JP2002354492A - Multi-lens and multi-ccd type image pickup device - Google Patents

Multi-lens and multi-ccd type image pickup device

Info

Publication number
JP2002354492A
JP2002354492A JP2001157057A JP2001157057A JP2002354492A JP 2002354492 A JP2002354492 A JP 2002354492A JP 2001157057 A JP2001157057 A JP 2001157057A JP 2001157057 A JP2001157057 A JP 2001157057A JP 2002354492 A JP2002354492 A JP 2002354492A
Authority
JP
Japan
Prior art keywords
image pickup
pixels
signal
pickup device
imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001157057A
Other languages
Japanese (ja)
Inventor
Yukihiro Adachi
幸弘 安達
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2001157057A priority Critical patent/JP2002354492A/en
Publication of JP2002354492A publication Critical patent/JP2002354492A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Color Television Image Signal Generators (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a multi-lens and multi-CCD type image pickup device capable of realizing improvement of the performance of the whole image pickup device and a reduction in the cost. SOLUTION: The multi-lens and multi-CCD type image pickup device is provided with image pickup elements 4, 5, 6 for R, G, B each having a light- receiving surface of the same size and processing circuits 7, 8, 9 therefor. The number of pixels of the image pickup element 6 for B is reduced compared to the number of pixels of image pickup elements 4, 5 for R, G. Conventionally, a gain of a processing circuit of a B channel is much larger than that of a G channel, and this causes the deterioration in the S/N(signal to noise) ratio of a chroma signal. However, in the above-mentioned constitution, since the sensitivity of the image pickup element for B is larger than those of image pickup elements of R and G, the gain of the processing circuit of B can be made to be small, thereby improving the S/N ratio of the chroma signal.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、撮影光学系および
撮像素子を複数持つ多眼多板式撮像装置に関し、特にそ
の性能の向上とコストダウンに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multi-lens, multi-plate type image pickup apparatus having a plurality of photographing optical systems and image pickup elements, and more particularly to improvement of performance and cost reduction.

【0002】[0002]

【従来の技術】図5は従来の多眼多板式撮像装置の構成
を示すブロック図であり、その構成の大半が図1に示す
実施例と同様であるので差異のある部分のみ説明する。
2. Description of the Related Art FIG. 5 is a block diagram showing the configuration of a conventional multi-view, multi-plate type imaging apparatus. Most of the configuration is the same as that of the embodiment shown in FIG.

【0003】青(B)チャンネル用撮像素子6は他の赤
(R),緑(G)チャネル用差撮像素子と同様の仕様を
持つ同一品である。またTG23からの駆動パルス34
は各チャンネル全て同一のものが各々の撮像素素子(C
CD)に供給される。輪郭補正信号発生回路51には
R,G,Bの3信号が入力され、映像信号において画像
の精細部を構成する輪郭補正信号が生成される。
The blue (B) channel imaging device 6 is the same product having the same specifications as the other red (R) and green (G) channel difference imaging devices. Also, the drive pulse 34 from the TG 23
Is the same for each channel and the same for each imaging element (C
CD). The R, G, and B signals are input to the contour correction signal generation circuit 51, and a contour correction signal that constitutes a fine detail of an image in the video signal is generated.

【0004】図6は前述の従来例における各チャンネル
の周波数特性を示す図であって、この場合、各チャンネ
ルの増幅ブロック7,8,9からの出力信号24,2
5、26において各チャンネルの周波数特性は同一であ
る。
FIG. 6 is a diagram showing the frequency characteristics of each channel in the above-mentioned conventional example. In this case, output signals 24, 2 from the amplifying blocks 7, 8, 9 of each channel are shown.
5 and 26, the frequency characteristics of each channel are the same.

【0005】図7は一般的な3板カメラ各色間の信号処
理回路トータルゲイン差の一例を示す図であり、Bチャ
ンネルのゲインは、Gチャネルの12dB(4倍)と非
常に大きく、これが主としてクロマ信号のS/N(信号
対雑音)比の悪化に大きく影響している。
FIG. 7 is a diagram showing an example of a signal processing circuit total gain difference between colors of a general three-panel camera. The gain of the B channel is as large as 12 dB (4 times) of the G channel, and this is mainly the case. This greatly affects the deterioration of the S / N (signal to noise) ratio of the chroma signal.

