separate or combine the wideband color difference signal Y of the imaging device, perform gamma correction on the color difference signal Y described in 1 above, and combine the gamma signal + E - luminance transmission; - (Y)'. , and the high frequency component (Y) of the above gamma-corrected color difference signal (Y)°
The signal processing circuit 1 of the imaging device described in paragraphs 4 to 4 is characterized by a high-frequency component Y'II of the color difference signal Y' for outputting H, and 4. "leX', G
',Bx'' to output brightness (+-i'';,;Y
4. The signal processing circuit for an imaging device according to claim 4, characterized by combining both the low-frequency component Y'T and the high-frequency component Y'I! of 4.

(7)、甲板ま八は中管カラー撮像装置の出力信袖から
上記の3魚信’;’、−Rx、 G x、 I’(Xを
分離または合成し、そしてI記の撮像装置の出勾信弓−
の低域成分は近似的に色差信号Yである事を特徴と4−
ろ第6項記載の撮像装置の信号処理回路。
(7), Deck Mahachi separates or combines the above three signals ';', -Rx, G x, I' (X) from the output signal of the middle tube color imaging device, and Deka no Shinkyu -
4- The low frequency component of is approximately the color difference signal Y.
7. A signal processing circuit for an imaging device according to item 6.

本発明の訂細な特徴と効果か以下に説明されろ。The detailed features and effects of the present invention will be explained below.

以下に従来のガンマ補正方式の欠点が説明される。The drawbacks of the conventional gamma correction method will be explained below.

第1の3原色ガンマ補正方式は良い色再現性を持つが、
色差信号の高域成分の再現性が劣化する欠点を持つ。こ
の問題は後で説明される。第2のガンマ補正方式の欠点
は出力用色差信号Y゛の低域成分が(Y)’L=(0,
3R−+0 59G→01113)’I−であり、正確
な出力用色差信号Y°の低域成分Y ’ L −= 0
 、3 R’ L −1−0、590’ T、 + 0
 。
The first three primary color gamma correction method has good color reproducibility, but
This has the disadvantage that the reproducibility of high-frequency components of color difference signals deteriorates. This issue will be explained later. The disadvantage of the second gamma correction method is that the low frequency component of the output color difference signal Y' is (Y)'L=(0,
3R-+0 59G→01113)'I-, low-frequency component Y'L-=0 of accurate output color difference signal Y°
, 3 R' L -1-0, 590' T, + 0
.

118’Lに比較して輝度誤差と色誤差が大きい欠点を
持つ3、第3のガンマ補正方式において、出力用輝度信
−1−;、 Y ’の低域成分Y ’ Lは第2のガン
マ補1U:、方式と同し欠点を持ち、更に2種類の出力
用色差信ヒ0ビ、02′に使用されるガンマ補正色差信
号の低域成分も同様の誤差を発生する。第4のガンマ補
正方式において、出力用色差信号Y”の低域成分は第2
のガンマ補正方式と同し誤差を発生し、更に2種類の出
力用色差信号Cビ、02″も誤差を発生する。特開59
−132286.60−5678において、色再現性は
良好であるが、出力用色差信号Y′の高域成分Y ’ 
IIが(Yl−T)”であるので、出力用色差信号の高
域成分は輝度誤差を持つ1.特開60−3290は同様
に良い色再現wIを持つか、出力用色差信号Y°の高域
成分Y ’ I−1かY I−Iであるので、出力用色
差信号の高域成分Y’Hは輝度誤差を持つ。
3. In the third gamma correction method, which has the disadvantage of large luminance error and color error compared to 118'L, the low frequency component Y'L of the output luminance signal -1-; Complementary 1U: has the same drawbacks as the system, and also generates similar errors in the low-frequency components of the gamma-corrected color difference signals used for the two types of output color difference signals 0 and 02'. In the fourth gamma correction method, the low frequency component of the output color difference signal Y'' is
The gamma correction method generates the same error, and the two types of output color difference signals CBI and 02'' also generate errors.
-132286.60-5678, the color reproducibility is good, but the high frequency component Y' of the output color difference signal Y'
Since II is (Yl-T)'', the high frequency component of the output color difference signal has a luminance error. Since the high frequency component Y'I-1 or YII-I, the high frequency component Y'H of the output color difference signal has a luminance error.

各独立発明と従属発明が以下に詳細に説明されろ。Each independent and dependent invention is described in detail below.

