JPS62178689A - Method and device for detecting face disintegration of shielding type excavator - Google Patents

Method and device for detecting face disintegration of shielding type excavator

Info

Publication number
JPS62178689A
JPS62178689A JP1872186A JP1872186A JPS62178689A JP S62178689 A JPS62178689 A JP S62178689A JP 1872186 A JP1872186 A JP 1872186A JP 1872186 A JP1872186 A JP 1872186A JP S62178689 A JPS62178689 A JP S62178689A
Authority
JP
Japan
Prior art keywords
collapse
electrode
face
electrodes
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1872186A
Other languages
Japanese (ja)
Inventor
北條 博行
幸二 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP1872186A priority Critical patent/JPS62178689A/en
Publication of JPS62178689A publication Critical patent/JPS62178689A/en
Pending legal-status Critical Current

Links

Landscapes

  • Excavating Of Shafts Or Tunnels (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、例えばシールド掘削機を用いて掘削工事を行
ったときに生じる切羽崩壊を検知するための方法及びそ
の装置に係わり、特に4電極法【こより切羽崩壊の形状
を検知するシールド式掘削券の切羽崩壊検知方法及びそ
の検知装置の改良に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method and an apparatus for detecting face collapse that occurs during excavation work using, for example, a shield excavator. This invention relates to a face collapse detection method for shield type excavation tickets that detects the shape of face collapse from this method, and improvements to the detection device.

(従来の技術) 従来、泥漿式や土圧式、泥水加圧式などの密閉型シール
ド式トンネル掘削機があるが、これらのi械は外側をス
キンプレートで覆って遮蔽しているため、内部から掘進
時の切羽の状態を知ることができない。即ち、このトン
ネル掘削機は、切羽崩壊を生じてもそのまま庇進し、第
9図に示すように空洞1を残していくため、後日地面の
陥没を引き起こす可能性があった。図中2は地表面、3
は地山、4は切羽後に形成された環状部分を土管として
機能せしめるセグメン1−である。
(Conventional technology) Conventionally, there are sealed shield type tunnel excavators such as mud type, earth pressure type, and mud water pressurized type, but these i-machines are shielded by a skin plate on the outside, so it is difficult to excavate from the inside. It is impossible to know the state of the face of time. That is, even if the tunnel face collapses, this tunnel excavator continues to move forward, leaving a cavity 1 as shown in FIG. 9, which may cause the ground to cave in at a later date. In the figure, 2 is the ground surface, 3
4 is the ground, and 4 is the segment 1- which makes the annular part formed after the face function as a clay pipe.

そこで、以上のような地面陥没を未然に防止するための
判1gi資料として、切羽崩壊の状態を知る切羽崩壊検
知装置が開発されている。その1つとしては超音波方式
を用いた検知装置(実開昭58−1.40296号公報
及びその願書に添附された明細四1図面)があり、他の
1つは前部に位置するカッターフェースの近傍に測針を
設け、掘削の停止時に測針を切羽面に接触ぎせて切羽崩
壊の状態を測定する触針式検知装置がある。
Therefore, a face collapse detection device that can detect the state of face collapse has been developed as a one-size-fits-all material for preventing the above-mentioned ground collapse. One of them is a detection device using an ultrasonic method (see Utility Model Application Publication No. 58-1.40296 and specification 41 drawing attached to the application), and the other is a cutter located at the front. There is a stylus-type detection device that measures the state of face collapse by installing a measuring needle near the face and bringing the measuring needle into contact with the face surface when excavation is stopped.

しかし、超音波方式のものは、超音波が泥水により減衰
を受けるのでこのままでは測定精度の低下は否めず、実
用化が難かしい。そこで、これに代るものとして清水置
換型超音波方式が考えられている。この方式は、水中ポ
ンプにより清水をジェン1へ流で噴射させて泥水を清水
に置換して超音波路を形成し、超音波探触子から発生さ
れる超音波の発射エコーと、この超音波探触子から前記
漬水を通って地山で反射されて返ってくる反射エコーと
の時間から切羽崩壊を知るものである。しかし、この方
式は泥水の重量s度にi11限されることや地山崩壊を
引き起すことなく清水雰囲気を維持することが難しく、
実用上問題がある。
However, in the case of the ultrasonic method, since ultrasonic waves are attenuated by muddy water, measurement accuracy will inevitably deteriorate if left as is, making it difficult to put it into practical use. Therefore, a fresh water displacement type ultrasonic method is being considered as an alternative to this. This method uses a submersible pump to inject fresh water into Gen 1, replacing muddy water with fresh water and forming an ultrasonic path. Face collapse can be determined from the time between the probe and the reflected echo that passes through the soaked water and is reflected back from the ground. However, this method is limited to the weight of muddy water, and it is difficult to maintain a clean water atmosphere without causing landslides.
There are practical problems.

一方、触針式のものは、掘削を停止した時にだけ測定が
可能であり、連続測定ができr、切羽崩壊の検知装置と
しては不十分である。
On the other hand, the stylus type is capable of measuring only when excavation is stopped, cannot perform continuous measurements, and is insufficient as a detection device for face collapse.

