JPS61220581A - Signal processing circuit for image pickup device - Google Patents

Signal processing circuit for image pickup device

Info

Publication number
JPS61220581A
JPS61220581A JP60063088A JP6308885A JPS61220581A JP S61220581 A JPS61220581 A JP S61220581A JP 60063088 A JP60063088 A JP 60063088A JP 6308885 A JP6308885 A JP 6308885A JP S61220581 A JPS61220581 A JP S61220581A
Authority
JP
Japan
Prior art keywords
signal
color
imaging device
signals
processing circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60063088A
Other languages
Japanese (ja)
Inventor
Shoichi Tanaka
正一 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP60063088A priority Critical patent/JPS61220581A/en
Publication of JPS61220581A publication Critical patent/JPS61220581A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a single tube or single plate color image pickup device with high quality picture by synthesizing a wide band chrominance signal by mixing the high area component of a luminance signal with the low area component of the chrominance component in a prescribed ratio and composing the luminance signal by gamma-processing of this wide band chrominance signal. CONSTITUTION:The high area component YH of the luminance signal and the low area components YL, RL and BL of each chrominance signal are obtained from a luminance signal Y and chrominance signals R and B that are obtained and separated from a single plate color image pickup element, by a BPF1A and an LPF1B, an LPF1C and an LPF1D. The low area components YL, RL and BL are added to a matrix circuit 2 and a GL component is synthesized. And at adders 3A, 3B and 3C, the luminance signals GL, RL and BL and the high area component YH of the luminance signal are added and wide band signals G, R and B are obtained from the adders. These wide band signals, after they are gamma-corrected by gamma correction circuits 4A, 4B and 4C, are added to an encoder 5 and a luminance signal and color difference signals I and Q are synthesized.

Description

【発明の詳細な説明】 技術分野 本発明は甲板また(に rl’i管カラー撮像装置に関
1−1特に中板またけ単管カラー撮像装置の信号処理回
路と光学低域フィルタの改良に関1−る。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to a deck or rl'i tube color imaging device.1-1 Particularly to improvement of a signal processing circuit and an optical low-pass filter of a single-tube color imaging device that spans a middle plate. Seki 1-ru.

背景技術 少なくとも2種類のhli色信号(補色信号はイエロー
信号Ye、ノアン信号Cy、全色信冒−Wを指定する。
BACKGROUND ART At least two types of hli color signals (complementary color signals specify a yellow signal Ye, a noan signal Cy, and a full color color signal -W).

勿論各補色信号は少量の金色信U成分を含む事ができろ
。)を発生する!1′J板または1p管カラー撮像装置
は周知である。一般に、上記の3個の補色色画素(Y 
e、 Cy、W ’)と1個の緑色画素Gを備える補色
色画素配列(補色配列と略称される。)は周知であり、
以Fにおいて4色補色配列と略称される3,4色補色配
列は単板または単管カラー撮像装置に広く使用されてい
る。また、各画素行かそれぞれ3種類の色画素を備え、
上記の3種類の色画素の内の少なくとも2秤類の色画素
が補色信号を発生するMli色配列も周知であり、以F
において3色補色配列と略称される。−上記の3色また
は4色補色配列を持つ単板カラーまたはQj管カラー撮
像装置において、一般に撮像装置から11′1カされる
映像信けの低域成分を輝度信号として使用する。こイ1
は最大の輝度解像度を得ろためである。上記の撮像装置
から所定の色信号を分離するために、多(の色分離方式
が使用されている。主要な第1の色分離方式は周波数分
離方式であり、撮像装置から出力される映像信号の高域
成分から赤、青信号が分離さ、!する。第2の色分離方
式は位相分離方式であり、各色画素信−がスイッチまた
はサンプフレボールド回路によって順番に分離される。
Of course, each complementary color signal may contain a small amount of the golden U component. ) occur! 1'J plate or 1p tube color imaging devices are well known. Generally, the above three complementary color pixels (Y
A complementary color pixel array (abbreviated as complementary color array) comprising one green pixel G and one green pixel G is well known.
Three- and four-color complementary color arrays, hereinafter referred to as four-color complementary color arrays, are widely used in single-panel or single-tube color imaging devices. In addition, each pixel row has three types of color pixels,
An Mli color arrangement in which at least two types of color pixels among the three types of color pixels described above generate complementary color signals is also well known, and will be described below.
It is abbreviated as a three-color complementary color arrangement. - In the above-mentioned single-chip color or QJ tube color imaging device having a three-color or four-color complementary color arrangement, the low frequency component of the video signal received from the imaging device is generally used as a luminance signal. Koi 1
This is to obtain maximum luminance resolution. In order to separate a predetermined color signal from the above-mentioned imaging device, multiple color separation methods are used.The main first color separation method is a frequency separation method, and the video signal output from the imaging device The red and blue signals are separated from the high-frequency components of the signal.The second color separation method is a phase separation method, in which each color pixel signal is separated in turn by a switch or sample Frebold circuit.

そして分離された各色画素信号を加減算し、て所定の色
信号が合成される。単管カラー撮像装置において、一般
に4色補色配列か使用され、奇(偶)数円素行はY(!
、Cyを交rlHに配列され、偶(奇)数円素行はG、
Wを交Tl:に配列される。3色補色配列を持つ単管カ
ラー撮像装置も可能であるが、輝度解像度が低下する。
Then, the separated color pixel signals are added and subtracted to synthesize a predetermined color signal. In single-tube color imaging devices, a four-color complementary color array is generally used, and the odd (even) circle element is Y (!
, Cy are arranged in an intersecting rlH, and the even (odd) circular elements are G,
W is arranged at intersection Tl:. A single-tube color imager with a three-color complementary color array is also possible, but the luminance resolution will be reduced.