独立発明1.クレーA 1 本発明は従来のガンマ補正方式の上記の問題を改善する
事を目的とし、以下の特徴を持つ。即ち、本発明の特徴
は撮像装置の出ツノ信壮がら抽出された色差信号Yと3
原色信号R,G、Bをそれぞれガンマ補正して、ガンマ
補正色差信号(Y)°とガンマ補正色信号R’、G’、
R’を合成し、そして−14記のガンマ補正色信号R’
、G’、H’から出力用色差信号Y°の低域成分Y’L
 = IY i’l、と2種類の出力用色差信壮Cビ、
C2゛を合成し、そして出力用色差信号Y゛の高域成分
Y’Hをトー記のガンマ補正色差信号(Y)°の高域□
成分(Y)’Flと4−ろ事を特徴とする。従って、出
力用色差信号Y ’−1v j’ 1−・(Y’)’I
Tとなる。当然iY loLの高域限界は(Y)°1−
1の低域限界□に等しい□。このようにすれば、再する
。クレーム2において、」1記の3原色信号R1G、B
は上記の色差信号Yと等しい帯域を持ち、3板または3
管カラー撮像装置に好適である。クレー1.3において
、上記の3原色信号R、G 、Bは上記の色差信号Yよ
りも小さい帯域を持ち、単板または中管カラー撮像装置
に好適である。
Independent invention 1. Clay A 1 The present invention aims to improve the above-mentioned problems of the conventional gamma correction method, and has the following features. That is, the feature of the present invention is that the color difference signals Y and 3 extracted from the output of the imaging device are
The primary color signals R, G, and B are each gamma corrected to produce a gamma-corrected color difference signal (Y)° and a gamma-corrected color signal R', G',
R', and -14 gamma-corrected color signal R'
, G', H' to the low frequency component Y'L of the output color difference signal Y°
= IY i'l, and two types of output color difference Shinso C Bi,
C2゛ is synthesized, and the high-frequency component Y'H of the output color difference signal Y'' is combined with the high-frequency component Y'H of the gamma-corrected color difference signal (Y)°□
It is characterized by component (Y)'Fl and 4-roto. Therefore, the output color difference signal Y'-1v j'1-.(Y')'I
It becomes T. Naturally, the high frequency limit of iY loL is (Y)°1-
□ equal to the low frequency limit □ of 1. If you do this, you can do it again. In claim 2, the three primary color signals R1G and B described in "1"
has the same band as the above color difference signal Y, and has 3 plates or 3
Suitable for tube color imaging devices. In Clay 1.3, the three primary color signals R, G, and B have smaller bands than the color difference signal Y, and are suitable for a single-panel or medium-tube color imaging device.

本発明のガン÷補正方式の輝度再現性が以下に説明され
る。
The luminance reproducibility of the gun/correction method of the present invention will be explained below.

入力カラー映像信号をR,G、Bとし、それをガンマ補
正すれば、 R’= R’L −I R’H G“−G′L−LG′H T3 ’ == B ’ L 十B ’ I−1+こな
る。
Assuming that the input color video signals are R, G, and B, and subjecting them to gamma correction, R'= R'L -I R'H G"-G'L-LG'H T3' == B' L 1 B' I-1+Konaru.

上記のガンマ補正色信号を再びガンマ変換すると、Iえ
−(R・1.−:Iえ・旧′ c’=−(c・1.16・11 )’ になり、入力映像信号が完全に再現される。
When the above gamma-corrected color signal is gamma-converted again, the input video signal is completely converted to Reproduced.

従来の3原色ガンマ補正方式において、R’  R’L
斗1Y:l−1 G ゛ ・ G  ’  L   ト  iYl’T−
1R’−H’ L +lY :’ I−1□Y   :
° I−]  =  o   3 rt  ’  H−
ト 0  59G  ’  H−10,11B ’  
Hになろ、。
In the conventional three primary color gamma correction method, R'R'L
斗1Y:l-1G゛・G'L TO iYl'T-
1R'-H' L +lY:' I-1□Y:
° I-] = o 3 rt' H-
0 59G 'H-10,11B'
Become H.

上記のガンマ補正色信号を再びガンマ変換すると、、 
r G = (G’L @ iY :l−1)゛、(G’l
、)’ +2.20’L x IY :°11 L (
1’l :’ 旧’、(j)B=(13・1.−□、y
j・1□)とになろ。
When the above gamma-corrected color signal is gamma-converted again,
r G = (G'L @ iY :l-1)゛, (G'l
, )'+2.20'L x IY :°11 L (
1'l:'old', (j)B=(13・1.-□,y
j・1□) Become.

饗品巨己 本発明のガンマ補正方式において、 R’  R’L + (Y)’H c’  c’+、i(Y’)’II B’T3°L −+ (Y )’ II(Y )’ T
−1(0,3R−Io、59G斗0.11B)’Hjこ
なろ。
In the gamma correction method of the present invention, R'R'L + (Y)'H c'c'+,i(Y')'IIB'T3°L −+ (Y)' II(Y )' T
-1 (0,3R-Io, 59G to 0.11B)'Hj Konaro.

上記のガンマ補正色信号を再びガンマ変換すると1、f yt  (R”L−1(Y)’H) B−(「3°L→(”i’)Ml) −I漣曙IZl塔。When the above gamma-corrected color signal is gamma-converted again, it becomes 1, f. yt (R"L-1(Y)'H) B-(“3°L→(”i’)Ml) -I Rensho IZl Tower.

上記の(1)、(2)、(3)式と(4)、(5)、(
6)式を比較すれば、 古式の第1項は等1.<、そして第2、第3項が異なる
1fがわかる。大体において、各式の第2項十第3項は
再現色差信号の高域成分(Y)Hであるから、視覚感度
をかけて、 (1)、(2)、(3)式より、 (Y)H−2,2(0,3R’ 1.x Iシ゛11斗
0.59G’l、XG’1liO,Il+(°l、xB
°11) 、−5″    、?5′      ど+ 0.3(
RH) −t O,59(G 11)→0.II(1’
l’l+)になろ。
The above equations (1), (2), (3) and (4), (5), (
6) Comparing the equations, the first term of the old equation is equal to 1. <, and 1f in which the second and third terms are different can be found. Generally speaking, the second and third terms in each equation are the high-frequency components (Y)H of the reproduced color difference signal, so by multiplying by the visual sensitivity, from equations (1), (2), and (3), ( Y) H-2,2(0,3R' 1.x Ishi゛11 to 0.59G'l, XG'1liO, Il+(°l,
°11), -5'', ?5' +0.3(
RH) -tO,59(G11)→0. II(1'
Become l'l+).