そこで、本発明者等は、特願昭59−160620号に
記載されている如くスキンプレート面に取付けられた対
をなす通電電慟により泥水と地山からなる電気的二重層
に通電を行って電位分布を形成させ、この電位分布と通
電電流とから上記泥水側からみた見掛は上の比抵抗を求
め、この見掛は上の比抵抗の変化から切羽崩壊による空
洞の存在を泥水厚の変化として検知する検知方法および
その検知装置が提案されている。第10図および第11
図は4電極法を用いた上記検知装置の構成図および模式
図である。これらの図において、5は泥水、6はカッタ
ーフェース、7はスキンプレート、8は絶縁板、9a、
9bは一対の通電電極、10a、10bは一対の電圧測
定電極、11は定電流源、12は電圧測定部、13は出
力表示部であって、一対の通電電極9a、9bの内側に
一対の電圧測定電極10a、10bが配置され、これら
電極相互の間隔は等距111aを有して設けられている
。また、dは泥水厚、ρ1は泥水比抵抗、ρ2は地山(
粘土)比抵抗を示す。即ち、この4電極法検知装置は、
通電電極9a、9bに定電流を与えて泥水と他山からな
る電気的二重層に通電を(テい、この時一対の電圧測定
部110a、10bを通して電圧測定部12により測定
された第12図に示すような測定電圧から泥水厚を検知
するものである。
Therefore, the present inventors energized the electrical double layer consisting of muddy water and earth using a pair of energizing currents attached to the surface of the skin plate as described in Japanese Patent Application No. 160,620/1983. A potential distribution is formed, and from this potential distribution and the applied current, the apparent resistivity as seen from the muddy water side is determined. From the change in the above resistivity, the presence of cavities due to face collapse can be determined by A detection method and a detection device for detecting the change have been proposed. Figures 10 and 11
The figures are a configuration diagram and a schematic diagram of the above-mentioned detection device using the four-electrode method. In these figures, 5 is muddy water, 6 is a cutter face, 7 is a skin plate, 8 is an insulating plate, 9a,
9b is a pair of current-carrying electrodes, 10a and 10b are a pair of voltage measurement electrodes, 11 is a constant current source, 12 is a voltage measurement section, and 13 is an output display section. Voltage measuring electrodes 10a and 10b are arranged, and the distance between these electrodes is equidistant 111a. In addition, d is the mud thickness, ρ1 is the mud specific resistance, and ρ2 is the ground (
Clay) indicates specific resistance. That is, this four-electrode detection device is
A constant current is applied to the current-carrying electrodes 9a and 9b to energize the electrical double layer consisting of muddy water and other layers. The thickness of muddy water is detected from the measured voltage as shown in .

〔発明が解決しようとする問題点) しかし、以上のように電極系を使用して崩壊形状を検知
するものは、例えば第13図のような崩壊形状の場合に
第14図の如く崩壊幅すの変化により測定電圧が変化す
る問題がある。従って、第10図に示すような検知装置
では崩壊の検知が可能であるが、崩壊形状を精度良く求
めることができなかった。
[Problems to be Solved by the Invention] However, in the case of detecting a collapsed shape using an electrode system as described above, for example, in the case of a collapsed shape as shown in FIG. 13, the collapse width as shown in FIG. There is a problem in that the measured voltage changes due to changes in . Therefore, although the detection device shown in FIG. 10 is capable of detecting collapse, it is not possible to accurately determine the shape of collapse.

本発明は上記実情に鑑みてなされたもので、地山崩壊を
引き起こすことなくオンラインで切羽崩壊の形状を精度
良く検知し得るシールド式掘削はの切羽IO!@検知方
法を提供することを目的とする。
The present invention has been made in view of the above-mentioned circumstances, and is a shield-type excavation face IO that can accurately detect the shape of face collapse online without causing ground collapse! @The purpose is to provide a detection method.

別の発明は、掘削機表面に特別な突起物を設けることな
く簡単な構成により切羽崩壊の形状を検知し得るシール
ド式掘削機の切羽崩壊検知装置を提供することを目的と
する。
Another object of the present invention is to provide a face collapse detection device for a shield type excavator that can detect the shape of a face collapse with a simple configuration without providing any special protrusions on the surface of the excavator.

〔問題点を解決するための手段] そこで、本発明方法によれば、スキンプレート面とほぼ
面部を同じくする絶縁部に通電用電極および電圧測定用
電極からなる4電極を組として電(を間隔を異ならせて
2組を設け、これら各相を選択して泥水と地山からなる
電気的二重層に通電を行い、その電位分布の変化から切
羽の崩壊形状を検知するようにしたものである。
[Means for Solving the Problems] Therefore, according to the method of the present invention, a set of four electrodes consisting of a current-carrying electrode and a voltage-measuring electrode is arranged on an insulating part whose surface area is substantially the same as the surface of the skin plate, and the current is connected at intervals. Two sets are set up with different voltages, and each phase is selected to energize the electrical double layer consisting of muddy water and rock, and the collapse shape of the face can be detected from changes in the potential distribution. .