甲板カラー固体撮像素子において、4色補色配列と3色
補色配列が使用される。3色補色配列を持つ単板カラー
敞1体撮像素子が小さい輝度解像度を持つ欠点は隣接2
画素行の色画素を水平方向に1/2画素ピッチだけ変位
して配列し、そして1水平走査期間に隣接する2画素行
の信号゛電荷を独立に出力する技術(以下においてフレ
ー1、出力技術と略称される。)を採用するりfによっ
て解決される。甲板カラー固体撮像素子において、第1
の4色補色配列は奇(偶)数円素行がYe、G(W)を
交互に配列され、偶(奇)数円素行がCY、W (G 
)を交互に配列され、そして垂直方向に隣接する2画素
行の加算信号が近似的に輝度信号Y=’/c十cy=c
−+wになる補色配列である。例えば特開58−175
864に開示される第1の4色補色配列において、フレ
ーム出力技術が使用される。
In the deck color solid-state image sensor, a four-color complementary color array and a three-color complementary color array are used. The disadvantage of a single-chip color image sensor with a three-color complementary color array is that it has a small luminance resolution.
A technology in which the color pixels of a pixel row are arranged horizontally displaced by a 1/2 pixel pitch, and the signals and charges of two adjacent pixel rows are output independently in one horizontal scanning period (hereinafter referred to as Frame 1, output technology). ) or is solved by f. The first in deck color solid-state image sensors
In the four-color complementary color arrangement, the odd (even) numbered circular elementary rows are arranged alternately as Ye and G (W), and the even (odd) numbered circular elementary rows are arranged as CY, W (G
) are arranged alternately, and the added signals of two vertically adjacent pixel rows are approximately the luminance signal Y='/c+cy=c
This is a complementary color array with −+w. For example, JP 58-175
In the first four-color complementary color array disclosed in 864, a frame output technique is used.

第2の4色補色配列は奇(偶)yJi画素行がY e、
 Cyを交互に配列され、偶(奇)数円素行がG、Wを
交互に配列される補色配列である。例えば持分56−3
7756に開示される第2の4色補色配列において、フ
レー11出ツノ技術が使用される。第3の4色補色配列
は奇(偶)数円素行がYe、Cyを交−げに配列され、
偶(奇)数円素行がG、Wを交互に配列され、そして第
N画素行は第N@2画素行に対して水平方向に1画素ピ
ッヂ変位する補色配列である。例えば特開60−3’2
90に開示される第3の補色配列において、垂直方向に
隣接する2画素行の信号電荷が混合されて出力される。
In the second four-color complementary color array, odd (even) yJi pixel rows are Y e,
It is a complementary color arrangement in which Cy is arranged alternately, and even (odd) circular element rows are arranged alternately in G and W. For example, equity 56-3
In a second four-color complementary color arrangement disclosed in US Pat. In the third four-color complementary color arrangement, odd (even) numbered circular element rows are arranged with Ye and Cy alternating,
Even (odd) circular pixel rows are arranged alternately in G and W, and the Nth pixel row is a complementary color arrangement that is displaced by one pixel pitch in the horizontal direction with respect to the N@2 pixel row. For example, JP60-3'2
In the third complementary color array disclosed in No. 90, signal charges of two vertically adjacent pixel rows are mixed and output.

この信号出力技術はフィールド蓄積/1行出力技術と略
称される。従来の単管カラーまたは単板カラー撮像装置
において、撮像装置から出力される映像信号の低域成分
てあろ輝度信号Yと、I−記の周波数分離または位相分
離技術によ−)で上記の映像信号から分離された赤、1
1r信舅−の低域成分RL 、 BLからカラー1’ 
V信冒(例λぽY、1.Q、)か合成される。一般に、
1.記の輝度信号Yの低域成分Y LとF也り、 BL
から色差信シ」YえL−Y L、BL −Y Lが合成
され、そして輝度(八−”’+’Yと−上記の2種類の
色差信Uからカラー′r■信号が合成される。リニアリ
ティの良いカラー]゛■信号を出力する為に、−1′−
−゛  従来の撮像装置にお いて、上記のY、TえL 、 HLまたはY H、Y 
L 、 TI L 。
This signal output technique is abbreviated as field storage/single line output technique. In a conventional single-tube color or single-chip color imaging device, the above-mentioned image is obtained by using the low-frequency component of the video signal output from the imaging device, the luminance signal Y, and the frequency separation or phase separation technique described in I-). red isolated from traffic light, 1
1r Shinshu - low frequency components RL, BL to color 1'
V Shinfan (eg λPoY, 1.Q,) is synthesized. in general,
1. Low-frequency components YL and F of the luminance signal Y shown below, BL
The color difference signals 'YeL-Y L, BL -Y L are synthesized from the luminance signal (8-'+'Y and - from the above two types of color difference signals U), and the color 'r■ signal is synthesized from the above two types of color-difference signals U. .Color with good linearity] ゛■ To output a signal, -1'-
-゛ In conventional imaging devices, the above Y, T, L, HL or Y H, Y
L, TIL.

+31.がそれぞれガンマ補■−されていた。たたしY
ITは輝度信1号−Yの高域成分である。1.かし、こ
のガンマ補1[:、方式はR9に、B信シ)をそれぞA
1ガンマ補1■ニするガンマ補IO,方式に比較して、
誤差信号を発生するので、3管式撮像装置に比較1.て
輝度信号または色信シ」−のリニ)2リテイか悪い欠点
があった。この欠点を改善する為に、特開60−313
86と、’r’ v学会誌VOL、37.No I O
,773頁ど、+ 9841’ V学会全国大会予稿集
、98〔fは、赤、青、緑信号の低域成分■えL 、 
BL 、 G T、。
+31. were each subjected to gamma correction. Tatashi Y
IT is a high frequency component of luminance signal 1-Y. 1. However, this gamma compensation 1 [:, method is R9, B signal] is respectively A
Compared to the gamma correction IO method that uses 1 gamma correction and 2 gamma correction,
Since it generates an error signal, it is compared to a three-tube imaging device.1. However, there was a problem with the brightness signal or color signal. In order to improve this drawback, JP-A-60-313
86 and 'r' v academic journal VOL, 37. No I O
, 773 pages, + 9841' V Society National Conference Proceedings, 98 [f is the low-frequency component of red, blue, and green signals.
B.L., G.T.

を分離し、上記のRL 、 BL 、 G Lをガンマ
補正して補rlモ色信吟IえL’、BL’、GLoを作
り、1ユ記のRL’、+1 L’、G Loからガンマ
補rFされた輝度信号の低域成分YL’を合成し、そ1
.て上記のY L ’ 。
Separate and gamma correct the above RL, BL, GL to create complementary L', BL', GLo, and use the gamma from RL', +1 L', GLo in The low-frequency component YL' of the rF-compensated luminance signal is synthesized, and
.. YL' above.