同様に、(’I )、(5)、(6)、式から、(Y)
II−ミ2.2(0,3R’ L +  0.59G’
 I、=1−0.11B°l、) x  lv M I
I +(IY 、’ II)になる。
Similarly, from ('I), (5), (6), (Y)
II-Mi 2.2 (0,3R' L + 0.59G'
I, = 1-0.11B°l,) x lv M I
It becomes I + (IY, 'II).

上記の(+ )、(2)、(3)式と(7)、(8)、
(9’)式を比較すれば、 6式の第1項は等しく、そして第2、第3項か異なろ′
1工がわかる。従−・て、視覚補正した再現色差信号の
高域成分(Y ) I−1は (7)、(8)、(9’)式より、 (Y)It’; 2.2(0,3R’ L」0.59G
’L十〇、III3’l、)x(y)’n−1((Y)
’II)11″になる。
The above equations (+), (2), (3) and (7), (8),
Comparing equations (9'), we can see that the first term of equation 6 is the same, and whether the second and third terms are different.
I can understand 1 construction. Therefore, the high-frequency component (Y) I-1 of the visually corrected reproduced color difference signal is obtained from equations (7), (8), and (9') as follows: (Y)It'; 2.2(0,3R 'L'0.59G
'L〇,III3'l,)x(y)'n-1((Y)
'II) becomes 11''.

本発明のガンマ補正方式において、再現3原色信、F 
  、r 号の低域成分(近憚的な)は(RL)  、(G  L
)  。
In the gamma correction method of the present invention, reproduction of three primary colors, F
, the low-frequency components (prospective) of r are (RL) , (G L
).

、 r (T3L)  であり、l−記の完全ガンマ補7L方式
((1)、(2)、(3))または]、記の3原色ガン
マ補正方式((4)、(5)、(6))に)しい。そし
て本発明のガンマ補正方式の再現色差信号の高域成分(
Y)Hは上記の3原色ガンマ補正方式の(Y ) I−
1よりも完全ガンマ補正方式の(Y)Hに近似する。人
力映像信号R−RI、1R11−G:GI、十G[1−
−B−−BL−IB[・記ζh3種珀のカノマ補市方式
の拝ト現色差信号の高域成分(Y ’)II U、”!
F Lい。
. 6)). Then, the high frequency component (
Y)H is (Y)I- of the above three primary color gamma correction method
1 is closer to (Y)H of the complete gamma correction method. Human video signal R-RI, 1R11-G:GI, 10G[1-
-B--BL-IB [・Record ζh 3 types of Kanoma Hoichi system high-frequency component (Y') of the current color difference signal II U,"!
F L.

RL= GL =RL=YL、YlI  O,3RII
または0.59GT−1または0.111111−ζど
ぅろ高域原色条件において、 本発明(1)(、Y )IIの第1項は完全ガンマ補正
方式より大きくなるが、その第2項は完全ガンマ補正方
式に)・しい。そして3原色ガンマ補正方式の(Y)I
Iの第1項と第2項は完全ガンマ補正方式の第1項と第
2項よりそれぞれ小さい。
RL = GL = RL = YL, YlI O, 3RII
Or, under the 0.59GT-1 or 0.111111-ζDuro high-range primary color conditions, the first term of present invention (1) (, Y) II is larger than that of the complete gamma correction method, but the second term is Complete gamma correction method) And (Y)I of the three primary color gamma correction method
The first and second terms of I are smaller than the first and second terms of the complete gamma correction method, respectively.

Y  0.3(RL、)RH)、またはY・−0,59
(G1、 l CII ’)、またはY−0,I I(
BL十BH)である人力条件において、 本発明の(Y ) T−1の第1項は完全ガンマ抽IT
(方式のそれより少し小さく、その第2項は完全ガンマ
補正方式の第2項に等しい。3原色ガンマ補正方式の(
Y)I−Tの第1項と第2項は完全ガンマ補正方式の第
1項、第2項より大幅に小さい。
Y 0.3(RL, )RH), or Y・-0,59
(G1, l CII'), or Y-0, I I (
Under the human power condition where BL + BH), the first term of (Y)T-1 of the present invention is a complete gamma extraction IT
(Slightly smaller than that of the three-primary gamma correction method, and its second term is equal to the second term of the full gamma correction method.
Y) The first and second terms of IT are significantly smaller than the first and second terms of the complete gamma correction method.

以にの結果から、従来の3原色ガンマ補正方式は人力色
差信号の高域成分Y I−1が白色でない場合にの分光
スペクトルとY 11成分の分光スペクトルが異なろ時
に偽信S;((Y)11の第1項)が発生4゛ろか。
From the above results, it can be seen that the conventional three primary color gamma correction method is false when the spectral spectrum when the high frequency component YI-1 of the human color difference signal is not white is different from the spectral spectrum of the Y11 component. Y) Is the first term of 11) occurring at 4?