また、別の本発明装置によれば、前記掘削量のスキンプ
レートとほぼ面部を同じくする絶縁部に通電用電極およ
び電圧測定用電極からなる4電極を相として電極間隔を
異ならせて2組設置してなる電力配置手段と、これら各
組ごとに電極を選択する電極チャンネル切換手段と、こ
の電極チャンネル切換手段によって選択された通電電型
に所定、の信号を与えることにより泥水と地山とからな
る電気的二重層に通電を行う電源部と、この電源部によ
る通電後に前記雷圧工1定用電極からlqられる電位分
布の変化信号を用いて切羽崩壊形状を求める演算処理手
段とを備えたものである。
Further, according to another device of the present invention, two sets of four electrodes each consisting of a current-carrying electrode and a voltage-measuring electrode are installed at different electrode intervals on an insulating part having substantially the same surface area as the skin plate of the excavated amount. an electrode channel switching means for selecting an electrode for each set of electrodes, and a predetermined signal is given to the energization type selected by the electrode channel switching means to prevent muddy water and ground from being removed. a power supply unit that energizes the electrical double layer, and an arithmetic processing means for determining a face collapse shape using a change signal of the potential distribution obtained from the lightning rod 1 regular electrode after energization by the power supply unit. It is something.

〔作用〕[Effect]

従って、以上のような本発明方法の手段とすることによ
り、電極間隔の異なる各組の電極を選択して通電を行い
、かつ電圧測定電極から得られた信号を用いて切羽の崩
壊形状を得るようにすれば、崩IF!幅と崩壊深さ方向
にそれぞれ感度を持った測定系として所望の信号を取得
でき、地山崩壊をなくしてオンラインで切羽崩壊形状を
精度良く検知することができる。
Therefore, by using the method of the present invention as described above, each set of electrodes with different electrode spacing is selected and energized, and the collapsed shape of the face can be obtained using the signal obtained from the voltage measuring electrodes. If you do this, you will break the IF! It is possible to obtain the desired signals as a measurement system with sensitivity in both the width and collapse depth directions, and it is possible to eliminate ground collapse and accurately detect the face collapse shape online.

また、別の発明装置の手段とすることにより、スキンプ
レート面とほぼ同一面に電極を設けているので掘削別表
面に特別な突起物がなくなり、また電極チャンネル切換
手段により電極間隔の異なる2911の電極群を切換え
て所望の信号を得るようにしているので、簡単な構成で
切羽の崩壊形状を検知できるものである。
In addition, by using another device of the invention, since the electrodes are provided on almost the same surface as the skin plate surface, there are no special protrusions on the excavated surface, and the electrode channel switching means allows the electrode spacing of 2911 to be different. Since the electrode group is switched to obtain a desired signal, the collapsed shape of the face can be detected with a simple configuration.

〔実施例〕〔Example〕

以下、本発明方法の一実施例について第1図ないし第3
図を参照して説明する。即ち、本発明方法は、泥水と地
山の比抵抗の違いに着目して電気的に泥水環を測定する
4電穫法を採用するものであるが、第1図に示すように
狭い電極間隔a1で1組の4電ff120a、20b、
21a、21bが配置され、かつこれらの電極の外側に
広い電極間隔a2で1組の4電極22a、22b、23
a。
An embodiment of the method of the present invention will be described below with reference to FIGS. 1 to 3.
This will be explained with reference to the figures. That is, the method of the present invention employs a four-electrode method in which the mud ring is electrically measured by focusing on the difference in resistivity between the mud and the ground. A1 has one set of 4-electron FF120a, 20b,
21a, 21b are arranged, and a set of four electrodes 22a, 22b, 23 are arranged outside these electrodes with a wide electrode interval a2.
a.

23bが配置され、それぞれの測定電圧Vl。23b are arranged, each measuring voltage Vl.

■2から崩壊形状を検知する。24.25は定電流源、
26は泥水、27は地山、28はスキンブレート(第3
図)を示す。
■Detect the collapsed shape from 2. 24.25 is a constant current source,
26 is muddy water, 27 is ground, 28 is skin plate (third
Figure) is shown.

しかして、以上のような電極配置構成において狭いIl
i間隔a1の電極群20a、20b、21a、21bよ
りなる4電極法を用いた場合、電極20a、20bから
見た見掛は上の比抵抗をρ。
However, in the above electrode arrangement configuration, the narrow Il
When using a four-electrode method consisting of electrode groups 20a, 20b, 21a, and 21b with i spacing a1, the apparent resistivity as seen from the electrodes 20a and 20b is ρ.

とすると、 V=(I  ρe  ) / (2π a  1 −)
      −−(1)の式から を求めることができる。但し、上式においてIは通電電
流、■は測定電圧、ρlは泥水の比抵抗、ρ2は他山の
比抵抗、dは泥水環、alは電極間隔である。
Then, V=(I ρe ) / (2π a 1 −)
-- can be determined from the equation (1). However, in the above equation, I is the applied current, ■ is the measured voltage, ρl is the specific resistance of the muddy water, ρ2 is the specific resistance of the other mountain, d is the muddy water ring, and al is the electrode spacing.

