JPS6217950A - Manufacture of porous lithium-lead alloy electrode - Google Patents

Manufacture of porous lithium-lead alloy electrode

Info

Publication number
JPS6217950A
JPS6217950A JP60156280A JP15628085A JPS6217950A JP S6217950 A JPS6217950 A JP S6217950A JP 60156280 A JP60156280 A JP 60156280A JP 15628085 A JP15628085 A JP 15628085A JP S6217950 A JPS6217950 A JP S6217950A
Authority
JP
Japan
Prior art keywords
lithium
lead
powder
moisture
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60156280A
Other languages
Japanese (ja)
Other versions
JPH0574905B2 (en
Inventor
Tadashi Kubota
正 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Atomic Power Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Atomic Power Industries Inc filed Critical Mitsubishi Atomic Power Industries Inc
Priority to JP60156280A priority Critical patent/JPS6217950A/en
Publication of JPS6217950A publication Critical patent/JPS6217950A/en
Publication of JPH0574905B2 publication Critical patent/JPH0574905B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To obtain a large specific surface by forming and burning porous powder which has been generated by adding lead powder, having proper particle size and of which surface has adsorbed moisture, in molten lithium in an atmosphere of inactive gas. CONSTITUTION:Lead powder which is to be alloyed with lithium consists of particles of diameters from 1-10mum and is left to stand in a high humidity to adsorb sufficient moisture on its surface. After melting lithium 2 in an electric furnace 1 in an inactive gas atmosphere, lead powder 3 with moisture adsorbed on it is added in the molten lithium gradually in small quantity at a time. By this, moisture adsorbed on the surface of lead powder reacts with lithium to generate lithium hydroxide. This reaction raises the temperature of the lithium and melts the lead to make lithium-lead alloy. Generated lithium hydroxide decomposes into lithium oxide and water, with a part of lithium-lead scattering in powdery form as water vapor spouts. Scattered powder is collected on a mesh 5 placed outside a crucible 4, and porous lithium-lead is formed on the surface of alloy in the crucible after it has cooled down.

Description

【発明の詳細な説明】 リチウム二次電池の電極材料の一つとしてリチウム−鉛
合金が使用されるが性能向上のためには、電極の表面積
を大にして単位重量あたり電解質との反応面積を大にす
ることが必要である。
[Detailed description of the invention] Lithium-lead alloy is used as one of the electrode materials for lithium secondary batteries, but in order to improve performance, the surface area of the electrode must be increased to reduce the reaction area with the electrolyte per unit weight. It is necessary to make it large.

現在、鉛畜電池においては研究が進み、電極としての鉛
については海綿状のものが開発、使用されているがリチ
ウム−鉛合金電極については開発が十分になされていな
い。
Currently, research into lead-acid batteries is progressing, and spongy lead electrodes have been developed and used, but lithium-lead alloy electrodes have not been sufficiently developed.

本発明は上記のごとき事情に鑑みてなされたものであっ
て多表面と連絡する開気孔の多い多孔質リチウム−鉛合
金を製造し合金単位重量あたりの電解質との反応面積を
大ならしめたものである。
The present invention has been made in view of the above circumstances, and it produces a porous lithium-lead alloy with many open pores communicating with multiple surfaces, thereby increasing the reaction area with the electrolyte per unit weight of the alloy. It is.

以下この発明の詳細を図面について説明する。The details of this invention will be explained below with reference to the drawings.

リチウムに合金させる鉛粉末は直径約1〜10ミクロン
の粒子で、まづ湿度70〜90の状態に5〜10分間、
放置し表面に水分を吸着する。
The lead powder to be alloyed with lithium is a particle of about 1 to 10 microns in diameter, and is first heated in a humidity condition of 70 to 90℃ for 5 to 10 minutes.
Leave it to absorb moisture on the surface.

次いで不活性ガス中において第1図に示すように電気炉
等1でリチウム2を溶融した後、上記の加湿した鉛粉末
3を少量づつ加える。鉛粉末を溶融リチウムに挿入する
と表面の水分がリチウムと反応し水酸化リチウムを生成
する。反応によってリチウムが昇温する。鉛については
327℃で溶融しリチウムと合金を作る。水酸化リチウ
ムは500℃以上で分解し酸化リチウムと水に変化する
。リチウム鉛の一部は水蒸気の噴出と共に粉末状で飛散
する。飛散した粉末はるつぼ4の外部にあるメッシュ5
で補集する。
Next, as shown in FIG. 1, lithium 2 is melted in an electric furnace 1 in an inert gas atmosphere, and then the humidified lead powder 3 is added little by little. When lead powder is inserted into molten lithium, the moisture on the surface reacts with the lithium to form lithium hydroxide. The reaction raises the temperature of lithium. Lead melts at 327°C and forms an alloy with lithium. Lithium hydroxide decomposes at temperatures above 500°C and changes into lithium oxide and water. Some of the lithium lead is scattered in powder form with the jet of water vapor. The scattered powder is removed from the mesh 5 outside the crucible 4.
Supplementary information.