上記の減衰か小ざc1!JTか分かる。The above attenuation is small c1! I know it's JT.

甲板または中管カラー撮像装置において、3原色信吋の
低域成分lit L 、 G L 、 B I、をそA
1ぞれガンマ補ILシて合成されたRL’、GL’、B
Loは上記のR’ L 、 G ’ L、 、 B’ 
I、と大体同じであるので、色差信号Yのガンマ補正回
路だけを広帯域とし、そして3原色信号のガンマ補正回
路を狭帯域とする事に31.って、回路を筒中にできろ
In the deck or middle tube color imaging device, the low frequency components of the three primary colors L, GL, BI, and A are
RL', GL', and B synthesized using gamma complementary IL
Lo is the above R' L, G' L, , B'
Since it is roughly the same as 31. I, only the gamma correction circuit for the color difference signal Y is wideband, and the gamma correction circuit for the three primary color signals is narrowband. So, put the circuit inside the cylinder.

また、出力色差信号Y lの高域成分Y ’ Hを(Y
)”Hとし、そして上記の3原色信号の低域成分RL 
、G L 、BLと色差信号の高域成分Y I−Tを加
算して、色信号Rx= RL +−Yl(、Gx=GL
 (Y)1,11X  RT、 1Y Hを合成し、そ
し2て上記の魚信SE、 Rx。
In addition, the high frequency component Y'H of the output color difference signal Yl is expressed as (Y
)”H, and the low frequency component RL of the above three primary color signals
, GL, BL and the high frequency component YIT of the color difference signal to obtain the color signal Rx=RL+-Yl(,Gx=GL
(Y) Synthesize 1,11X RT, 1Y H, and 2 the above Uoshin SE, Rx.

(J X 、 B xをガンマ補正して、ガンマ補iE
魚信1−+、 R×’、Gx“、Bx’を合成し、そし
て14記のガンマ補IE色(IY ”r Rx’ 、 
G X’ 、 B X’から、出力用色差信号Y゛の低
域成分Y ’ Lと2種類の色差信号c1“、C2’を
合成4−ろ事ム++1能である。この実施例は独立発明
1と独)r発明2を一緒に使用4゛る実施例てある。
(Gamma correction is performed on J
Synthesize Uoshin 1-+, R
From G X', B There are four embodiments in which Invention 1 and Invention 2 are used together.

この実施例は特に、3原色信号の高域成分を抽出オろ“
1tが困難な単板またはtP管カラー撮像装置の偽信シ
号を減らず。
This embodiment is particularly suitable for extracting high-frequency components of the three primary color signals.
It is difficult to reduce false signals in single-plate or tP-tube color imaging devices.

独q発明2.クレー1.4 −上記の独立発明1のガンマ補正方式は3原色ガンマ抽
正方式よりら良い高域輝度再現性を持つが、また改迎の
余地かある。本発明は問題を解決するために、撮像装置
の出力信壮から色差信号の高域成分Y Hと、3原色信
号の低域成分(狭帯域3原色信号) R1,、、C1,
、、r3 Lを抽出し、そして上記の各信号から色信号
Rx=−RL−+YLl 、 G x=GL斗Y1−1
 、 Bx−BL 十Y I−1を合成し、そして1〕
記の合成魚信”r号Rx、G x、By、をそれぞれガ
ンマ補正してRx’、Gx’、13x’を合成し、そし
て上記のガンマ補正魚信シ’; Rx’ 、G X’ 
、Bx’から出力用色差信号Y’=0.3rjx’  
−ト 0.  59Gx’)0.    I   I 
  B x’  と 、  2種類の出力用色差信号C
I’、02’を合成する事を特徴と4゛る。一般に、−
上記の出力用色差信号は(Rx”−Y’)、(B X’
−Y ’)の各低域成分、または14記の(It X’
−T3 x)’と(Rx’−Y’)から合成された+’
、Q’の低域成分である。
German invention 2. Clay 1.4 - The gamma correction method of Independent Invention 1 above has better high-range luminance reproducibility than the three primary color gamma extraction method, but there is still room for improvement. In order to solve this problem, the present invention aims to extract high-frequency components YH of color difference signals and low-frequency components of three primary color signals (narrowband three primary color signals) from the output quality of the imaging device R1, , C1,
,, r3 L, and from each of the above signals, the color signal Rx=-RL-+YLl, G
, Bx-BL 1 Y I-1, and 1]
Gamma-correct the synthetic fish signal "r numbers Rx, G x, By, respectively, and synthesize Rx', Gx', 13x', and then synthesize the gamma-corrected fish signal ';Rx', G X'
, Bx' to output color difference signal Y'=0.3rjx'
-g 0. 59Gx')0. I I
B x' and two types of output color difference signals C
It is characterized by synthesizing I' and 02'. In general, -
The above output color difference signals are (Rx"-Y'), (B X'
-Y') or (It
+' synthesized from -T3 x)' and (Rx'-Y')
, Q' are low frequency components.