そして、以上のような見掛は上の比抵抗ρ と泥水環お
よび電極間隔の比d / a 1との関係を示す第2図
から明らかなように、電極間隔a1が泥水1dに比して
小さいとき、比抵抗ρ6 は殆/υど変化しない。従っ
て、狭い電橋間隔a1を有する測定系では、第13図の
ような形状における崩壊幅A−Bを検知できるものの、
深さに対しては感度を示さない。そこで、本発明方法は
、崩壊の幅のみ感度を持つ測定系と、深さ方向に感度を
持つ測定系とを備え、例えば第3図に示すような崩壊形
状に対し、狭い電極間隔alを持つ電極群20a、20
b、21a、21bよりなる測定系で崩壊幅A−Bを求
め、広い電極間隔a2を持つ電極群22a、22b、2
3a、23bよりなる測定系によって測定された測定電
圧を、前述した第14図に示す崩壊幅とd−V曲線の関
係から溝深さdを換算し、崩壊形状を求めるものである
The above apparent appearance is due to the fact that the electrode spacing a1 is larger than the muddy water 1d, as is clear from Figure 2, which shows the relationship between the resistivity ρ above and the ratio d/a1 between the muddy water ring and the electrode spacing. When it is small, the resistivity ρ6 hardly changes by /υ. Therefore, although a measurement system with a narrow electric bridge spacing a1 can detect the collapse width A-B in the shape as shown in Fig. 13,
Shows no sensitivity to depth. Therefore, the method of the present invention includes a measurement system that is sensitive only to the width of the collapse and a measurement system that is sensitive to the depth direction, and has a narrow electrode spacing al for the collapse shape shown in FIG. Electrode groups 20a, 20
The collapse width A-B is determined using a measurement system consisting of electrodes 22a, 22b, 2 with a wide electrode spacing a2.
The collapsed shape is determined by converting the measured voltage measured by the measuring system consisting of 3a and 23b into the groove depth d from the relationship between the collapsed width and the dV curve shown in FIG. 14 mentioned above.

従って、以上のような実施例の崩壊検知方法によれば、
狭い電極間隔で4つの電極を配置して崩壊幅に感度を持
つようにし、また広い電極間隔で4つの電]々を配置し
て崩壊深さ方向に感度を持つようにしたので、これら両
相の電極から19られた出力を用いれば崩壊形状を精度
良く求めることができる。しかも、これら両組の電戊群
を交互に切換えて掘進すれば、連続的かつオンラインに
て崩襲形状を求めることかできる。
Therefore, according to the collapse detection method of the above embodiment,
By arranging four electrodes with narrow electrode spacing to be sensitive to the collapse width, and by arranging four electrodes with wide electrode spacing to have sensitivity in the direction of collapse depth, both of these phases can be By using the output from the electrode, the collapse shape can be determined with high accuracy. Moreover, by alternately switching between these two sets of electric shocks and excavating, the shape of the collapse can be determined continuously and online.

次に、本発明′a置の一実施例について図面を参照して
説明する。本装置は、第4図に示すように前面部にカッ
タフェース31が設けられ、このカッタフェース31の
背部側にはカッタフェース31と同径で環状に形成され
た装置外体として機能するスキンプレート28が設けら
れている。このスキンプレート28はその一側部が切り
欠かれ、この部分にスキンプレート28とほぼ同一面を
有する絶縁板32がl■合されている。そして、この絶
縁板32には第1図に示すように狭い電極間隔alを持
つ4つの崩壊幅検知用電極20a、20b、21a、2
11)が埋め込まれ、これらの電極の外側に広い電極間
隔a2を持つ4つの崩壊深さ検知用型[x22a、22
b、23a、23bが埋め込まれている。これらの電極
のうら、電極20a、20b、22a、22bは通電電
極に相当し、池の電JM21a、21b、23a、23
bは電圧訓定爪極に相当する。第4図において33は通
電機((に相当する電極20a、20b、22a、22
bに定電流を供給する定電流源、34は崩壊幅検知用型
tffi20a、20b、21a、21bと崩壊深さ検
知用電極22a、22b、23a。
Next, an embodiment of the present invention will be described with reference to the drawings. As shown in FIG. 4, this device is provided with a cutter face 31 on the front side, and a skin plate on the back side of the cutter face 31 that functions as an outer body of the device and is formed in an annular shape with the same diameter as the cutter face 31. 28 are provided. This skin plate 28 has one side cut out, and an insulating plate 32 having substantially the same surface as the skin plate 28 is fitted in this part. As shown in FIG. 1, this insulating plate 32 has four collapse width detection electrodes 20a, 20b, 21a, 2 with narrow electrode spacing al.
11) is embedded, and four collapse depth detection molds [x22a, 22
b, 23a, and 23b are embedded. Behind these electrodes, electrodes 20a, 20b, 22a, 22b correspond to current-carrying electrodes, and the batteries JM21a, 21b, 23a, 23
b corresponds to the voltage training claw pole. In FIG.
34 is a constant current source that supplies a constant current to b, and 34 is a collapse width detection type tffi 20a, 20b, 21a, 21b and collapse depth detection electrodes 22a, 22b, 23a.