IえL”、I3L’から2個の色差信号RL”−Y T
、 ’ 、 BL’−YL’を合成する事を開示する。
Two color difference signals RL"-YT from IEL" and I3L'
, ', BL'-YL' is disclosed.

このようにすれば、色信弓−のリニアリティが改善され
る。しかし、上記のりニアリティ改9%技術は色差信号
合成に使用されるYL’−0,3RL−0,59にL’
−10、I I Rr、゛と、広帯域輝度信号Yをガン
マ補正して作られた輝度信号Y°の低域成分Y ’ L
が異なる為に、再現される色信号の誤差が存在する欠点
を持つ。この欠点を改善する為に、特開60−3290
 L1分離されたYLJえり、 BLがらGI、 全合
成L、ソl、 テl−記)RL 、 BT、、 、 G
 Lをそれぞれガンマ補正してRL“、RL’、GL”
を作り、そしてに記のRL’、BL’、GL’がらYL
’を作り、そして上記のY L ’ 、 TI L ’
 、 +3 L ’がらガンマ補正輝度信号の低域成分
Y l、°と2種類の色差信号R■7′−YL’、l吃
L’−YL’を作る。そして特開6O−32QOは撮像
装置から出力される映像信号の低域成分である広帯域輝
度信5号Yの高域成分YTlと、1゛記のYL’、RL
’  YL’、RT、°−YI、。
In this way, the linearity of the bow can be improved. However, the above linearity improvement 9% technology has L'
−10, I I Rr, ゛, the low frequency component Y'L of the luminance signal Y° created by gamma-correcting the wideband luminance signal Y
This has the disadvantage that there is an error in the reproduced color signal because of the difference in color signals. In order to improve this drawback, JP-A-60-3290
L1 separated YLJ collar, BL Gara GI, total synthesis L, Sol, Tel-written) RL, BT, , , G
Gamma correct each L to RL", RL', GL"
and YL from RL', BL', GL' written in
', and the above YL', TIL'
, +3L', low-frequency components Yl,° of the gamma-corrected luminance signal and two types of color difference signals R7'-YL', L'-YL' are generated. JP-A-6O-32QO has the high-frequency component YTl of the broadband luminance signal No. 5 Y, which is the low-frequency component of the video signal output from the imaging device, and YL', RL of 1.
'YL', RT, °-YI,.

からカラー′I″V信けを合成する事と、エラン袖市の
為に分離されたR L 、B L 、G Lに上記の広
帯域輝度信号Yの高域成分Y 11を加算1−7た後で
、ガンマhfr lTを実施する事を開示する。
The high-frequency component Y11 of the above broadband luminance signal Y was added to R L , B L , and G L separated for Elan Sodeichi by 1-7. Later, we will disclose the implementation of gamma hfr IT.

本発明考によって出願された特出59−69836.1
06!197,168434,207729は本発明の
先行発明である。
Japanese Patent Application No. 59-69836.1 filed based on the present invention
06!197, 168434, and 207729 are prior inventions of the present invention.

発明の開示 (従来技術の問題点) に記の先行技術にも拘わらず、単管カラーまたはtlを
板ツノラー撮像装置から良いカラ−1゛v信吋を発生す
る為に、解決を必要とする問題がある。その第1の問題
は輝度信73− yの高域成分Y )(のリニアリティ
を改善する11である。従来、Y Hはガンマ補正され
た輝度信号Y゛の高域成分Y ’ IIを使用する。そ
の結果、再現される輝度信号Yの高域成分Y Hのリニ
アリティが悪かった。その第2の問題は従来の(n管カ
ラーまた(」中板ノノラー撮像装置が隣接する複数画素
行の信号を利用して輝度信号または色信号を合成するの
で、光の垂直相関が小さい時に、偽信号か発生する事て
あろ、。
DISCLOSURE OF THE INVENTION (Problems with the Prior Art) Despite the prior art described in the section, a solution is needed in order to generate a good color 1゛v signal from a single tube color or TL imager. There's a problem. The first problem is to improve the linearity of the high-frequency component Y of the luminance signal 73-y. Conventionally, YH uses the high-frequency component Y'II of the gamma-corrected luminance signal Y'. As a result, the linearity of the high-frequency component YH of the reproduced luminance signal Y was poor.The second problem is that the conventional (n-tube color or () middle plate non-color imaging device Since the luminance signal or color signal is synthesized using , false signals may occur when the vertical correlation of light is small.

(発明の目的) 本発明はこれらの問題を改善12、単管カラー−または
甲板カラー撮像装置の画質を改善する事を1−1的とす
る。I−記の[」的を達成する為に、2個の独1人クレ
ームが開示される。本発明の基本的な特徴が以下に説明
される。
(Objectives of the Invention) The present invention aims to solve these problems 1-1 by improving the image quality of a single-tube color or deck color imaging device. In order to achieve the object of paragraph I-, two individual claims are disclosed. The basic features of the invention are explained below.

(1)、少なくとも2秤類の補色信号(以Fにおいて、
補色信号は赤信号 青信号のどちらかまた(J両方と、
緑信吃を含む信号を指定ずろ。)を発生オる甲板または
単管カラー撮像装置から出ツノされる映像信号から少な
くとも光信シ」−の低域成分と前借吋の低域成分と緑信
号の低域成分を分離し、上記の3種類の色信号の低域成
分を別々にガンマ処理する撮像装置用信号処理回路にお
いて、 輝度信号の高域成分を所定の比率で上記の赤、青、緑信
号の低域成分にそれぞれ混合して、広帯域の赤、青、緑
信号を合成12、そ1.て−上記の広帯域の赤、青、緑
信号を別々にガンマ処理し7、モしてI−記のガンマ処
理された赤、占、緑信シ(た11を実質的に使用j2て
輝度信号よkはその高域成分を合成4−るlcを特徴と
する撮像装置の信1.H処理回路。
(1) Complementary color signals of at least two scales (hereinafter F,
Complementary color signals are either red or green (both J and
Please specify the traffic lights that include green lights. ), from the video signal output from the deck or single-tube color imaging device, at least the low-frequency components of the optical signal, the low-frequency components of the front signal, and the low-frequency components of the green signal are separated, and the above-mentioned In a signal processing circuit for an imaging device that separately gamma-processes the low-frequency components of three types of color signals, the high-frequency components of the luminance signal are mixed with the low-frequency components of the red, blue, and green signals at a predetermined ratio. and synthesize broadband red, blue, and green signals 12. Part 1. The broadband red, blue, and green signals described above are gamma-processed separately, and the gamma-processed red, blue, and green signals described in I-1 are substantially used to generate the luminance signal. Yok is a signal 1.H processing circuit of an image pickup device characterized by a 4-LC which synthesizes the high-frequency components.