本発明は!−記の3原色ガンマ補正力式において、人力
信号R,G 、Rの高域成分RII 、 CI−1、B
 T−1が人力色差信号の高域成分Y T−T = R
’H= G I−T −= B1−1に等しい(白色で
ある)場合の出力色差信号Y°と2種類の出力色差信号
Cビ、02゛を出力する事ができる。そして上記の条件
において、上記の3原色ガンマ補正方式はほとんど偽信
号を発生しない。
This invention is! - In the three primary color gamma correction force equations described above, the high frequency components RII, CI-1, B of the human input signals R, G, and R are
T-1 is the high frequency component of the human color difference signal Y T-T = R
It is possible to output an output color difference signal Y° when 'H=GIT-=B1-1 (white) and two types of output color difference signals Cbi and 02'. Under the above conditions, the three primary color gamma correction method hardly generates false signals.

従って、本発明のガンマ補正方式によって、低域3原色
信号RL 、G L 、B Lと高域色差信号Y T−
1が大体完全に再生され、偽信号は非常に少なくなる。
Therefore, by the gamma correction method of the present invention, the three low-range primary color signals RL, GL, BL and the high-range color difference signal YT-
1 will be almost completely regenerated and the false signals will be very low.

本発明の利点はガンマ補正される色信号Rx、Gx。An advantage of the invention is that the color signals Rx, Gx are gamma corrected.

B Xが′33原信号r(、G、Hの低域成分だけを必
要と4−る事である。その結果、甲板または中管カラー
撮碌装置の色または輝度再現性を従来の3原色ガノマ捕
正方式より改善オろ:11がてきろ。本発明の他の利点
は3ヂヤンネルの広帯域ガンマ補正回路へけを使用する
のて、4チヤンネルのガンマ補正回路を必要とケるガン
マ補正回路に比較して回路か簡mになろ事てある。
B 11 is an improvement over the gamma correction method.Another advantage of the present invention is that the gamma correction circuit uses a 3-channel wideband gamma correction circuit instead of a 4-channel gamma correction circuit. The circuit is simpler than that.

最も良い再現性を持つ本発明の1実施例において、クレ
ーム5上記載されろように、出ツノ用色差信号Y′の高
域成分Y ’ I−1は独立発明1の(Y)’IIとさ
れろ。その結果、独立穴nj1 lの偽信号はほとんと
除去されるので、再現されろ色差信号Yの高域成分は非
常に高い忠実性を持つ。
In one embodiment of the present invention having the best reproducibility, as stated above in claim 5, the high-frequency component Y'I-1 of the color difference signal Y' for output horns is the same as (Y)'II of Independent Invention 1. Be it. As a result, since the false signals of the independent holes nj1l are almost eliminated, the high frequency components of the reproduced color difference signal Y have extremely high fidelity.

本発明の他の特徴と効果が以下の実施例で説明さ発明を
実施するための最良の形態 図1は独立発明1の1実施例を表ケブロック回路図であ
る。単板カラー固体撮像素子1から隣接2画素行の出力
信号Sl、S2が出力され、Sl、S2は信号合成回路
2て色差信号Yと3原色信号R1G、Bに変換される。
Other features and effects of the present invention will be explained in the following embodiments.BEST MODE FOR CARRYING OUT THE INVENTION FIG. 1 is a block circuit diagram showing an embodiment of independent invention 1. Output signals Sl and S2 of two adjacent pixel rows are output from the single-plate color solid-state image sensor 1, and Sl and S2 are converted into a color difference signal Y and three primary color signals R1G and B by a signal synthesis circuit 2.

一般に色差信号Yは隣接2画素行の出力信号和によって
合成され、R,G、B信号は各画素信号またはその差を
抽出する事によって分離される。これらの信号分離方式
は周知であるので、説明は省略される3、信号合成回路
3から出力された色差信号YとR、G 、B信号はそれ
ぞれ低域フィルタ(LPF)3a、3b、3c、3dで
帯域制限される。L P F 3 aは約3.5MI(
zの帯域を持ち、他のLPF4b、4c、4dは約I 
M 1−T zの帯域を持−)JLPF4b、4c、4
dの帯域はできろたけ広い帯域の色信号R,G、Bを出
力する事が好ましい。
Generally, the color difference signal Y is synthesized by the sum of output signals of two adjacent pixel rows, and the R, G, and B signals are separated by extracting each pixel signal or the difference thereof. Since these signal separation methods are well known, their explanation will be omitted.3 The color difference signal Y and R, G, B signals output from the signal synthesis circuit 3 are passed through low-pass filters (LPFs) 3a, 3b, 3c, respectively. Bandwidth is limited in 3D. L P F 3 a is about 3.5 MI (
The other LPFs 4b, 4c, and 4d have a band of about I
Has a band of M1-Tz-) JLPF4b, 4c, 4
It is preferable to output color signals R, G, and B in as wide a band as possible in the band d.