23bとを選択的に切換える電極チャンネル切換スイッ
チであって、例えば第5図のような模式的な構成で表わ
すことができ、その切換え手段は人為的またはタイマ、
クロック等を用いて自動的に切換えるようにしてもよい
。35は電圧測定電極で測定された信号に比例する測定
電圧に変換して2ヂヤンネルに分けて出力する電圧測定
部、36は電圧測定部35からの測定電圧を用いて所定
の演算処理を行う演算処理部、37は演算結果を出力す
る出力表示部である。
23b, and can be represented, for example, in a schematic configuration as shown in FIG.
The switching may be performed automatically using a clock or the like. 35 is a voltage measuring unit that converts the signal measured by the voltage measuring electrode into a measured voltage proportional to the voltage and outputs it in two channels; 36 is a calculation unit that performs predetermined calculation processing using the measured voltage from the voltage measuring unit 35; The processing section 37 is an output display section that outputs the calculation results.

次に、以上のように構成された装置の動作を説明する。Next, the operation of the apparatus configured as above will be explained.

今、シールド掘進中においてIff幅b=り00111
m、崩壊深ざd−,200Iを有する三角溝の崩壊形状
を検知するものとする。なお、測定条件としては、泥水
26の比抵抗ρ1−10Ωm、地山27の比抵抗ρ2 
=200Ωm、崩壊幅検知用電極間隔al=20a−2
1a=218−21b=2 l b−20b=20mm
、崩壊深さ検知用電極間隔a2=22a−23a=23
a−23b=23b−22b−100mmとし、定電流
源33から10mA、20Hzの電流が通電電極側に供
給されるものとする。また、崩壊のない時の正常の泥水
厚d、は20InIIlとする。
Now, during shield excavation, Iff width b = 00111
It is assumed that a collapsed shape of a triangular groove having a collapse depth d-, 200I is detected. The measurement conditions are: specific resistance ρ1-10Ωm of the muddy water 26, specific resistance ρ2 of the earth 27.
=200Ωm, electrode spacing al for detecting collapse width = 20a-2
1a=218-21b=2 l b-20b=20mm
, Collapse depth detection electrode spacing a2=22a-23a=23
It is assumed that a-23b=23b-22b-100 mm, and a current of 10 mA and 20 Hz is supplied from the constant current source 33 to the current-carrying electrode side. Further, the normal mud thickness d when there is no collapse is 20InIIl.

しかして、以上のような測定条件下において定電流源3
3から電極チャンネル切換スイッチ34を介して電極間
隔の異なるそれぞれの通電電極(20a、2’Ob)、
(22a、22b)より定電流を泥水と地山からなる電
気的二重層に通電する。この通電方法は1つの定電流源
33から例えばクロックによって自動的に切換わる切換
スイッチ34により通ffi’1tJli20a、20
b (chl )と通電機1M22a、22b (ch
2)、!:に交互に通電する。その理由は地中に形成さ
れる各々の電位分布がお互いに妨害しないようにするた
めである。以上のようにして通電すると、この通電電流
ニに、すTIFi測定電極(21a、21b)、(23
a、23b)間に電位が生ずるので、これを電圧測定部
35で測定し、21a、21b間電圧をchlとし、2
38.23b間電圧をch2として出力する。シールド
掘進中は測定電極系もシールド機械と同時に移動し、そ
の移動距離に対し第6図に示すような測定電圧が得られ
る。
Therefore, under the above measurement conditions, the constant current source 3
3 to each energized electrode (20a, 2'Ob) with different electrode spacing via the electrode channel changeover switch 34,
(22a, 22b), a constant current is applied to the electrical double layer consisting of muddy water and the ground. This energization method is based on one constant current source 33 and a changeover switch 34 that is automatically switched by a clock, for example.
b (chl) and energizing machine 1M22a, 22b (ch
2),! : energize alternately. The reason for this is to prevent potential distributions formed underground from interfering with each other. When the current is applied as described above, the TIFi measurement electrodes (21a, 21b), (23
Since a potential is generated between 21a and 23b), this is measured by the voltage measuring section 35, and the voltage between 21a and 21b is set as chl.
The voltage between 38 and 23b is output as ch2. During shield excavation, the measurement electrode system also moves simultaneously with the shield machine, and a measurement voltage as shown in FIG. 6 is obtained for the moving distance.

このようにして測定された測定電圧は後続の演算処理部
36に送られる。この演算処理部36では、Chlの出
力すなわち電極間隔a1を持った測定系により得られた
出力の変化する点から崩壊の肩を検知することにより、
崩壊の幅すを算出しb=300mmの値を得るものであ
る。
The measured voltage thus measured is sent to the subsequent arithmetic processing section 36. This arithmetic processing unit 36 detects the collapse shoulder from the point where the Chl output, that is, the output obtained by the measurement system with the electrode spacing a1, changes.
The width of the collapse is calculated and a value of b=300 mm is obtained.