(2)、 l−記の赤、青、緑信号の低域成分にそれぞ
れ輝度信号の高域成分を大体同し比率で混合して、−1
記の広帯域の3色信号を合成し、そして上記の広帯域の
3色信シ(をそれぞれガンマ処理し、そして上記のガン
マ処理された3色信吐だ1jを実質的に使用して輝度信
号よたはその高域成分を合成する事を特徴とする第1項
記載の撮像装置の信ぢ処理回路。
(2), by mixing the high frequency components of the luminance signal with the low frequency components of the red, blue, and green signals listed in l- in approximately the same ratio, -1
The wideband three color signals described above are synthesized, each of the wideband three color signals is subjected to gamma processing, and the gamma-processed three color signals 1j are substantially used to generate a luminance signal. 2. The signal processing circuit for an imaging device according to claim 1, characterized in that the signal processing circuit synthesizes a high-frequency component of the signal processing circuit or the high-frequency component thereof.

(3)、’l′I板カラー固体撮像素−【から出力され
る映像信号から各色画素信号を分離し、そして分離され
た各色画素信号かI)広帯域の輝度信号と広帯域の赤信
号と広帯域のピを信に1・を合成し、そして上記の広帯
域の輝度信に−と広帯域の赤信号ど広帯域の音信けから
広帯域の緑信ん・を分離し、そして)、記の広帯域の赤
、i″t、緑信号をそれぞれ別々にガンマ処理し、そし
てガンマ処理された1゛記の3魚信号だけを実質的に使
用して輝度信号またはその高域成分を合成する事を特徴
とする第1項記載の撮像装置の信号処理回路。
(3) Separate each color pixel signal from the video signal output from the 'l'I plate color solid-state image sensor, and separate each color pixel signal from the wideband luminance signal, wideband red signal, and wideband 1 to the above broadband luminance signal, and separate the broadband green signal from the broadband red signal, and ), the broadband red signal, and the broadband red signal. i't, the green signal are each gamma-processed separately, and the luminance signal or its high-frequency component is synthesized by substantially using only the gamma-processed three fish signals listed in item 1. A signal processing circuit for an imaging device according to item 1.

(4)、4色画素を備える撮像装置から出力される映像
信Uを処理する事を特徴とする第1、第2、第3項記載
の撮像装置の信8−処理回路。
(4) A signal 8-processing circuit for an imaging device according to any one of the first, second and third items, characterized in that it processes a video signal U output from an imaging device having four color pixels.

(5)、3色画素を備える単板カラー固体撮像素子から
出力される映像信号を処理する事を特徴とする第1、第
2、第3項記載の撮像装置の信号処理回路。
(5) A signal processing circuit for an imaging device according to any one of the first, second, and third items, characterized in that the signal processing circuit processes a video signal output from a single-plate color solid-state imaging device having three color pixels.

(6)、隣接する2画素行の信号電荷を1フイ一ルド期
間に混合してずたけ別々に出力し、そして光学低域フィ
ルタを備える単板カラー固体撮像装置において、 上記の光学低域フィルタは光を斜め方向に分光する1■
を特徴とする単板カラー固体撮像装置。
(6) In a single-chip color solid-state imaging device that mixes the signal charges of two adjacent pixel rows in one field period and outputs them separately, and is equipped with an optical low-pass filter, the above-mentioned optical low-pass filter splits light diagonally 1■
A single-chip color solid-state imaging device.

(7)、、I―記の光学低域フィルタは垂直方向に大体
1画素ピンチだけ離れ、そ(7て水平方向に大体1画素
ピンチまたは大体05画素ピッヂだけ離れた2個の分光
を発生する事を特徴とする第6項記載の単板カラー固体
撮像装置。
(7) The optical low-pass filter described in I-- generates two spectra that are approximately 1 pixel pinch apart in the vertical direction and (7) separated by approximately 1 pixel pinch or 0.5 pixel pitch in the horizontal direction. 7. The single-chip color solid-state imaging device according to item 6.

本発明の詳細な特徴と効果が以下に説明される、。Detailed features and advantages of the invention are described below.

クレーノ、1 従来の?11管カラーまたは中板カラー撮像装置から出
力される輝度信p3 y ’の高域成分Y’1l=(0
,3R罎0 59G−I O,I In)’tlは3管
プJメラから出力される輝度信号Y’lT −0、3R
’l140 。
Kureno, 1 Conventional? The high frequency component Y'1l of the luminance signal p3 y' output from the 11-tube color or medium-plate color imaging device = (0
,3R罎0 59G-I O,I In)'tl is the luminance signal Y'lT -0,3R output from the three-tube camera
'l140.

5 ’:J G’1T−1−0、] IIB’l−Tと
穎なる。ただし、上記のIIはその信号の高域成分を表
す。たとえば、Q’+管カラーまた(J単管カラー撮像
装置は音色光が人力される時にY’1l=(0、I I
 I()IIを発生し、赤色光か人力される時にY’1
l=(0,3R)’Hを出力する。3管カラーカメラは
同様にY’LI=0゜11 R’T1.Y’H−0、3
R’TIを出力する。に記のY 11の誤差は非常に大
きく、金色光W(Y=11・G・・B)が入力する時に
だけ、両者は一致する。
5': J G'1T-1-0, ] IIB'l-T. However, the above II represents the high frequency component of the signal. For example, Q'+tube color or (J single tube color imaging device has Y'1l=(0, I I
Generates I()II and Y'1 when red light or human power is applied.
Output l=(0,3R)'H. Similarly, for the three-tube color camera, Y'LI=0°11 R'T1. Y'H-0, 3
Output R'TI. The error in Y11 shown in 1 is very large, and only when the golden light W (Y=11.G..B) is input, the two coincide.