各L P Fから出力された信号Y 、RL 、G L
 、BLはそれぞれガンマ補正回路4 a、4 b、4
 c、/I dでガンマ補正されろ。4aから出力され
るガンマ補正色差信号(Y)゛は約0.5Ml−1zか
ら約3.5MT−1Zの帯域を持つ帯域フィルタ(BP
F)6aを介して出力され、出力用色差信号Y°の高域
成分Y ’ I−1=(Y )’ 11 ニなる。ガン
マ補正回路4 b、4 c、4 dから出力されたガン
マ補正色信号(Rr、 )’ 、(c 1. )、(B
10)°は信号合成回路5て、ガンマ補正色差信号IY
 i’= 0 3CR1,Y(0,59(GL)’+0
.11(RL)’と、ガンマ補正色差信号01°−(T
(L)’−IYI°とガンマ補iE色差信号C2°=(
BL)’−IY l“に変換される。そして上記のガン
マ補正色差信号IYビと色差信号C1° C2°はそれ
ぞれ約0.5MIIzの帯域を持つLPF6b、6c、
6dて帯域制限されて、出力用色差信号Y°の低域成分
Y’L−lYloL 、と出力用色差信号C1°L、C
2゜17になる。そして出力用色差信号Y’=Y’l、
十Y’II = IY l’l、−+(Y)’Hになる
Signals Y, RL, GL output from each LPF
, BL are gamma correction circuits 4 a, 4 b, 4, respectively.
c, /I Do gamma correction with d. The gamma-corrected color difference signal (Y) output from 4a is passed through a bandpass filter (BP
F) 6a, and the high frequency component of the output color difference signal Y° becomes Y'I-1=(Y)'11. Gamma correction color signals (Rr, )', (c1.), (B
10) ° is the signal synthesis circuit 5, gamma correction color difference signal IY
i'= 0 3CR1,Y(0,59(GL)'+0
.. 11(RL)' and gamma-corrected color difference signal 01°-(T
(L)'-IYI° and gamma-compensated iE color difference signal C2° = (
BL)'-IY l".The gamma-corrected color difference signal IYB and the color difference signals C1° and C2° each have a band of about 0.5 MIIz, and are converted into LPFs 6b, 6c,
6d, and the low frequency components Y'L-lYloL of the output color difference signal Y°, and the output color difference signal C1°L, C
It becomes 2°17. And output color difference signal Y'=Y'l,
10Y'II = IY l'l, -+(Y)'H.

図2は独σ発明2を表すl実施例ブロック回路図である
。図2は基本的に図1と同じである。ただし、信号合成
回路2から出力された色差信号Yは約0.5MT−1z
から3.5MT(zの帯域を持つ帯域フィルタ(BPF
)3eて、その高域成分Y Hを抽出される。そしてり
、 P F 3 b、3 C,3(lは約0.5M H
zの帯域を持つ。そしてガンマ補正回路4bは色信号R
x・−RL + Y T−1をガンマ補正し、ガンマ補
正回路4Cは色信号Gx=GL→Y Hをガンマ補正し
、そしてガンマ補正回路4 (Iは色信号BX=B L
±Y Hをガンマ補正する。モしてガンマ補正色信号R
x’ 、G X’ 、B X’は信号合成回路5に入力
され、出力用色差信号Y’−0,3Rx’→−059G
x’→0 、  l I By、’と出力用色差信号C
1°=Rx’−Y’、C2’−Bx’−Y’に変換され
る。そして1、 P P 6はI−記の出力用色差信号
Y′を約35M I−1z以下に帯域制限し、LPF6
c、6dは−上記の出力用色差信号CI’、C2°を約
0.5MI(z以下に帯域制限する。
FIG. 2 is a block circuit diagram of an embodiment of the German σ invention 2. FIG. 2 is basically the same as FIG. 1. However, the color difference signal Y output from the signal synthesis circuit 2 is approximately 0.5MT-1z
A bandpass filter (BPF) with a band of 3.5MT (z)
)3e, and its high frequency component YH is extracted. And then, P F 3 b, 3 C, 3 (l is about 0.5 M H
It has a band of z. Then, the gamma correction circuit 4b outputs the color signal R.
The gamma correction circuit 4C performs gamma correction on the color signal Gx=GL→YH, and the gamma correction circuit 4 (I is the color signal BX=BL
±YH is gamma corrected. Gamma correction color signal R
x', G
x'→0, l I By,' and output color difference signal C
1°=Rx'-Y', C2'-Bx'-Y'. 1. P P6 limits the band of the output color difference signal Y' of I- to below about 35 M I-1z, and LPF6
c, 6d limit the band of the above output color difference signals CI', C2° to approximately 0.5 MI (z or less).

図3は独立発明1と独立発明2を一緒に使用する本発明
の1実施例ブロック回路図である。図3は基本的に図2
と同じである。たたし、図2と異なる事は、信号合成回
路5から出力された出力用色差信号Y′は約0.5MH
zの帯域を持つ1. P F’ 6bで帯域制限されて
、出力用色差信号Y°の低域成分Y゛1.になる事であ
る。そして、信号合成回路2から出力された色差信号Y
は図1と同様に、約3 、 5 MIIzの帯域を持つ
L P F 3 aで帯域制限された後で、ガンマ補正
回路4aでガンマ補正されて、ガンマ補正色差信号(Y
)°になり、そして上記のガンマ補正色差信号(Y)°
は約0.5MHzから約3.5MHzの帯域を持つBP
P6aで帯域制限されて、出力用色差信号Y゛の高域成
分Y’Hになる71■である。もちろん出力用色差信号
は最後にY’=Y’l、斗Y’H” (0、3Rx’−
40、59Gx’十〇 、  I I Bx’)L+(
Y)’Hlこなる。
FIG. 3 is a block circuit diagram of an embodiment of the present invention using Independent Invention 1 and Independent Invention 2 together. Figure 3 is basically Figure 2
is the same as However, the difference from FIG. 2 is that the output color difference signal Y' output from the signal synthesis circuit 5 is approximately 0.5 MH
1 with a band of z. The band is limited by P F'6b, and the low frequency component Y'1. of the output color difference signal Y° is band-limited. It is to become. Then, the color difference signal Y output from the signal synthesis circuit 2
As in FIG. 1, the signal is band-limited by L P F 3 a having a band of approximately 3.5 MIIz, and then gamma-corrected by the gamma correction circuit 4a to produce a gamma-corrected color difference signal (Y
)°, and the above gamma-corrected color difference signal (Y)°
is a BP with a band of about 0.5 MHz to about 3.5 MHz.
The band is limited by P6a and becomes the high frequency component Y'H of the output color difference signal Y'. Of course, the output color difference signal is finally Y'=Y'l, DoY'H" (0, 3Rx'-
40, 59Gx'10, I I Bx')L+(
Y)'Hl Konaru.