また、ch2の出力すなわち電極間隔a2を持った測定
系から1qられた出力を用いて崩壊深さを検知するもの
であるが、第7図に示す如く崩壊幅すにより崩壊深さに
対する測定電圧値が異なり、かつ変化する割合いも異な
る。そこで、演Di ffi理部36は、予め崩壊幅を
媒介変数とした第7図に示すd−V曲線を用意し、ch
lから得られた情報b = 300 mmに基づいてd
−V[ltl線を選択する。
In addition, the collapse depth is detected using the output of ch2, that is, the output obtained by 1q from the measurement system with the electrode spacing a2, but as shown in Figure 7, the measured voltage value with respect to the collapse depth is determined by the collapse width. The rate of change is different, and the rate of change is also different. Therefore, the performance division 36 prepares in advance the d-V curve shown in FIG. 7 with the collapse width as a parameter, and
Based on the information obtained from l b = 300 mm d
-V [Select ltl line.

さらに、この演算型理部36は上記ステップにて選択し
たd−V曲線に基づいてch2の出力電圧値を泥水深さ
に換算する。ここで、泥水深さに換算された値は出力表
示部37において例えば第8図に示すような値として表
示される。従って、シールド掘進中はかかる表示値をモ
ニタリングしながら切羽崩壊の早期発見および崩壊形状
を検知するものである。
Furthermore, this calculation model unit 36 converts the output voltage value of ch2 into muddy water depth based on the dV curve selected in the above step. Here, the value converted to the muddy water depth is displayed on the output display section 37 as a value as shown in FIG. 8, for example. Therefore, during shield excavation, such display values are monitored to detect early face collapse and to detect the collapse shape.

従って、以上のような実施例の構成によれば、スキンプ
レーt〜28と面部を同じくする絶縁板32に電極間隔
の異なる2組の4電極を埋め込むとともに、これら各組
の電極を交互に切換えて測定電圧を得、これらの測定電
圧を用いて崩壊幅および崩壊深さを1qて崩壊形状を求
めるようにしたので、非常に簡単な構成で崩壊形状を精
度良く求めることができる。
Therefore, according to the configuration of the embodiment as described above, two sets of four electrodes with different electrode intervals are embedded in the insulating plate 32 having the same surface as the skin plate t~28, and the electrodes in each set are alternately switched. By using these measurement voltages, the collapse width and collapse depth are determined by 1q to determine the collapse shape, so the collapse shape can be determined with high accuracy with a very simple configuration.

なお、上記実施例では電極間隔を81=20mm、a2
=100mmとしたが、これに限定されずに電(÷間隔
を任意に変化させて測定スパンを変えて」り定すること
が可能である。また、通電電流値(よ10mA、20H
zとしたが、これ以上の電流値に上げて分解能を向上さ
せることも可能であり、周波数についても同様である。
In the above example, the electrode spacing was 81=20 mm, a2
= 100 mm, but it is not limited to this, and it is possible to set the current by changing the measurement span by arbitrarily changing the distance.Also, the current value (10 mA, 20 H
Although the current value is set to z, it is also possible to increase the current value to a higher value to improve the resolution, and the same applies to the frequency.

その池、本発明はその要目を逸説しない範囲で種々変形
して実/Jできる。
However, the present invention can be modified in various ways without deviating from its essence.

〔発明の効果〕〔Effect of the invention〕

以上詳記したように本発明方法によれば、電極間隔の異
なる2組の4電極群を交互に切換えて測定7R圧を得る
ようにしたので、崩壊幅および崩壊深さに感度を持つ測
定電圧を用いて崩壊形状を求めることが可能であり、し
かもオンラインにて連続的に精度良く検知でき、早期に
空洞補嬬を行うことができ、陥没事故を未然に防ぐこと
ができる。
As detailed above, according to the method of the present invention, the measured 7R pressure is obtained by alternately switching two sets of 4-electrode groups with different electrode intervals, so that the measurement voltage is sensitive to the collapse width and collapse depth. It is possible to determine the collapse shape using , and it can also be detected continuously and accurately online, making it possible to perform cavity repair at an early stage and prevent collapse accidents.