不発明番J上記の欠点を改善する為に、単管カラーまた
はIljl力板−撮像装置から出力される映像信2(か
ら赤信号の低域成分RL 、緑信号の低域成分G L 
、青信号の低域成分BLを分離し、そしてに記のRI、
 、 I(L 、 G Lに輝度信号の高域成分Y T
lを所定の割合で混合して、広帯域の3色信号R= R
L−14] XYI(、G=OL十に2 XYI−T、
R=BL十に3XYT−1を合成し、そし、て上記のR
,G、Bをそれぞれガンマ補正してR” 、 G ’ 
、 B’を作り、−1ニ記のTI”、G 、nから輝度
信号Y′の高域成分Y ’ TIを合成する事を特徴と
する。一般にY’TI=0.3■え°H+0.59G’
ll+0.I IR’llである。
In order to improve the above-mentioned drawbacks, a single-tube color or Iljl power plate-video signal 2 output from the image pickup device (from the low-frequency component RL of the red signal, the low-frequency component GL of the green signal
, separates the low frequency component BL of the green signal, and RI as described below,
, I(L, GL is the high frequency component of the luminance signal YT
1 at a predetermined ratio, a wideband three-color signal R=R
L-14] XYI(,G=OL102 XYI-T,
Synthesize 3XYT-1 to R=BL+, and then synthesize the above R
, G, and B are each gamma corrected to become R'', G'
, B', and synthesizes the high frequency component Y' TI of the luminance signal Y' from -1 TI'', G, and n.Generally, Y'TI=0.3°H+0 .59G'
ll+0. I IR'll.

このようにすれば単管カラーまたは単板カラー撮像装置
の輝度信号の高域成分Y ’ Hは3管カメラのY ’
 TIと非常に近似する。
In this way, the high-frequency component Y'H of the luminance signal of a single-tube color or single-chip color imaging device becomes Y' of a three-tube camera.
Very similar to TI.

クレーム2 クレーム1の好ましい1実施例において、RL 。Claim 2 In a preferred embodiment of claim 1, RL.

G L 、 B Lに大体等しいY T−1が混合され
る。このようにすれば、RI(= G I(= B H
が人力する3管カメラと同じカラー′r■信吟を出力で
きる。
Y T-1 approximately equal to G L and B L is mixed. In this way, RI(= GI(= B H
It can output the same color output as a human-powered three-tube camera.

クレーム3 クレーム1の好ましい1実施例において、単板カラー撮
像装置の各色画素信号から広帯域のR9c。
Claim 3 In a preferred embodiment of claim 1, broadband R9c is obtained from each color pixel signal of a single-chip color imaging device.

B信号が分離され、」−記の広帯域R,G、B信号をそ
れぞれガンマ補NE してY ’ Hが合成される。こ
のようにすればY″I4のリニアリティは殆ど3管カメ
ラと同じになる。この実施例の1態様において、広帯域
の輝度信シーシーYから広帯域のR1+(を減貌する事
によ−〕で、広帯域の緑信号Gか作られろ。
The B signal is separated, and Y'H is synthesized by gamma-correcting the broadband R, G, and B signals, respectively. In this way, the linearity of Y''I4 becomes almost the same as that of a three-tube camera.In one aspect of this embodiment, by reducing the wideband R1+(-) from the wideband luminance signal C Please create a broadband green signal G.

この実施例の他の態様において、+1′J−板カラー撮
像装置から出力される各色画素信号から直接に広帯域の
TI 、 G 、 B(、iんか分離さA1ろ、まただ
し1分離さイまたIえ、 G 、 II信シ−シ”から
作られろ輝度信″−ニーYは中板カラー撮像装置から直
接作られる輝度信号Yと実質的に同じである。
In another aspect of this embodiment, broadband TI, G, B (in or separated by A1, or by one minute apart from each color pixel signal output from the +1'J-plate color image pickup device) is obtained. Also, the luminance signal Y produced from the I, G, and II signals is substantially the same as the luminance signal Y produced directly from the intermediate color imager.

クレーム4 りlシーム1(J4色hli色配列を持つ単管カラーま
たは単板カラー撮像装置に使用できろ。
Claim 4: Can be used in a single-tube color or single-plate color imaging device with a 4-color hli color arrangement.

クレーL 5 クレームlは3色補色配列を持っ(11板力ラー固体撮
像素子に使用できる。
Clay L 5 Claim 1 has a three-color complementary color arrangement (can be used in 11-color solid-state image pickup devices).

クレーム〔i クレーlb I ij特に隣接する2画素行の信号型6
:jを混合してまたは独立に出力するjp板カラー固体
撮像素子に好適である。1.かし、I・記の甲板カラー
固体撮像素f−は隣接する2画素行が小さい垂直相関を
持つ時に、偽の輝度信号または色信号を発生する。本発
明CJこの欠点を改善ずろ為に、光学ローパスフィルタ
を斜めに配置する事を特徴とする。
Claim [i clay lb I ij especially signal type 6 of two adjacent pixel rows
: Suitable for a jp-plate color solid-state image sensor that outputs jp images mixedly or independently. 1. However, the deck color solid-state image sensor f- described in I. generates false luminance or color signals when two adjacent pixel rows have a small vertical correlation. In order to improve this drawback, the CJ of the present invention is characterized in that the optical low-pass filter is arranged diagonally.

この、Lうにすれば信シ」−光の水平方向の高域成分と
重置方向の重織成分を両方とも低減する事ができろ。従
来、この1」的の為にフィルタを2枚使月1する事が提
案されていたが、本発明によれば高価なフィルタを節約
できろ3、 クレー1.7 クレーム6の好ましい1実施例において、1.記のフィ
ルタは水平方向に人体1または05画素ピソヂ光を分光
し垂直方向に大体1画素ピッチ分)しする。このように
すればモワレは非常に低減される。
If you do this, it will be possible to reduce both the high frequency component in the horizontal direction and the heavy component in the superposition direction of the light. Conventionally, it has been proposed to use two filters for this purpose, but according to the present invention, expensive filters can be saved.3, Clay 1.7 Preferred embodiment of claim 6 In, 1. The filter described above separates the human body's 1 or 05 pixel pitch light in the horizontal direction, and separates the light by approximately 1 pixel pitch in the vertical direction. In this way, moiré is greatly reduced.