なお、L記の各実施例は単板カラー固体撮像素子を使用
するNTSC形TVカメラの信号処理回路を説明するが
、他の撮像装置にも本発明か使用できろjJjは当然で
ある。
Note that each of the embodiments listed below describes a signal processing circuit for an NTSC type TV camera using a single-plate color solid-state image pickup device, but it goes without saying that the present invention can also be used in other image pickup devices.

【図面の簡単な説明】[Brief explanation of drawings]

Claims (7)

【特許請求の範囲】[Claims] (1)、撮像装置の出力信号から輝度信号Yと3原色信
号R、G、Bを分離または合成し、そして上記の各信号
Y、R、G、Bをそれぞれガンマ補正してガンマ補正信
号(Y)’、R’、G’、B’を合成し、そして上記の
ガンマ補正信号(Y)’、R’、G’、B’から出力用
輝度信号Y’と2種類の出力用色差信号C1’、C2’
を合成する撮像装置の信号処理回路において、 上記のガンマ補正色信号R’、G’、B’からガンマ補
正輝度信号|Y|’を合成し、そして上記のガンマ補正
輝度信号|Y|’の低域成分|Y|’Lと上記のガンマ
補正輝度信号(Y)’の高域成分(Y)’Hを加算して
出力用輝度信号Y’=|Y|’L+(Y)’Hを合成す
る事を特徴とする撮像装置の信号処理回路。
(1) Separate or combine the luminance signal Y and the three primary color signals R, G, and B from the output signal of the imaging device, and perform gamma correction on each of the above signals Y, R, G, and B to generate a gamma-corrected signal ( Y)', R', G', and B' are synthesized, and from the above gamma correction signals (Y)', R', G', and B', an output luminance signal Y' and two types of output color difference signals are obtained. C1', C2'
In the signal processing circuit of the imaging device, the gamma-corrected luminance signal |Y|' is synthesized from the gamma-corrected color signals R', G', and B', and the gamma-corrected luminance signal |Y|' By adding the low frequency component |Y|'L and the high frequency component (Y)'H of the above gamma-corrected luminance signal (Y)', the output luminance signal Y'=|Y|'L+(Y)'H is obtained. A signal processing circuit for an imaging device characterized by combining.
(2)、撮像装置の出力信号から分離または合成された
上記の各信号Y、R、G、Bは大体等しい帯域を持つ事
を特徴とする第1項記載の撮像装置の信号処理回路。
(2) The signal processing circuit for an imaging device according to item 1, wherein the signals Y, R, G, and B separated or combined from the output signal of the imaging device have approximately equal bands.
(3)、撮像装置の出力信号から分離または合成された
上記の輝度信号Yは同様に分離または合成された上記の
3原色信号R、G、Bより広帯域である事を特徴とする
第1項記載の撮像装置の信号処理回路。
(3) Item 1, wherein the luminance signal Y separated or combined from the output signal of the imaging device has a wider band than the three primary color signals R, G, and B, which are similarly separated or combined. A signal processing circuit of the imaging device described.
(4)、撮像装置の出力信号からガンマ補正された出力
用輝度信号Y’とガンマ補正された2種類の出力用色差
信号C1’、C2’を合成する撮像装置の信号処理回路
において、 撮像装置の出力信号から3色信号Rx、Gx、Bxを分
離または合成し、そして上記の3色信号Rx、Gx、B
xは輝度信号Yの高域成分YHと3原色信号R、G、B
の各低域成分RL、GL、BLの加算信号(Rx=RL
+YH、Gx=GL+YH、Bx=BL+YH)であり
、そして上記の3色信号Rx、Gx、Bxをそれぞれガ
ンマ補正してガンマ補正色信号Rx’、Gx’、Bx’
を合成し、そして上記のガンマ補正色信号Rx’、Gx
’、Bx’から少なくとも出力用輝度信号Y’の低域成
分Y’Lを合成し、そして上記の輝度信号Yを直接ガン
マ補正したガンマ補正輝度信号(Y)’の高域成分(Y
)’Hによって、または上記のガンマ補正色信号Rx’
、Gx’、Bx’から合成されたガンマ補正輝度信号|
Yx|’(=0.3Rx’+0.59Gx’=0.11
Bx’)の高域成分|Yx|’Hによって、または上記
の(Y)’Hと|Yx|’Hを適当な比率で混合する事
によって、出力用輝度信号Y’の低域成分Y’Lを合成
する事を特徴とする撮像装置の信号処理回路。
(4) In a signal processing circuit of an imaging device that synthesizes a gamma-corrected output luminance signal Y' and two types of gamma-corrected output color difference signals C1' and C2' from an output signal of the imaging device, the imaging device The three color signals Rx, Gx, Bx are separated or combined from the output signals of the three color signals Rx, Gx, B.
x is the high frequency component YH of the luminance signal Y and the three primary color signals R, G, B
Addition signal of each low frequency component RL, GL, BL (Rx=RL
+YH, Gx=GL+YH, Bx=BL+YH), and the above three color signals Rx, Gx, and Bx are gamma-corrected to produce gamma-corrected color signals Rx', Gx', and Bx'
and the above gamma-corrected color signals Rx', Gx
', Bx', at least the low frequency component Y'L of the output luminance signal Y' is synthesized, and the high frequency component (Y
)'H or the above gamma-corrected color signal Rx'
Gamma-corrected luminance signal synthesized from , Gx', and Bx' |
Yx|'(=0.3Rx'+0.59Gx'=0.11
Bx') high-frequency component |Yx|'H, or by mixing the above (Y)'H and |Yx|'H at an appropriate ratio, the low-frequency component Y' of the output luminance signal Y' A signal processing circuit for an imaging device characterized by combining L.
(5)、撮像装置の広帯域の輝度信号Yを分離または合
成し、そして上記の輝度信号Yをガンマ補正してガンマ
補正輝度信号(Y)’を合成し、そして上記のガンマ補
正輝度信号(Y)’の高域成分(Y)’Hを出力用輝度
信号Y’の高域成分Y’Hとする事を特徴とする第4項
記載の撮像装置の信号処理回路。
(5) Separate or combine the broadband luminance signal Y of the imaging device, gamma-correct the luminance signal Y, synthesize the gamma-corrected luminance signal (Y)', and synthesize the gamma-corrected luminance signal (Y)'. 5. The signal processing circuit for an imaging device according to claim 4, wherein the high frequency component (Y)'H of )' is the high frequency component Y'H of the output luminance signal Y'.
(6)、上記のガンマ補正色信号Rx’、Gx’、Bx
’から出力用輝度信号Y’の低域成分Y’Lと高域成分
Y’Hの両方を合成する事を特徴とする第4項記載の撮
像装置の信号処理回路。
(6), the above gamma-corrected color signals Rx', Gx', Bx
5. The signal processing circuit for an imaging apparatus according to claim 4, wherein the signal processing circuit synthesizes both the low frequency component Y'L and the high frequency component Y'H of the output luminance signal Y' from '.
(7)、単板または単管カラー撮像装置の出力信号から
上記の3色信号Rx、Gx、Bxを分離または合成し、
そして上記の撮像装置の出力信号の低域成分は近似的に
輝度信号Yである事を特徴とする第6項記載の撮像装置
の信号処理回路。
(7) Separating or combining the above three color signals Rx, Gx, Bx from the output signal of the single-plate or single-tube color imaging device;
7. The signal processing circuit for an imaging device according to claim 6, wherein the low frequency component of the output signal of the imaging device is approximately a luminance signal Y.
JP61022542A 1986-02-04 1986-02-04 Signal processing circuit for image pickup device Pending JPS62180692A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61022542A JPS62180692A (en) 1986-02-04 1986-02-04 Signal processing circuit for image pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61022542A JPS62180692A (en) 1986-02-04 1986-02-04 Signal processing circuit for image pickup device