また、本発明装置によれば、スキンプレート面の絶縁板
に4電極を2相埋め込むとともに、これら各組の電極を
スイッチにて交互に切換えて測定電圧を得るようにした
ので、突起物を設けることなく簡単なI育成で崩壊形状
を精度良く検知することができるシールド式掘削機の崩
壊検知装置を提供できる。
Further, according to the device of the present invention, four electrodes are embedded in two phases in the insulating plate on the skin plate surface, and each set of electrodes is alternately switched with a switch to obtain the measurement voltage, so that the protrusion is provided. It is possible to provide a collapse detection device for a shield type excavator that can accurately detect the collapse shape by simple I-growth without any problems.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第3図は本発明方法の一実施例を説明する
ために示したもので、第1図は電極配置構成および測定
状態を示す模式図、第2図は泥水厚と電極間隔との比に
対する見掛は上の比抵抗の変化を説明する図、第3図は
崩壊形状の模式図、第4図ないし第8図は本発明装置の
一実施例を説明するために示したもので、第4図は本発
明@置の構成図、第5図は第4図の電)0チヤンネル切
換スイツチの切換え構成図、第6図は移動距離に対する
よ1j定電圧の特性図、第7図は崩壊深さと測定電圧の
関係図、第8図は崩壊形状の表示状態図、第9図ないし
第14図は従来の検知装置を説明するために示したもの
で、第9図は掘削機による掘進により形成された地中断
面図、第10図は4電(船法を用いた従来装置の構成図
、第11図は4電力法を用いて崩壊形状を測定する状態
を説明する模式図、第12図は泥水厚と測定電圧との関
係図、第13図は三角溝に形成された崩壊形状を示す図
、第14図は三角溝と測定電圧との関係図である。 20a、20b、21 a、21 b−・・崩壊幅検知
用電極、22a、22b、23a、23b・・・崩壊深
さ検知用電極、24.25.33・・・定電流源、26
・・・泥水、27・・・地山、28・・・スキンプレー
ト、31・・・カッタフェース、32・・・絶縁板、3
4・・・電極チャンネル切換スイッチ、35・・・電圧
測定部、36・・・演梓処理部、37・・・出力表示部
。 出願人代理人 弁理士 鈴江武彦 第3図 0.1110 )尼木[l/を極間隔 第4図 第5図 移動距離 第6図 崩壊深さ d(mm) 第7図 移動距離 (mm) 第8図 、−4 第10図 第12図 崩壊深さ d   (mm) 第14図
Figures 1 to 3 are shown to explain one embodiment of the method of the present invention. Figure 1 is a schematic diagram showing the electrode arrangement and measurement conditions, and Figure 2 is a diagram showing the thickness of muddy water and the electrode spacing. 3 is a schematic diagram of the collapsed shape, and FIGS. 4 to 8 are shown to explain an embodiment of the device of the present invention. Fig. 4 is a block diagram of the @ position of the present invention, Fig. 5 is a switching block diagram of the 0 channel changeover switch in Fig. 4, Fig. 6 is a characteristic diagram of the 1j constant voltage with respect to the moving distance, and Fig. 7 The figure shows the relationship between collapse depth and measurement voltage, Figure 8 shows the collapse shape display state, Figures 9 to 14 are shown to explain conventional detection devices, and Figure 9 shows the excavator. Fig. 10 is a configuration diagram of a conventional device using the 4-power method, and Fig. 11 is a schematic diagram explaining the state of measuring the collapse shape using the 4-power method. , Fig. 12 is a diagram showing the relationship between the thickness of muddy water and the measured voltage, Fig. 13 is a diagram showing the collapsed shape formed in the triangular groove, and Fig. 14 is a diagram showing the relationship between the triangular groove and the measured voltage. 20a, 20b. , 21 a, 21 b - Electrode for detecting collapse width, 22 a, 22 b, 23 a, 23 b - Electrode for detecting collapse depth, 24.25.33 - Constant current source, 26
... Muddy water, 27 ... Earth, 28 ... Skin plate, 31 ... Cutter face, 32 ... Insulating plate, 3
4... Electrode channel changeover switch, 35... Voltage measuring section, 36... Calibration processing section, 37... Output display section. Applicant's representative Patent attorney Takehiko Suzue Figure 3 0.1110 ) Amagagi [l/] Polar spacing Figure 4 Figure 5 Travel distance Figure 6 Collapse depth d (mm) Figure 7 Travel distance (mm) Figure 7 Figure 8, -4 Figure 10 Figure 12 Collapse depth d (mm) Figure 14

Claims (2)

【特許請求の範囲】[Claims] (1)スキンプレート面とほぼ面部を同じくする絶縁部
に通電用電極および電圧測定用電極からなる4電極を粗
として電極間隔を異ならせて2組を設け、これら各組を
選択して泥水と地山からなる電気的二重層に通電を行い
、その電位分布の変化から切羽の崩壊形状を検知するよ
うにしたことを特徴とするシールド式掘削機の切羽崩壊
検知方法。
(1) Two sets of four electrodes consisting of a current-carrying electrode and a voltage-measuring electrode are provided on the insulating part, which has a surface that is almost the same as the skin plate surface, with different spacing between the electrodes, and each set is selected to remove the muddy water. A method for detecting collapse of a face of a shield type excavator, characterized in that the shape of collapse of the face of the face is detected from changes in the electric potential distribution by energizing an electrical double layer made of ground.
(2)泥水と地山とからなる電気的二重層に通電を行い
、その電位分布の変化から切羽崩壊を検知するシールド
式掘削機の切羽崩壊検知装置において、前記掘削機のス
キンプレートとほぼ面部を同じくする絶縁部に通電用電
極および電圧測定用電極からなる4電極を組として電極
間隔を異ならせて2組設置してなる電極配置手段と、こ
れら各組ごとに電極を選択する電極チャンネル切換手段
と、この電極チャンネル切換手段によつて選択された通
電電極に所定の信号を通電する電源部と、この電源部に
よる通電後に前記電圧測定用電極から出力される信号を
用いて切羽崩壊形状を求める演算処理手段とを備えたこ
とを特徴とするシールド式掘削機の切羽崩壊検知装置。
(2) In a shield-type excavator face collapse detection device that energizes an electrical double layer consisting of muddy water and ground and detects face collapse from changes in the electric potential distribution, the face collapse detection device for a shield type excavator is provided at a surface that is approximately flush with the skin plate of the excavator. an electrode arrangement means in which two sets of four electrodes each consisting of a current-carrying electrode and a voltage-measuring electrode are installed on the same insulating part with different electrode spacing; and electrode channel switching for selecting electrodes for each of these sets. means, a power supply unit for supplying a predetermined signal to the energized electrode selected by the electrode channel switching means, and a face collapse shape using the signal output from the voltage measuring electrode after energization by the power supply unit. What is claimed is: 1. A face collapse detection device for a shield type excavator, characterized in that it is equipped with a calculation processing means as required.
JP1872186A 1986-01-30 1986-01-30 Method and device for detecting face disintegration of shielding type excavator Pending JPS62178689A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1872186A JPS62178689A (en) 1986-01-30 1986-01-30 Method and device for detecting face disintegration of shielding type excavator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1872186A JPS62178689A (en) 1986-01-30 1986-01-30 Method and device for detecting face disintegration of shielding type excavator