【0006】[0006]

【発明が解決しようとする課題】前述の従来例、すなわ
ち、各撮像素子に同様の仕様のものを使用した場合、通
常青(B)チャンネルは分光透過率が小さく、すなわち
S/N比が悪くなる傾向にあり、それが出力信号に影響
を及ぼし、色信号及び輝度信号のS/N比劣化の一因と
なっている。
In the case of the above-mentioned conventional example, that is, when the same specification is used for each image sensor, the blue (B) channel usually has a small spectral transmittance, that is, a poor S / N ratio. This has an effect on the output signal and contributes to the deterioration of the S / N ratio of the chrominance signal and the luminance signal.

【0007】一方で撮像素子は、一般的に撮像装置にお
いて最も高価な部品の一つであり、多板式の撮像装置は
高コストすなわち製品として高価になるため、撮像素子
のコストダウンは大きな命題である。
On the other hand, the image pickup device is generally one of the most expensive components in the image pickup device, and the cost reduction of the image pickup device is a great proposition because the multi-plate type image pickup device is expensive and therefore expensive as a product. is there.

【0008】本発明は、このような状況のもとでなされ
たもので、撮像装置全体の性能の向上とコストダウンを
実現することのできる多眼多板式撮像装置を提供するこ
とを目的とするものである。
The present invention has been made under such circumstances, and it is an object of the present invention to provide a multi-lens, multi-plate imaging apparatus capable of improving the performance of the entire imaging apparatus and reducing the cost. Things.

【0009】[0009]

【課題を解決するための手段】前記目的を達成するた
め、本発明では、多眼多板式撮像装置を次ぎの(1)な
いし(4)のとおりに構成する。
In order to achieve the above object, according to the present invention, a multi-view, multi-plate type imaging apparatus is configured as in the following (1) to (4).

【0010】(1)被写体からの光を集光する複数の撮
影光学系と、前記複数の撮影光学系の各々に対応する、
光の三原色またはその補色の複数のフィルタ及び受光面
サイズが略同一の複数の撮像素子と、前記複数の撮像素
子の出力信号の処理回路と、を備え、前記複数の撮像素
子における1つ以上の撮像素子の画素数が他の撮像素子
の画素数より少ないことを特徴とする多眼多板式撮像装
置。
(1) A plurality of photographing optical systems for condensing light from a subject, and each of the plurality of photographing optical systems corresponds to the plurality of photographing optical systems.
A plurality of image sensors having substantially the same size and a plurality of filters of the three primary colors of light or their complementary colors, and a processing circuit for output signals of the plurality of image sensors; and one or more of the plurality of image sensors A multi-view multi-panel imaging apparatus, wherein the number of pixels of an imaging element is smaller than the number of pixels of another imaging element.

【0011】(2)前記(1)記載の多眼多板式撮像装
置において、画素数が他の撮像素子の画素数より少ない
撮像素子におけるサンプリング周波数の仕様を前記他の
撮像素子におけるそれの整数分の整数とした多眼多板式
撮像装置。
(2) In the multi-lens, multi-plate type imaging apparatus according to the above (1), the specification of the sampling frequency in the imaging element having a smaller number of pixels than the number of pixels of the other imaging element is set to the integer number of the other imaging elements. A multi-lens, multi-plate imaging device with an integer of

【0012】(3)前記(1)または(2)記載の多眼多
板式撮像装置において、青用撮像素子の画素数が赤用お
よび緑用の撮像素子の画素数より少ないことを特徴とす
る多眼多板式撮像装置。
(3) In the multi-view multi-panel imaging device according to the above (1) or (2), the number of pixels of the blue imaging device is smaller than the number of pixels of the red and green imaging devices. Multi-eye multi-plate imaging device.

【0013】(4)前記(3)記載の多眼多板式撮像装
置において、輪郭補正信号を生成する輪郭補正信号発生
回路は、赤,緑の2信号を入力し輪郭補正信号を生成す
ることを特徴とする多眼多板式撮像装置。
(4) In the multi-view multi-chip type imaging apparatus according to (3), the contour correction signal generating circuit for generating a contour correction signal receives two red and green signals and generates a contour correction signal. Characteristic multi-view multi-plate imaging device.

【0014】[0014]

【発明の実施の形態】以下、本発明の実施の形態をビデ
オカメラの実施例により詳しく説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below in detail with reference to examples of a video camera.

