JP6902342B2 - Geological exploration method - Google Patents

Geological exploration method Download PDF

Info

Publication number
JP6902342B2
JP6902342B2 JP2016200112A JP2016200112A JP6902342B2 JP 6902342 B2 JP6902342 B2 JP 6902342B2 JP 2016200112 A JP2016200112 A JP 2016200112A JP 2016200112 A JP2016200112 A JP 2016200112A JP 6902342 B2 JP6902342 B2 JP 6902342B2
Authority
JP
Japan
Prior art keywords
voltage electrode
electrode
resistance value
voltage
ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016200112A
Other languages
Japanese (ja)
Other versions
JP2018063124A (en
Inventor
智明 大木
智明 大木
清人 金丸
清人 金丸
斎藤 秀樹
秀樹 斎藤
山下 善弘
善弘 山下
理 石塚
理 石塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oyo Corp
Shimizu Corp
Original Assignee
Oyo Corp
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oyo Corp, Shimizu Corp filed Critical Oyo Corp
Priority to JP2016200112A priority Critical patent/JP6902342B2/en
Publication of JP2018063124A publication Critical patent/JP2018063124A/en
Application granted granted Critical
Publication of JP6902342B2 publication Critical patent/JP6902342B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Excavating Of Shafts Or Tunnels (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Geophysics And Detection Of Objects (AREA)

Description

本発明は、例えばトンネル掘削などを行う際に施工領域の地質を探査するために適用して好適な地質探査方法に関する。 The present invention relates to a suitable geological exploration method is applied to probe the geological construction area when performing such tunneling.

周知のように、トンネル掘削を行う際には、効率的な掘進を行うため、あるいは障害物の有無を確認するために、事前にあるいは掘削しながら施工領域の地質を探査することが重要である。 As is well known, when excavating a tunnel, it is important to explore the geology of the construction area in advance or while excavating in order to perform efficient excavation or to check for obstacles. ..

そのための手段としては、例えば特許文献1に示される土質検知装置や特許文献2に示される測定装置が提案、実用化されている。これらの装置はいずれも、対の電流電極と対の電圧電極を備えた比抵抗センサをシールド掘進機やトンネルボーリングマシン等のトンネル掘削機に搭載し、地山の比抵抗を測定することによって施工領域の地質状況を探査して把握するように構成されている。 As means for that purpose, for example, the soil detection device shown in Patent Document 1 and the measuring device shown in Patent Document 2 have been proposed and put into practical use. All of these devices are constructed by mounting a resistivity sensor equipped with a pair of current electrodes and a pair of voltage electrodes on a tunnel excavator such as a shield excavator or a tunnel boring machine and measuring the resistivity of the ground. It is configured to explore and understand the geological conditions of the area.

ここで、大断面トンネル等の大規模な地中空洞を構築するための工法として、例えば特許文献3に示される地中空洞の施工方法(SR−JP工法(登録商標))が提案、実用化されている。 Here, as a construction method for constructing a large-scale underground cavity such as a large-section tunnel, for example, a construction method for an underground cavity (SR-JP construction method (registered trademark)) shown in Patent Document 3 has been proposed and put into practical use. Has been done.

この地中空洞の施工方法では、大断面トンネルの掘削に先立って、先受工としての多数のルーフシールドトンネルを間隔をおいて並設施工し、ルーフシールドトンネル内からの作業によって隣り合うルーフシールドトンネル間の地山を掘削するとともに本設覆工壁を施工する。そして、本設覆工壁の内側を掘削して大断面トンネルを構築する。 In this underground cavity construction method, prior to excavation of a large-section tunnel, a large number of roof shield tunnels as pre-construction work are constructed side by side at intervals, and adjacent roof shields are constructed by working from inside the roof shield tunnel. The ground between the tunnels will be excavated and the main lining wall will be constructed. Then, the inside of the main lining wall is excavated to construct a large-section tunnel.

隣り合うルーフシールドトンネル間を掘削するにあたり、その掘削領域を凍結工法や薬液注入工法等の補助工法によって地盤改良する必要があるが、地質に応じた最適な補助工法の選択や施工範囲を最適に設定するためにはルーフシールドトンネル間の地山状況を予め正確に把握することが重要になる。 When excavating between adjacent roof shield tunnels, it is necessary to improve the ground by auxiliary construction methods such as freezing method and chemical injection method, but the optimum auxiliary construction method and construction range are optimized according to the geology. In order to set it, it is important to accurately grasp the ground condition between the roof shield tunnels in advance.