Publications (1)

Publication Number Publication Date
JPS62180692A true JPS62180692A (en) 1987-08-07

Family

ID=12085703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61022542A Pending JPS62180692A (en) 1986-02-04 1986-02-04 Signal processing circuit for image pickup device

Country Status (1)

Country Link
JP (1) JPS62180692A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05207503A (en) * 1991-07-26 1993-08-13 Sony Tektronix Corp Processing unit for color component signal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05207503A (en) * 1991-07-26 1993-08-13 Sony Tektronix Corp Processing unit for color component signal

Similar Documents

Publication Publication Date Title
JP4517493B2 (en) Solid-state imaging device and signal processing method thereof
JPH0352276B2 (en)
JPS6146687A (en) Color video camera
JP2003032695A (en) Image signal processor
JPH0724422B2 (en) Luminance signal generation circuit for color TV camera
US5283634A (en) Luminance signal correcting method
JPS58100590A (en) Synthesis method for sampling output
JPS62253285A (en) Method and apparatus for processing color video signal
JPS62180692A (en) Signal processing circuit for image pickup device
US5087967A (en) Color image pickup device having a level correcting circuit for correcting level variations in color image signals
JP2846317B2 (en) Color imaging device
JPH0417486A (en) Solid-state color image pickup device
JPS61220581A (en) Signal processing circuit for image pickup device
JPH089395A (en) Color image pickup device
KR880000842B1 (en) Comp filter apparatus
JP3018612B2 (en) Single-chip color camera and color signal processing circuit used therefor
JPH05236492A (en) Color video camera
JPH0137031B2 (en)
JPH0479195B2 (en)
JPH02288578A (en) Luminance signal generator in color television camera
JP2000115792A (en) Color image processing unit
JPS58179083A (en) Color solid state image pickup device
JP2002354492A (en) Multi-lens and multi-ccd type image pickup device
JPH0541819A (en) Picture signal processing circuit for video camera
JPS60134583A (en) Color solid-state image pickup device