【0015】[0015]

【実施例】図2は、実施例である“ビデオカメラ”の基
本となる多眼多板式撮像装置の概念図であり、この撮像
装置は被写体からの光は平行光すなわち被写体は距離無
限遠が基本的には前提(近距離では各光学系の視差が問
題になる)である。
FIG. 2 is a conceptual diagram of a multi-view, multi-plate type imaging apparatus which is the basis of a "video camera" according to an embodiment. In this imaging apparatus, light from a subject is parallel light, that is, the subject has an infinite distance. Basically, it is a premise (parallax of each optical system becomes a problem at a short distance).

【0016】被写体よりの光は赤(R)用レンズ2,緑
(G)用レンズ32,青(B)用レンズ33に入り、各
々がRフィルタ29,Gフィルタ30,Bフィルタ31
により各帯域光を選択し、その後は撮像素子4,5,6
により電気信号に変換し、各色信号R24,G25,B
26を得るというものである。
Light from the subject enters a red (R) lens 2, a green (G) lens 32, and a blue (B) lens 33, each of which is an R filter 29, a G filter 30, and a B filter 31.
To select each band light, and thereafter, the image pickup devices 4, 5, 6
To each of the color signals R24, G25, B
26.

【0017】この場合、撮影光学系(以下光学系と略記
する)は各色ごとに必要となるが、反面各原色光のみを
通過させればいいので、色収差については考慮すること
が無く簡素化が可能となる。また本発明を適用すること
により、画素数の少ない撮像素子に対応する光学系に関
しては、更に解像度を中心とした簡素化,コストダウン
が可能である。
In this case, a photographing optical system (hereinafter abbreviated as an optical system) is required for each color. However, since only the primary color light beams need to be passed, simplification can be achieved without considering chromatic aberration. It becomes possible. Further, by applying the present invention, it is possible to further simplify and reduce the cost of an optical system corresponding to an image pickup device having a small number of pixels, mainly in terms of resolution.

【0018】次に、この多眼多板撮像方式を採用した本
実施例のビデオカメラを説明する。
Next, a description will be given of a video camera of this embodiment which employs this multi-lens, multi-plate imaging system.

【0019】図1は、本実施例のビデオカメラの構成を
示すブロック図である。図1において、1は撮像すべき
被写体からの光を示し、その光は2,32,33の各々
の光学系(レンズ)に入り、そのあと各々が光の3原
色、赤,緑,青(以下R,G,Bと略記することもあ
る)の色フィルタ29,30,31により各成分のみが
抽出される。
FIG. 1 is a block diagram showing the configuration of the video camera of the present embodiment. In FIG. 1, reference numeral 1 denotes light from a subject to be imaged, and the light enters respective optical systems (lenses) 2, 32, and 33, and then each of the three primary colors of light, red, green, and blue ( Hereinafter, these components may be abbreviated as R, G, and B).

【0020】次に各3原色は、各々が撮像素子4,5,
6に入り、電気信号に変換される。そして各撮像素子か
らの電気信号は各々が増幅回路7,8,9に入力され、
所定の増幅率で信号の振幅を拡大する。
Next, each of the three primary colors is an image sensor 4, 5,
6 and is converted into an electric signal. Then, the electric signals from the respective image sensors are input to the amplifier circuits 7, 8, and 9,
The amplitude of the signal is expanded at a predetermined amplification factor.

【0021】次に各色の出力の内、輝度信号マトリクス
回路10には全ての色の信号が入力され、NTSC方式
の信号の場合にはよく知られているように下記の割合で
輝度信号が合成される。
Next, among the outputs of the respective colors, the signals of all the colors are input to the luminance signal matrix circuit 10, and in the case of the signal of the NTSC system, the luminance signals are synthesized at the following ratios as well known. Is done.

【0022】 Y=0.30R+0.59G+0.11B 帯域4.2MHz ……… Y:輝度信号、R:R(赤)信号、G:G(緑)信号、
B:B(青)信号 また、輪郭補正信号発生回路11にはR,Gの2信号が
入力され、映像信号において画像の精細部を構成する輪
郭補正信号が生成される。
Y = 0.30R + 0.59G + 0.11B Band 4.2 MHz Y: Luminance signal, R: R (red) signal, G: G (green) signal,
B: B (blue) signal In addition, two signals of R and G are input to the contour correction signal generation circuit 11, and a contour correction signal constituting a fine detail of an image in a video signal is generated.