るつぼ内の合金表面部には多孔質のリチウム鉛が保存す
るようになる。
Porous lithium lead is stored on the surface of the alloy in the crucible.

メッシュに補集された粉末粒子およびるつぼ表面部に残
された粉末粒子は共に多孔質であるが、これら粉末粒子
を採取した後、意図する電極の形状は圧縮成型後、焼成
すればよい。
Both the powder particles collected in the mesh and the powder particles left on the surface of the crucible are porous, but after collecting these powder particles, the intended shape of the electrode can be obtained by compression molding and then firing.

以上の説明から明らかな通り、この発明によれば多孔質
リチウム鉛合金粉末を製作し、且つその後の成型、焼成
によって任意のリチウム電極材料形状に加工することに
より、比表面積の大きいリチウム二次電池用電極の製造
を可能ならしめ二次電池の動率を高めるのに寄与する。
As is clear from the above description, according to the present invention, a lithium secondary battery with a large specific surface area can be produced by manufacturing a porous lithium-lead alloy powder and processing it into an arbitrary lithium electrode material shape by subsequent molding and firing. This makes it possible to manufacture secondary battery electrodes and contributes to increasing the operating rate of secondary batteries.

【図面の簡単な説明】[Brief explanation of drawings]

図はこの発明の一実施例に関わる合金溶融工程を示すも
のである。
The figure shows an alloy melting process related to an embodiment of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 水分を表面に吸着した直径約1〜10ミクロンの鉛粉末
を溶融リチウム中に溶融し、その際水分とリチウムの反
応で生成する水酸化リチウムの高温における分解を利用
して生成する多孔質粉末を成型−焼成することを特徴と
する多孔質リチウム−鉛合金電極の製造法
Lead powder with a diameter of approximately 1 to 10 microns with moisture adsorbed on its surface is melted into molten lithium, and porous powder is produced by utilizing the decomposition of lithium hydroxide produced by the reaction between moisture and lithium at high temperatures. A method for producing a porous lithium-lead alloy electrode characterized by molding and firing
JP60156280A 1985-07-16 1985-07-16 Manufacture of porous lithium-lead alloy electrode Granted JPS6217950A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60156280A JPS6217950A (en) 1985-07-16 1985-07-16 Manufacture of porous lithium-lead alloy electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60156280A JPS6217950A (en) 1985-07-16 1985-07-16 Manufacture of porous lithium-lead alloy electrode

Publications (2)

Publication Number Publication Date
JPS6217950A true JPS6217950A (en) 1987-01-26
JPH0574905B2 JPH0574905B2 (en) 1993-10-19

Family

ID=15624368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60156280A Granted JPS6217950A (en) 1985-07-16 1985-07-16 Manufacture of porous lithium-lead alloy electrode

Country Status (1)

Country Link
JP (1) JPS6217950A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007052470A1 (en) 2005-11-01 2007-05-10 Konica Minolta Medical & Graphic, Inc. Lithographic printing plate material, lithographic printing plate, method for preparing lithographic printing plate, and method for printing by lithographic printing plate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007052470A1 (en) 2005-11-01 2007-05-10 Konica Minolta Medical & Graphic, Inc. Lithographic printing plate material, lithographic printing plate, method for preparing lithographic printing plate, and method for printing by lithographic printing plate

Also Published As

Publication number Publication date
JPH0574905B2 (en) 1993-10-19

Similar Documents

Publication Publication Date Title
KR101987608B1 (en) A pre-solid lithium-sulfur battery and its manufacturing method
JP2019500739A (en) Solid battery, separator, electrode and manufacturing method
JP7042426B2 (en) Solid electrolytes and batteries
JP4603664B2 (en) Lithium isotope separation method and apparatus
JP6385452B2 (en) Method for producing solid electrolyte powder
JPWO2014020654A1 (en) All solid ion secondary battery
CN111430663A (en) Lithium negative pole piece, preparation method thereof and lithium battery
JPH08504052A (en) Electrochemical alkaline metal battery and method of manufacturing the same
CN113036089B (en) Preparation method of lithium ion battery cathode, cathode and lithium ion battery
CN109332719B (en) Copper nanowire and preparation method thereof
JPS6217950A (en) Manufacture of porous lithium-lead alloy electrode
US4064330A (en) Carbon electrode assembly for lithium fused salt battery
CN108011093A (en) Lithium occlusion releasable material, electrode, the manufacture method of lithium rechargeable battery and lithium occlusion releasable material
JPS6335069B2 (en)
JPH0261095B2 (en)
JP2021161525A (en) Valuable metal recovery method
JP2979207B2 (en) Method of manufacturing negative electrode for thermal battery and laminated thermal battery using the negative electrode
JPH05101831A (en) Thermal battery
JPS6122424B2 (en)
JPS59169075A (en) High temperature type battery
US2881238A (en) Storage battery electrode and method of production
JP3670800B2 (en) Method for producing hydrogen storage alloy electrode
JP3571514B2 (en) Cadmium oxide powder for nickel cadmium storage batteries
JPS59169080A (en) High temperature type battery
JP2021161526A (en) Valuable metal recovery method