特に、土丹層中に介在砂層が点在しているような地山では介在砂層に対して止水注入(薬液注入)を確実且つ入念に行う必要があるため、ルーフシールドトンネル間を掘削するに先立ち、ルーフシールドトンネルの周囲地山を全周且つ全長にわたって十分に地質を探査して介在砂層の位置やその状況を精度よく把握することが必要である。 In particular, in the ground where intervening sand layers are scattered in the soil layer, it is necessary to perform water stoppage injection (chemical solution injection) into the intervening sand layers reliably and carefully, so excavate between the roof shield tunnels. Prior to this, it is necessary to sufficiently explore the geology around the entire circumference of the roof shield tunnel and over the entire length to accurately grasp the position of the intervening sand layer and its condition.

従来、この種の砂層探査は地表からのボーリング調査によって行うようにしているが、大深度且つ大断面トンネルの施工に際して地表からボーリング調査を行うことは多大の手間と費用を必要とするばかりでなく高精度の探査が困難であり、現実的にこの従来法を適用することができない。 Conventionally, this type of sand layer exploration is carried out by boring survey from the ground surface, but conducting boring survey from the ground surface when constructing a deep and large cross-section tunnel not only requires a great deal of labor and cost. High-precision exploration is difficult, and this conventional method cannot be applied realistically.

このため、ボーリング調査に替え、前述の特許文献1、特許文献2に示されるような比抵抗センサを用いた探査手法の採用が検討されている。すなわち、ルーフシールドトンネルを掘削しながらその周囲地山の状況を比抵抗センサによって探査する手法の採用が検討されている。 Therefore, instead of the boring search, the adoption of a search method using a resistivity sensor as shown in the above-mentioned Patent Documents 1 and 2 is being considered. That is, the adoption of a method of exploring the condition of the surrounding ground with a resistivity sensor while excavating a roof shield tunnel is being studied.

実開平2−140350号公報Jikkenhei 2-140350 Gazette 特開平10−220182号公報Japanese Unexamined Patent Publication No. 10-22182 特開2008−156907号公報Japanese Unexamined Patent Publication No. 2008-156907

しかしながら、特許文献1に示される手法ではトンネルを掘削しながらその切羽前方の地山の土質探査は可能であるもののトンネルの側方地山の土質は探査することができず、また、特許文献2に示される手法では側方地山の探査は可能であるもののその探査可能範囲が比抵抗センサの設置位置周辺の限定された領域だけで、探査領域が非常に狭い。このため、これら従来手法ではルーフシールドトンネルの全長且つ全周にわたる地山状況を把握することはできない。 However, with the method shown in Patent Document 1, although the soil quality of the ground in front of the face can be searched while excavating the tunnel, the soil quality of the ground on the side of the tunnel cannot be searched, and Patent Document 2 Although it is possible to explore the lateral ground by the method shown in, the exploration area is very narrow because the explorable range is only a limited area around the installation position of the specific resistance sensor. Therefore, it is not possible to grasp the ground condition over the entire length and circumference of the roof shield tunnel by these conventional methods.

以上のように、特許文献1や特許文献2に示される従来の探査手法では広範囲にわたる地山探査は困難であり、大規模トンネルを上記の地中空洞の施工方法のような特殊な工法により構築する場合には必ずしも有効に適用し得ないことから、これを可能にする有効適切な手段の開発が強く求められている。 As described above, it is difficult to conduct a wide range of geological exploration with the conventional exploration methods shown in Patent Document 1 and Patent Document 2, and a large-scale tunnel is constructed by a special construction method such as the above-mentioned underground cavity construction method. In this case, it cannot always be applied effectively, so there is a strong demand for the development of effective and appropriate means to enable this.

また、比抵抗センサを用い、掘進中に掘削断面全周の土質状況をリアルタイムで把握することによって施工の安全性と効率のよい掘進施工管理を行うことができる。 In addition, by using the resistivity sensor and grasping the soil condition of the entire circumference of the excavation section in real time during excavation, it is possible to perform excavation construction safety and efficient excavation construction management.

しかしながら、本願の発明者らにより現場にて実証実験を行った結果、砂層を砂層と的確に判別した割合(的中率)は約8割と高く、高精度であったが、全体的な的中率が5割〜8割程度であり、十分満足な土質探査手法として確立されているとは言えない状況であった。そして、この誤差の要因として、探査範囲にあるオーバーカット分の掘削泥土の影響や泥土中の砂分が下方に沈降堆積する影響が挙げられた。 However, as a result of conducting on-site demonstration experiments by the inventors of the present application, the ratio (hit rate) of accurately distinguishing the sand layer from the sand layer was as high as about 80%, which was high accuracy, but overall. The medium rate was about 50% to 80%, and it could not be said that it was established as a sufficiently satisfactory soil exploration method. The causes of this error were the influence of the overcut excavated mud in the exploration range and the influence of the sand in the mud settling down.