本発明の他の特徴と効果が以下の実施例によって説明さ
れる。
Other features and advantages of the invention are illustrated by the following examples.

発明を実施するための最良の形態 図1はクレーム1の1実施例を表す甲板カラー固体撮像
素子の信号処理回路である。jlil力板−固体撮像素
子から出力された映像信号(各色画素借り)から周知の
方法で、輝度信号Yと赤信号Rと青信号Bが分離される
。L P F I Rで分離されたY T、ど、L P
 P I Cで分離されたI也I7と、L P Ii”
IDで分離され八r(Lはマトリックス回路2によっご
G Lに変換される。低域フィルタL P Fはそれぞ
れ0.5MIIzの通過帯域を持つ。そ1.てBPF1
Δ(通過帯域0.5MHzから3. 2 M I−T 
Z)で分離されたY IIは加算回路3Δ、lB、3G
で上記のRL 、C1,、I(Lに混合される。そして
加算回路3A、31(,3Cから出力された広帯域色信
号R1G、+(はそれぞれガンマ補正回路4Δ、4B、
/ICでガンマ補正されてエンコーダー5に人力される
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a signal processing circuit for a deck color solid-state image pickup device representing one embodiment of claim 1. A luminance signal Y, a red signal R, and a blue signal B are separated by a well-known method from the video signal (borrowed from each color pixel) output from the solid-state image sensor. Y T, D, L P separated by L P F I R
Iya I7 separated by P I C and L P Ii”
ID is separated and 8 r (L is converted into GL by matrix circuit 2. Each of the low-pass filters L P F has a pass band of 0.5 MIIz.
Δ(pass band 0.5MHz to 3.2M I-T
Y II separated by Z) is an adder circuit 3Δ, 1B, 3G
Then, the broadband color signals R1G, +( outputted from the adder circuits 3A, 31(, 3C) are mixed into the above RL, C1, , I(L), respectively.
/IC performs gamma correction and inputs manually to encoder 5.

そしてエンコーダー5は輝度信号Y’−0,3R’−+
 0.59G’十〇、I In”と色差信号1’、Q’
またはR’−Y’、B’−Y’をLPF6A(3,2M
11z)とL P F f31(,6G(0、5MHz
)を介して出力する。図1において、ガンマ補正回路4
Δ、4B、4Cから出力されるG ’ 、R’ 、 T
3°をそれぞれ0゜5 M HZに帯域制限して色差信
号R’L−Y’L、R’L−Y’Lを作る事は可能であ
る31図1において、重要な事は上シー1−グー5に輝
度信号Yまたはその高域成分Y I−(またはそれらの
ガンマ補正信号Y’、Y’l+を全熱人力しないか事で
ある。勿論、1記の信シ(の非常に少ない部分を入力す
る事は実質的に本発明の要旨を変りjl−ない。即ち、
ガンマ補正回路3A、3R,3Gから出力されるガンマ
補正色信号R’ 、G ’ 、 13°からガンマ補正
輝度信+1− Y ’の高域成分Y ’ Hを合成する
事が本発明の基本的な特徴である。図2は本発明の他の
実施例を表す信号処理回路図である。li板カラー固体
撮像素子から出力される各色画素信号から広帯域の輝度
信舅−Yと広帯域の赤信号Rと広帯域の前借弓Bが分離
され、約3.2MHzの通過帯域を持つL P F I
A、I C,I Dによって帯域制限された上記のY。
And the encoder 5 outputs luminance signals Y'-0, 3R'-+
0.59G'10, I In'' and color difference signals 1', Q'
Or R'-Y', B'-Y' is LPF6A (3,2M
11z) and L P F f31(,6G(0,5MHz
). In FIG. 1, the gamma correction circuit 4
G', R', T output from Δ, 4B, 4C
It is possible to create color difference signals R'L-Y'L and R'L-Y'L by band-limiting each 3° to 0°5 MHz. - The problem is that the luminance signal Y or its high-frequency component YI- (or their gamma correction signals Y', Y'l+) cannot be input manually to Goo-5. Inputting the part does not substantially change the gist of the present invention, i.e.,
The basic principle of the present invention is to synthesize the high-frequency component Y'H of the gamma-corrected luminance signal +1-Y' from the gamma-corrected color signals R', G', and 13° output from the gamma correction circuits 3A, 3R, and 3G. It is a characteristic. FIG. 2 is a signal processing circuit diagram representing another embodiment of the present invention. A wide-band luminance signal Y, a wide-band red signal R, and a wide-band front bow B are separated from each color pixel signal output from the Li plate color solid-state image sensor, and the LPF has a passband of about 3.2 MHz. I
The above Y is band-limited by A, I C, and I D.

R,!3はマトリックス回路2で広帯域緑信号Gに変換
される。モして上記のR,G、B信シ(はそれぞれガン
マ補正回路4Δ、4B、4Cでガンマ補11:さイまた
後でエンコーダー5に入力される。そしてエンコーダー
5から出力されるY’、T’、Q’はそれぞれL P 
F 6Δ(32Ml−1z)、LPP6B、6C(0,
5MHz)を介して出力される。ごの実施例において、
G ’ 、R’ 、R’の高域成分はモワレ成分を含む
が、各色信号のモワレ成分が相殺するので、上記のG’
H,R’H,B″IIから合成されるY ’ TIのモ
ワレ成分は小ざい。なお、図2のL P F IA、I
C2I Dを省略する事は可能である。他の実施例にお
いて、固体撮像素子から出力される各色画素配列図″か
ら直接広帯域緑信号を合成する事ができろ。
R,! 3 is converted into a broadband green signal G by a matrix circuit 2. Then, the above R, G, and B signals (are gamma compensated by gamma correction circuits 4Δ, 4B, and 4C, respectively).Then, they are input to the encoder 5 later.Then, Y' output from the encoder 5, T' and Q' are each L P
F 6Δ(32Ml-1z), LPP6B, 6C(0,
5MHz). In this example,
The high-frequency components of G', R', and R' include moire components, but the moire components of each color signal cancel each other out, so the above G'
The moire component of Y' TI synthesized from H, R'H, B''II is small.
It is possible to omit C2ID. In another embodiment, it is possible to directly synthesize a broadband green signal from each color pixel array map output from a solid-state image sensor.