【0023】ところで、この輪郭補正信号発生回路11
にはBの信号が入力されていないが、Bの信号は通常、
ノイズが多く、また輝度信号の構成比において前記式
で示されるように全体に対して約1/10であり、これ
を略しても画質にはほとんど影響が無く、また一方でノ
イズが増える弊害も改善されるためである。
Incidentally, the contour correction signal generation circuit 11
Does not receive the signal of B, but the signal of B is usually
There is a lot of noise, and the composition ratio of the luminance signal is about 1/10 of the whole as shown in the above equation. Even if this is omitted, there is almost no effect on the image quality, and on the other hand, there is also a problem that the noise increases. This is to be improved.

【0024】輝度信号マトリクス回路10で合成された
輝度信号と、輪郭補正信号発生回路11で発生した輪郭
補正信号は加算回路12により加算され、輝度信号処理
回路13に入り、ガンマ,ニー,ホワイトクリップなど
の処理を受け、Y(輝度)信号14となり出力される。
The luminance signal synthesized by the luminance signal matrix circuit 10 and the contour correction signal generated by the contour correction signal generation circuit 11 are added by an addition circuit 12 and input to a luminance signal processing circuit 13 for gamma, knee, and white clipping. And the like, a Y (luminance) signal 14 is output.

【0025】一方、R,G,Bの各信号は色差信号マト
リクス15に入力され、以下の式により、I信号21と
Q信号22が作られる。
On the other hand, the R, G, and B signals are input to the color difference signal matrix 15, and an I signal 21 and a Q signal 22 are formed by the following equations.

【0026】 I=−0.27(B−Y)+0.74(R−Y) 帯域1.3MHz ……… Q=0.41(B−Y)+0.48(R−Y) 帯域0.5MHz ……… そしてこれらの信号は各々が帯域制限用のローパスフィ
ルタ(LPF)27及び28を通過した後カラーエンコ
ーダ16にサブキャリア17と共に入力され、各色差信
号によりサブキャリアを直角2相変調し、クロマ(C)
信号18として出力される。
I = −0.27 (BY) +0.74 (RY) Band 1.3 MHz Q = 0.41 (BY) +0.48 (RY) Band 0. 5 MHz Each of these signals passes through low-pass filters (LPFs) 27 and 28 for band limiting, and is then input to the color encoder 16 together with the subcarrier 17, and quadrature-modulates the subcarrier with each color difference signal. , Chroma (C)
Output as signal 18.

【0027】なお、以上の図1で示したものはあくまで
本発明を説明するための基本的なブロック図であって、
実際の製品においては、レンズと各色フィルタの間には
絞りが挿入され、前記増幅回路7,8,9は増幅率が可
変でき、これらは別途設けられるマイクロプロセッサに
より制御されることが多い。
It should be noted that what is shown in FIG. 1 is only a basic block diagram for explaining the present invention,
In an actual product, an aperture is inserted between the lens and each color filter, and the amplification factors of the amplification circuits 7, 8, and 9 can be varied, and these are often controlled by a separately provided microprocessor.

【0028】また、前記実施例は、Y(輝度)とC(ク
ロマ)とに分離して出力されるが、これはS端子出力を
前提としたものであり、コンポジット信号は別途これら
の2信号の加算回路を付加することにより得る事ができ
る。
In the above-described embodiment, the signals are output separately from Y (luminance) and C (chroma). This is based on the assumption that the S terminal is output. Can be obtained by adding an adder circuit.

【0029】ここで、この実施例の要点は、撮像素子を
R用及びG用と、B用とで異なる画素数とすることにあ
る。1例として、R及びGの撮像素子を、実効38万画
素のものを使用した場合、Bに実効25万画素のものを
使用した場合を考える。
The essential point of this embodiment is that the number of pixels of the image pickup device is different for R, G, and B. As an example, consider a case where the R and G image sensors have an effective pixel of 380,000 pixels, and a case where B has an effective pixel of 250,000 pixels.