よって、このようなオーバーカット分の掘削泥土の影響等を捉え、正確に地山探査を行えるようにすることが求められている。 Therefore, it is required to grasp the influence of such overcut excavated mud and to enable accurate ground exploration.

上記の目的を達するために、この発明は以下の手段を提供している。 To achieve the above object, the present invention provides the following means.

本発明の地質探査方法は、所定の間隔をあけて並設される電流電極と電圧電極を有する比抵抗センサを用いて地山の比抵抗値を計測する地質探査方法であって、前記比抵抗センサとして、両外側にそれぞれ設けられる第1電流電極と第2電流電極と、前記第1電流電極と前記第2電流電極の間に設けられる第1電圧電極と第2電圧電極と、前記第1電圧電極と前記第2電圧電極の間に設けられる第3電圧電極と、からなる5つの電極のみを備え、前記第1電流電極と前記第2電流電極で通電し、前記第1電圧電極と前記第2電圧電極の間の電位を計測することで表層部のオーバーカット範囲泥土等とそれより深部の地山を合わせた第1抵抗値を計測するとともに、前記第1電圧電極と前記第3電圧電極、及び/又は前記第2電圧電極と前記第3電圧電極の間の電位を計測することで前記表層部のみの第2抵抗値を計測し、前記第1抵抗値から前記第2抵抗値を控除することで前記地山部分の比抵抗値を求めるようにしたことを特徴とする。
また、本発明の地質探査方法においては、前記比抵抗センサはトンネル掘削機の回転カッタの外周端面に取り付けられ、前記回転カッタの移動に伴って、前記比抵抗センサの移動範囲の全領域の前記比抵抗値を求めてもよい。
The geological exploration method of the present invention is a geological exploration method for measuring the specific resistance value of a ground by using a specific resistance sensor having a current electrode and a voltage electrode arranged side by side at predetermined intervals, and the specific resistance. As sensors, a first current electrode and a second current electrode provided on both outer sides, a first voltage electrode and a second voltage electrode provided between the first current electrode and the second current electrode, and the first voltage electrode. It is provided with only five electrodes consisting of a third voltage electrode provided between the voltage electrode and the second voltage electrode, and is energized by the first current electrode and the second current electrode, and the first voltage electrode and the second voltage electrode are energized. By measuring the potential between the second voltage electrodes, the first resistance value, which is the sum of the overcut range mud in the surface layer and the ground deeper than it, is measured, and the first voltage electrode and the third voltage are measured. By measuring the electrode and / or the potential between the second voltage electrode and the third voltage electrode, the second resistance value of only the surface layer portion is measured, and the second resistance value is calculated from the first resistance value. It is characterized in that the specific resistance value of the ground portion is obtained by deducting it.
Further, in the geological exploration method of the present invention, the resistivity sensor is attached to the outer peripheral end surface of the rotary cutter of the tunnel excavator, and as the rotary cutter moves, the entire region of the moving range of the resistivity sensor is described. The specific resistance value may be obtained.

本発明の地質探査方法においては、第1電圧電極と第3電圧電極の間の離間(距離)及び/又は第2電圧電極と第3電圧電極の間の離間を所定の距離寸法で設定しておくことにより、外側2本の第1電圧電極と第2電圧電極では、表層部のオーバーカット範囲泥土等とそれより深部の地山を合せた抵抗値を計測することができ、第1電圧電極と第3電圧電極、及び/又は第2電圧電極と第3電圧電極では、オーバーカット分泥土などの表層部のみの抵抗値を計測することが可能になる。 In geological exploration process of the invention, set at a predetermined distance dimension the spacing between the spaced apart (distance) and / or the second voltage electrode and the third voltage electrode between the first voltage electrode and the third voltage electrode By setting the voltage, the resistance value of the two outer first voltage electrodes and the second voltage electrode, which is the sum of the overcut range mud on the surface layer and the ground deeper than it, can be measured, and the first voltage can be measured. With the electrodes and the third voltage electrode, and / or the second voltage electrode and the third voltage electrode, it is possible to measure the resistance value of only the surface layer portion such as the overcut portion mud.