この実施例においても、各色信号の高域成分はモワレを
持つが、それらの色信号から合成された輝度信けの高域
成分Y T−rのモ1ルは小さくなる3、図3と図4は
それぞれ本発明の甲板カラー固体撮像素子に好適な4色
補色配列の1実施例てあり、1水平走杏期間に隣接2画
素行が並列に出力され、各色画素信号はスイッチまたは
サンプルボールド回路で分離される。また周波数分離も
可能である。
In this embodiment as well, the high-frequency components of each color signal have moire, but the mole of the high-frequency component YTr of the luminance signal synthesized from these color signals is small. 4 is an example of a four-color complementary color arrangement suitable for the deck color solid-state image sensor of the present invention, in which two adjacent pixel rows are output in parallel during one horizontal scanning period, and each color pixel signal is transmitted through a switch or a sample bold circuit. separated by Frequency separation is also possible.

また、同じ色画素部す゛をそれぞれL P I”で帯域
制限してから色分離用加減算を実施する!1丁もできろ
Also, perform addition/subtraction for color separation after band-limiting each pixel portion of the same color using LPI.

この場合も、モワレは相殺される。図5は本発明のQi
板カラー固体撮像素子に好適な4色補色配列の他の実施
例である。隣接2画素行の(ffiけ電荷は混合されて
出力される。図6は本発明の単板カラー固体撮像素子に
好適な3色補色配列を表す。I水さ1′定走査間に隣接
°4−ろ2画素行の信「)−電荷か・■列に出力される
。図7はクレーム6を説明する甲板カラーカメラの1実
施例断面図である。レンズ7と水晶フィルタ8と赤外線
フィルタ9を介1.て固体撮像素子10に信号光11が
人力さイする35図8(Jl−記の4色補色配列を持つ
固体撮像素子IOの部分゛[′−而面てあり、1記のフ
ィルタ8で分光された信号光11は水ζ■4、垂直方向
に隣接するC斜め方向に隣接する)2色画素に人力する
In this case as well, the moire is offset. Figure 5 shows the Qi of the present invention.
This is another example of a four-color complementary color arrangement suitable for a plate color solid-state image sensor. The (ffi) charges of two adjacent pixel rows are mixed and output. FIG. 6 shows a three-color complementary color arrangement suitable for the single-chip color solid-state image sensor of the present invention. The signal in the 4-row 2 pixel row is output to the ``)-charge'' column. Fig. 7 is a cross-sectional view of one embodiment of a deck color camera explaining claim 6. A lens 7, a crystal filter 8, and an infrared filter The signal light 11 is manually applied to the solid-state image sensor 10 via 1.9. The signal light 11 separated by the filter 8 is applied to two-color pixels (4, vertically adjacent C and diagonally adjacent).

【図面の簡単な説明】[Brief explanation of drawings]

図1と図2はそれぞイ1本発明の1実施例を表す信シシ
゛処理回路図であろ3、図3と図4と図5と図6とは本
発明に好適な甲板カラー固体撮像素子の補色配列を配列
を表す色画素配列図である。図7は周知の111板カラ
ーカメラの1実施例断面図である。 図8(」図7の甲板カラー固体撮像素子の色画素配ト 
      ビ   頃
1 and 2 are respectively communication processing circuit diagrams representing one embodiment of the present invention. 3, 3, 4, 5, and 6 are diagrams of a deck color solid-state image sensor suitable for the present invention. FIG. 2 is a color pixel array diagram showing a complementary color array of FIG. FIG. 7 is a sectional view of one embodiment of a known 111-plate color camera. Figure 8 ("Color pixel distribution of the deck color solid-state image sensor in Figure 7)
B around the time

Claims (7)