【0030】図3は、同一受光サイズで画素数の異なる
CCD間の比較の一例であって、感度は、25万画素の
CCDは38万画素のCCDと比較して1.5倍すなわ
ち約3デシベル高い、すなわち約3デシベルのノイズレ
ベル改善が可能である。これは撮像素子特にCCDは、
同じ受光サイズならば画素数が少なければ少ないほど、
光電変換した電荷の転送用回路等が簡単になり、PD
(フォトダイオード)の面積がその分増大し、結果的に
いわゆる開口率が高くなり、当然感度は向上するためで
ある。また画素数が多ければ微細加工が要求され、回路
が複雑になることから当然コストもアップする。
FIG. 3 shows an example of comparison between CCDs having the same light receiving size and different numbers of pixels. The sensitivity of a 250,000-pixel CCD is 1.5 times that of a 380,000-pixel CCD, that is, about 3 times. A noise level improvement of a decibel high, ie about 3 dB, is possible. This is because the image sensor, especially the CCD,
For the same light receiving size, the smaller the number of pixels, the more
The circuit for transferring the photoelectrically converted charge is simplified, and the PD
This is because the area of the (photodiode) increases accordingly, and as a result, the so-called aperture ratio increases, and the sensitivity naturally increases. Also, if the number of pixels is large, fine processing is required, and the circuit becomes complicated, so that the cost naturally increases.

【0031】また図4は、同サイズで画素数の異なる撮
像素子を使用した場合の出力信号の周波数特性の差異を
説明する図で、Bチャンネルに低画素数撮像素子を使用
した場合は当然周波数特性は他チャンネルと異なり、高
域の伸びは不足するが、輝度信号処理において画像の細
部の絵柄の表現に影響する輪郭補正信号のB信号の構成
比率はゼロであり、また輝度信号そのものを構成するB
チャンネルの比率は第式のように約10%であり、共
におおむね問題ない。
FIG. 4 is a diagram for explaining a difference in frequency characteristics of an output signal when an image pickup device having the same size and a different number of pixels is used. The characteristics are different from those of other channels, and the expansion in the high range is insufficient, but the composition ratio of the B signal of the contour correction signal that affects the expression of the details of the image in the luminance signal processing is zero, and the luminance signal itself is composed. Do B
The ratio of the channels is about 10% as shown in the equation, and there is no problem in both cases.

【0032】一方色差信号にあっては、I色差信号の必
要帯域幅はNTSC方式の規格により1.3MHz/−
3dB、Q色差信号の必要帯域幅は同様に0.5MHz
/−3dBであって、Bチャンネルの周波数帯域でも全
く問題がない。
On the other hand, for the color difference signal, the required bandwidth of the I color difference signal is 1.3 MHz /-according to the NTSC standard.
The required bandwidth of the 3 dB, Q color difference signal is also 0.5 MHz
/ -3 dB, and there is no problem in the frequency band of the B channel.

【0033】一方、画素数の異なる撮像素子を駆動する
必要上、TG(タイミングジェネレータ)23の構造は
やや複雑になるが、近年の集積回路技術の進歩により、
これによる生産上のコストアップはわずかなものとする
事が可能である。
On the other hand, the structure of the TG (timing generator) 23 is slightly complicated due to the necessity of driving the image pickup devices having different numbers of pixels.
As a result, the increase in production cost can be made small.

【0034】なお、前述のR,Gと、Bチャンネルの撮
像素子のサンプリング周波数を、“整数分の整数”すな
わち1/2,1/3,2/3等の関係を持たせると、前
記TGの構造が簡素になり、また信号処理を、ディジタ
ル化した場合において、そのサンプリング周波数との関
係が簡素化されるため、サンプリング周波数変換等が複
雑にならずに、それによる画質劣化,コストアップが最
小限に抑えられるメリットがある。
If the sampling frequencies of the above-described R, G and B-channel image sensors are set to "integer integer", that is, 1/2, 1/3, 2/3, etc., the TG Is simplified, and the relationship between the signal processing and the sampling frequency is simplified when the signal processing is digitized. Therefore, the sampling frequency conversion and the like are not complicated, and the image quality and the cost are increased. It has the advantage of being minimized.