Publications (1)

Publication Number Publication Date
JPS62178689A true JPS62178689A (en) 1987-08-05

Family

ID=11979523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1872186A Pending JPS62178689A (en) 1986-01-30 1986-01-30 Method and device for detecting face disintegration of shielding type excavator

Country Status (1)

Country Link
JP (1) JPS62178689A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01154990A (en) * 1987-12-10 1989-06-16 Toda Constr Co Ltd Soil and sand adhesion detecting method in chamber
JPH01131186U (en) * 1988-03-02 1989-09-06
JPH02140350U (en) * 1989-04-20 1990-11-22
WO1991014078A1 (en) * 1990-03-09 1991-09-19 Kabushiki Kaisha Komatsu Seisakusho Method and system for detecting collapse of natural ground in shield driving method
WO1994002708A1 (en) * 1992-07-16 1994-02-03 Kabushiki Kaisha Komatsu Seisakusho Device for monitoring collapse of natural ground in underground excavator

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01154990A (en) * 1987-12-10 1989-06-16 Toda Constr Co Ltd Soil and sand adhesion detecting method in chamber
JPH01131186U (en) * 1988-03-02 1989-09-06
JPH02140350U (en) * 1989-04-20 1990-11-22
WO1991014078A1 (en) * 1990-03-09 1991-09-19 Kabushiki Kaisha Komatsu Seisakusho Method and system for detecting collapse of natural ground in shield driving method
US5199818A (en) * 1990-03-09 1993-04-06 Kabushiki Kaisha Komatsu Seisakusho Method and apparatus for detecting collapse of natural ground in shield driving method
WO1994002708A1 (en) * 1992-07-16 1994-02-03 Kabushiki Kaisha Komatsu Seisakusho Device for monitoring collapse of natural ground in underground excavator

Similar Documents

Publication Publication Date Title
CN106597551B (en) Sea bed gas hydrate exploits methane oxidizing archaea original position electricity monitoring method and apparatus
JP4651739B2 (en) Streamer electrical resistivity exploration system and riverbed ground structure analysis method using the same
CN105549095A (en) Multipolar electric measurement probe for detecting dam vertical antiseepage project
CN106761724A (en) Sea bed gas hydrate decomposes electricity monitoring method and device in well in situ
US4719407A (en) Automated search apparatus for locating leaks in geomembrane liners
SE2350728A1 (en) Mine water hazard monitoring apparatus and method
US20160145825A1 (en) Method and facility for manufacturing a continuous wall in the ground
CN113107507B (en) Advanced detection device
JPS62178689A (en) Method and device for detecting face disintegration of shielding type excavator
CN108594310B (en) Geological forecast equipment
CN201314903Y (en) Three-dimensional high-density electrical method apparatus
CN101435787B (en) Three-dimensional high-density electric method instrument
JP6902342B2 (en) Geological exploration method
JPH10260264A (en) Specific resistance electric searching method
CN108387444A (en) A kind of continuous monitoring and control method of cased well pressure break based on well-in-situ potential imaging
JPS61187642A (en) Apparatus for detecting collapse of face of shield type tunnel excavator
CN109026021B (en) Focusing system and method of shield tunneling machine
JPS6138092A (en) Method and apparatus for detecting face of shield type tunnel drilling machine
JPS61186696A (en) Method and apparatus for detecting collapse of face of shield type tunnel excavating machine
CN117270062B (en) TBM induced polarization advanced water detection device and method based on annular electrode emission
CN215894977U (en) Scanning electrical method advanced geological prediction device carried on large-diameter slurry shield
CN112462432B (en) High-precision detection method and device for fire area cavity of coal field
EP0651134A1 (en) Device for monitoring collapse of natural ground in underground excavator
Fargier et al. 2D-electrical resistivity imaging for sike survey: impact of the a priori information management
JP3233398B2 (en) Water leak detection device and water leak detection method