【特許請求の範囲】[Claims] (1)、少なくとも2種類の補色信号(以下において、
補色信号は赤信号と青信号のどちらかまたは両方と、緑
信号を含む信号を指定する。)を発生する単板または単
管カラー撮像装置から出力される映像信号から少なくと
も赤信号の低域成分と青信号の低域成分と緑信号の低域
成分を分離し、上記の3種類の色信号の低域成分を別々
にガンマ処理する撮像装置用信号処理回路において、 輝度信号の高域成分を所定の比率で上記の赤、青、緑信
号の低域成分にそれぞれ混合して、広帯域の赤、青、緑
信号を合成し、そして上記の広帯域の赤、青、緑信号を
別々にガンマ処理し、そして上記のガンマ処理された赤
、青、緑信号だけを実質的に使用して輝度信号またはそ
の高域成分を合成する事を特徴とする撮像装置の信号処
理回路。
(1), at least two types of complementary color signals (in the following,
The complementary color signal specifies a signal that includes either a red signal, a blue signal, or both, and a green signal. ) is used to separate at least the low-frequency components of the red signal, the low-frequency components of the blue signal, and the low-frequency components of the green signal from the video signal output from the single-chip or single-tube color imaging device that generates the above three types of color signals. In a signal processing circuit for an imaging device that separately gamma-processes the low-frequency components of the luminance signal, the high-frequency components of the luminance signal are mixed with the low-frequency components of the red, blue, and green signals at a predetermined ratio, and a wideband red signal is generated. , synthesize the blue and green signals, and gamma-process the broadband red, blue, and green signals separately, and use virtually only the gamma-processed red, blue, and green signals to generate the luminance signal. Or a signal processing circuit for an imaging device, which is characterized by synthesizing the high-frequency components thereof.
(2)、上記の赤、青、緑信号の低域成分にそれぞれ輝
度信号の高域成分を大体同じ比率で混合して、上記の広
帯域の3色信号を合成し、そして上記の広帯域の3色信
号をそれぞれガンマ処理し、そして上記のガンマ処理さ
れた3色信号だけを実質的に使用して輝度信号またはそ
の高域成分を合成する事を特徴とする第1項記載の撮像
装置の信号処理回路。
(2) Mix the high-frequency components of the luminance signal with the low-frequency components of the red, blue, and green signals in roughly the same proportions to synthesize the three wide-band color signals, and then synthesize the three wide-band color signals. The signal of the imaging device according to item 1, characterized in that each color signal is gamma-processed, and the luminance signal or its high-frequency component is synthesized by substantially using only the gamma-processed three color signals. processing circuit.
(3)、単板カラー固体撮像素子から出力される映像信
号から各色画素信号を分離し、そして分離された各色画
素信号から広帯域の輝度信号と広帯域の赤信号と広帯域
の青信号を合成し、そして上記の広帯域の輝度信号と広
帯域の赤信号と広帯域の青信号から広帯域の緑信号を分
離し、そして上記の広帯域の赤、青、緑信号をそれぞれ
別々にガンマ処理し、そしてガンマ処理された上記の3
色信号だけを実質的に使用して輝度信号またはその高域
成分を合成する事を特徴とする第1項記載の撮像装置の
信号処理回路。
(3) Separate each color pixel signal from the video signal output from the single-chip color solid-state image sensor, and synthesize a wideband luminance signal, a wideband red signal, and a wideband blue signal from each separated color pixel signal, and Separate a broadband green signal from the broadband luminance signal, broadband red signal, and broadband blue signal, and gamma-process the broadband red, blue, and green signals separately, and 3
2. The signal processing circuit for an imaging device according to claim 1, wherein the signal processing circuit for an image pickup device is configured to synthesize a luminance signal or its high-frequency component by substantially using only a color signal.
(4)、4色画素を備える撮像装置から出力される映像
信号を処理する事を特徴とする第1、第2、第3項記載
の撮像装置の信号処理回路。
(4) A signal processing circuit for an imaging device according to any one of the first, second, and third items, characterized in that the signal processing circuit processes a video signal output from an imaging device having four color pixels.
(5)、3色画素を備える単板カラー固体撮像素子がら
出力される映像信号を処理する事を特徴とする第1、第
2、第3項記載の撮像装置の信号処理回路。
(5) A signal processing circuit for an imaging device according to any one of the first, second, and third items, characterized in that the signal processing circuit processes a video signal output from a single-plate color solid-state imaging device having three color pixels.
(6)、隣接する2画素行の信号電荷を1フィールド期
間に混合してまたは別々に出力し、そして光学低域フィ
ルタを備える単板カラー固体撮像装置において、 上記の光学低域フィルタは光を斜め方向に分光する事を
特徴とする単板カラー固体撮像装置。
(6) In a single-chip color solid-state imaging device that outputs the signal charges of two adjacent pixel rows together or separately in one field period, and is equipped with an optical low-pass filter, the above-mentioned optical low-pass filter filters light. A single-chip color solid-state imaging device that is characterized by dispersing light in diagonal directions.
(7)、上記の光学低域フィルタは垂直方向に大体1画
素ピッチだけ離れ、そして水平方向に大体1画素ピッチ
または大体0.5画素ピッチだけ離れた2個の分光を発
生する事を特徴とする第6項記載の単板カラー固体撮像
装置。
(7) The above optical low-pass filter is characterized in that it generates two spectral lights that are vertically separated by about one pixel pitch and horizontally separated by about one pixel pitch or about 0.5 pixel pitch. 7. The single-chip color solid-state imaging device according to claim 6.
JP60063088A 1985-03-26 1985-03-26 Signal processing circuit for image pickup device Pending JPS61220581A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60063088A JPS61220581A (en) 1985-03-26 1985-03-26 Signal processing circuit for image pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60063088A JPS61220581A (en) 1985-03-26 1985-03-26 Signal processing circuit for image pickup device

Publications (1)

Publication Number Publication Date
JPS61220581A true JPS61220581A (en) 1986-09-30

Family

ID=13219217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60063088A Pending JPS61220581A (en) 1985-03-26 1985-03-26 Signal processing circuit for image pickup device

Country Status (1)

Country Link
JP (1) JPS61220581A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5208661A (en) * 1991-02-01 1993-05-04 U.S. Philips Corporation Color picture display device and color camera
JP2011166547A (en) * 2010-02-10 2011-08-25 Nippon Hoso Kyokai <Nhk> Video signal transmitting device and transmission video signal generating program, video signal receiving device and transmission video signal converting program, and video signal transmitting system
JP2011171801A (en) * 2010-02-16 2011-09-01 Nippon Hoso Kyokai <Nhk> Apparatus and program for converting transmission signal, and apparatus and program for converting reception signal

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5208661A (en) * 1991-02-01 1993-05-04 U.S. Philips Corporation Color picture display device and color camera
JP2011166547A (en) * 2010-02-10 2011-08-25 Nippon Hoso Kyokai <Nhk> Video signal transmitting device and transmission video signal generating program, video signal receiving device and transmission video signal converting program, and video signal transmitting system
JP2011171801A (en) * 2010-02-16 2011-09-01 Nippon Hoso Kyokai <Nhk> Apparatus and program for converting transmission signal, and apparatus and program for converting reception signal

Similar Documents

Publication Publication Date Title
US7973831B2 (en) Solid-state image sensor and imaging apparatus using the same
JPH0352276B2 (en)
US4642677A (en) Color TV camera with plural solid state imaging devices mutually horizontally displaced and associated filters of vertically-oriented color stripes
US7688362B2 (en) Single sensor processing to obtain high resolution color component signals
JPH03139084A (en) Solid-state color image pickup device
JPS61220581A (en) Signal processing circuit for image pickup device
JPS631276A (en) Color image pickup device
JPS58100590A (en) Synthesis method for sampling output
JPH0488784A (en) Color image pickup element and signal processing system
JPS62190993A (en) Solid-state image pickup device
JPH09116913A (en) Color filter array and video signal processing circuit
JPS6351437B2 (en)
JPH0374991A (en) Drive method for solid-state image pickup device
JPH089395A (en) Color image pickup device
JP2635545B2 (en) Solid-state imaging device
JP3049434B2 (en) Color imaging device
JPS6362493A (en) Solid state image pickup device
JPS58101584A (en) Image pickup signal processing circuit in solid-state color image pickup device
JP3018612B2 (en) Single-chip color camera and color signal processing circuit used therefor
JPS62226789A (en) Solid-state color image pickup device
JP2655436B2 (en) Color solid-state imaging device
JPH04223689A (en) Chrominance signal processing circuit for single plate color camera with solid-state image pickup element
JPH05244610A (en) Method and device for solid-state color image pickup
JPH0572796B2 (en)
JPH05236492A (en) Color video camera