【0035】以上のような効果の他、撮像素子の画素数
の少ないチャンネルは光学系の解像度等の性能も高いも
のは要求されず、よりコストダウンが可能になると同時
に、多眼式ではこういう構成をとった場合に画素数の少
ないチャンネルで発生する偽信号(モワレ)の防止も可
能で更に画質が向上するメリットがある。
In addition to the above-mentioned effects, a channel having a small number of pixels of an image pickup element is not required to have a high performance such as the resolution of an optical system, so that it is possible to further reduce the cost. In this case, it is possible to prevent a false signal (moiré) generated in a channel having a small number of pixels, and there is an advantage that the image quality is further improved.

【0036】なお、Bチャンネルの信号は公知の適宜の
回路により擬似的に高精細化し、他のチャンネルと画素
数の整合を図る。
The signal of the B channel is artificially made high-definition by a known appropriate circuit so as to match the number of pixels with the other channels.

【0037】以上説明したように、本実施例によれば、
使用撮像素子の内の、1つの撮像素子の画素数を低減す
ることにより、或いは、その低減する撮像素子にかかる
サンプリング周波数を他の撮像素子のサンプリング周波
数の整数分の整数にすることにより、撮像装置全体の性
能の向上とコストダウンを実現することのできる。
As described above, according to this embodiment,
By reducing the number of pixels of one image sensor among the used image sensors, or by setting the sampling frequency of the image sensor to be reduced to an integer equal to the integer of the sampling frequency of the other image sensor, It is possible to improve the performance of the entire apparatus and reduce costs.

【0038】[0038]

【発明の効果】以上説明したように、本発明によれば、
撮像装置全体の性能の向上とコストダウンを実現するこ
とのできる多眼多板式撮像装置を提供することができ
る。
As described above, according to the present invention,
It is possible to provide a multi-view multi-panel imaging device capable of improving the performance of the entire imaging device and reducing the cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 実施例の構成を示すブロック図FIG. 1 is a block diagram showing a configuration of an embodiment.

【図2】 多眼多板式撮像装置の概念図FIG. 2 is a conceptual diagram of a multi-view multi-panel imaging apparatus.

【図3】 同一サイズで画素数の異なるCCDの差を示
す図
FIG. 3 is a diagram showing a difference between CCDs having the same size and different numbers of pixels.

【図4】 実施例における各チャンネルの周波数特性の
説明図
FIG. 4 is an explanatory diagram of a frequency characteristic of each channel in the embodiment.

【図5】 従来例の構成を示すブロック図FIG. 5 is a block diagram showing a configuration of a conventional example.

【図6】 従来例における各チャンネル周波数特性を示
す図
FIG. 6 is a diagram showing frequency characteristics of respective channels in a conventional example.

【図7】 3板カメラ各色の信号処理回路トータルゲイ
ン差の1例を示す図
FIG. 7 is a diagram illustrating an example of a total gain difference of a signal processing circuit for each color of a three-chip camera.

【符号の説明】[Explanation of symbols]

1 被写体よりの光 2 赤(R)レンズ 4 赤(R)撮像素子 5 緑(G)撮像素子 6 青(B)撮像素子 29 赤(R)色フィルタ 30 緑(G)色フィルタ 31 青(B)色フィルタ 32 緑(G)レンズ 33 青(B)レンズ Reference Signs List 1 light from subject 2 red (R) lens 4 red (R) image sensor 5 green (G) image sensor 6 blue (B) image sensor 29 red (R) color filter 30 green (G) color filter 31 blue (B) ) Color filter 32 Green (G) lens 33 Blue (B) lens

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 被写体からの光を集光する複数の撮影光
学系と、 前記複数の撮影光学系の各々に対応する、光の三原色ま
たはその補色の複数のフィルタ及び受光面サイズが略同
一の複数の撮像素子と、 前記複数の撮像素子の出力信号の処理回路と、を備え、
前記複数の撮像素子における1つ以上の撮像素子の画素
数が他の撮像素子の画素数より少ないことを特徴とする
多眼多板式撮像装置。
1. A plurality of photographing optical systems for condensing light from a subject, a plurality of filters of three primary colors of light or their complementary colors and a light receiving surface size corresponding to each of the plurality of photographing optical systems being substantially the same. A plurality of image sensors, a processing circuit for output signals of the plurality of image sensors,
A multi-view multi-panel imaging apparatus, wherein the number of pixels of one or more imaging elements in the plurality of imaging elements is smaller than the number of pixels of other imaging elements.
【請求項2】 請求項1記載の多眼多板式撮像装置にお
いて、画素数が他の撮像素子の画素数より少ない撮像素
子におけるサンプリング周波数の仕様を前記他の撮像素
子におけるそれの整数分の整数としたことを特徴とする
多眼多板式撮像装置。
2. The multi-view multi-panel imaging apparatus according to claim 1, wherein the specification of the sampling frequency in the image pickup device whose number of pixels is smaller than the number of pixels of the other image pickup device is an integer corresponding to an integer thereof in the other image pickup device. A multi-view, multi-plate imaging apparatus characterized by the following.
【請求項3】 請求項1または2記載の多眼多板式撮像
装置において、青用撮像素子の画素数が赤用および緑用
の撮像素子の画素数より少ないことを特徴とする多眼多
板式撮像装置。
3. The multi-view multi-panel imaging device according to claim 1, wherein the number of pixels of the blue imaging device is smaller than the number of pixels of the red and green imaging devices. Imaging device.
【請求項4】 請求項3記載の多眼多板式撮像装置にお
いて、輪郭補正信号を生成する輪郭補正信号発生回路
は、赤,緑の2信号を入力し輪郭補正信号を生成するこ
とを特徴とする多眼多板式撮像装置。
4. A multi-view multi-panel imaging apparatus according to claim 3, wherein the contour correction signal generating circuit for generating the contour correction signal receives two red and green signals and generates a contour correction signal. Multi-lens image sensor.
JP2001157057A 2001-05-25 2001-05-25 Multi-lens and multi-ccd type image pickup device Withdrawn JP2002354492A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001157057A JP2002354492A (en) 2001-05-25 2001-05-25 Multi-lens and multi-ccd type image pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001157057A JP2002354492A (en) 2001-05-25 2001-05-25 Multi-lens and multi-ccd type image pickup device

Publications (1)

Publication Number Publication Date
JP2002354492A true JP2002354492A (en) 2002-12-06

Family

ID=19000978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001157057A Withdrawn JP2002354492A (en) 2001-05-25 2001-05-25 Multi-lens and multi-ccd type image pickup device

Country Status (1)

Country Link
JP (1) JP2002354492A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008136732A (en) * 2006-12-04 2008-06-19 Pentax Corp Triple-pickup device type electronic endoscope and electronic endoscope system
JP2013026672A (en) * 2011-07-15 2013-02-04 Toshiba Corp Solid-state imaging device and camera module

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008136732A (en) * 2006-12-04 2008-06-19 Pentax Corp Triple-pickup device type electronic endoscope and electronic endoscope system
JP2013026672A (en) * 2011-07-15 2013-02-04 Toshiba Corp Solid-state imaging device and camera module
US9055181B2 (en) 2011-07-15 2015-06-09 Kabushiki Kaisha Toshiba Solid-state imaging device, image processing apparatus, and a camera module having an image synthesizer configured to synthesize color information

Similar Documents

Publication Publication Date Title
US5541648A (en) Color image pickup apparatus having a plurality of color filters arranged in an offset sampling structure
JPS63155893A (en) Video signal forming device
US4688085A (en) Enhanced sensitivity color video camera with reduced red component in second luminance signal
JPH06335006A (en) Solid-state image pickup device
KR20030009150A (en) Image signal processing apparatus
JPH0724422B2 (en) Luminance signal generation circuit for color TV camera
JPS6148315B2 (en)
CA1215169A (en) Color television camera with two or more solid-state imaging devices arranged in phase difference fashion
EP0561409B1 (en) Solid-state color imaging apparatus
EP0558338B1 (en) Video camera
JPH0120838B2 (en)
US7688362B2 (en) Single sensor processing to obtain high resolution color component signals
JP2003179819A (en) Image pickup device
JPH03139084A (en) Solid-state color image pickup device
JPS631276A (en) Color image pickup device
JPH10189930A (en) Solid-state image sensor
JP2002354492A (en) Multi-lens and multi-ccd type image pickup device
JP2801853B2 (en) Method for extending saturation level of signal output of four-chip solid-state imaging device
JP3410638B2 (en) Video camera system
JPS6229388A (en) Color solid-state image pickup device
JP2723910B2 (en) Solid-state imaging device
JPH06205422A (en) Color image pickup device
JP2004215092A (en) Imaging apparatus
JPH089395A (en) Color image pickup device
JPH06113310A (en) Video-signal processing apparatus

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080805