したがって、外側2本の第1電圧電極と第2電圧電極で計測した抵抗値から第1電圧電極と第3電圧電極、又は第2電圧電極と第3電圧電極で計測した抵抗値を控除することにより、オーバーカット範囲の泥土の影響等を除くことができ、純粋に地山部分の抵抗値を精度よく測定することが可能になる。 Therefore, subtract the resistance values measured by the first voltage electrode and the third voltage electrode, or the second voltage electrode and the third voltage electrode from the resistance values measured by the two outer first voltage electrodes and the second voltage electrode. As a result, the influence of mud in the overcut range can be removed, and the resistance value of the ground portion can be measured purely with high accuracy.

よって、本発明の地質探査方法によれば、第3電圧電極を備えることにより、オーバーカット分泥土等の表層部のみの抵抗値を計測することができ、オーバーカット範囲の泥土の影響等を取り除き、精度よく深部の地山の抵抗値を計測することが可能になり、正確で信頼性の高い地山探査/地質探査を行うことが可能になる。
Therefore, according to the geological exploration process of the present invention, by providing a third voltage electrode, it is possible to measure the resistance of only the surface layer portion of such overcut minute mud, the influence of mud overcut range By removing it, it becomes possible to measure the resistance value of deep ground with high accuracy, and it becomes possible to carry out accurate and reliable geological exploration / geological exploration.

本発明の一実施形態に係る地質探査装置を示す図であり、トンネル掘削機に比抵抗センサを設けて構成した地質探査装置を示す図である。It is a figure which shows the geological exploration apparatus which concerns on one Embodiment of this invention, and is the figure which shows the geological exploration apparatus which was configured by providing the specific resistance sensor in the tunnel excavator. 本発明の一実施形態に係る地質探査装置を示す図であり、トンネル掘削機に比抵抗センサを設けて構成した地質探査装置を示す図である。It is a figure which shows the geological exploration apparatus which concerns on one Embodiment of this invention, and is the figure which shows the geological exploration apparatus which was configured by providing the specific resistance sensor in the tunnel excavator. 本発明の一実施形態に係る地質探査装置の比抵抗センサを示す図であり、(a)が平面図、(b)が断面図((a)のX1−X1線矢視図)である。It is a figure which shows the resistivity sensor of the geological exploration apparatus which concerns on one Embodiment of this invention, (a) is a plan view, (b) is a sectional view (X1-X1 line arrow view of (a)). 本発明の一実施形態に係る地質探査装置の比抵抗センサで地山の比抵抗を測定する状況を示す図である。It is a figure which shows the situation which the resistivity of a ground is measured by the resistivity sensor of the geological exploration apparatus which concerns on one Embodiment of this invention.

以下、図1から図4を参照し、本発明の一実施形態に係る地質探査装置及び地質探査方法について説明する。ここで、本実施形態では、SR−JP工法などで小断面のルーフシールドトンネルを掘削する際に、本発明に係る地質探査装置及び地質探査方法を用いて周囲地山の地質を探査するものとして説明を行う。 Hereinafter, the geological exploration apparatus and the geological exploration method according to the embodiment of the present invention will be described with reference to FIGS. 1 to 4. Here, in the present embodiment, when excavating a roof shield tunnel having a small cross section by the SR-JP method or the like, the geological exploration device and the geological exploration method according to the present invention are used to explore the geology of the surrounding ground. Give an explanation.

はじめに、本実施形態の地質探査装置は、図1(または図2)に示すように、ルーフシールドトンネルを掘削するためのトンネル掘削機(ベースマシン)1に地山の比抵抗を計測するための比抵抗センサ5を搭載して構成されている。 First, as shown in FIG. 1 (or FIG. 2), the geological exploration device of the present embodiment measures the resistivity of the ground on the tunnel excavator (base machine) 1 for excavating the roof shield tunnel. It is configured to be equipped with a resistivity sensor 5.

具体的に、ベースマシンとしてのトンネル掘削機1は、通常のシールド掘削機と同様、スキンプレート2の前部に回転カッタ3を備え、回転カッタ3を回転させて切羽を掘削するとともにスキンプレート2内の推進ジャッキ(図示略)によって後方で組み立てたセグメント(図示略)から反力を取り、掘進し、ルーフシールドトンネルを構築してゆくためのものである。 Specifically, the tunnel excavator 1 as a base machine is provided with a rotary cutter 3 at the front portion of the skin plate 2 like a normal shield excavator, and the rotary cutter 3 is rotated to excavate a face and the skin plate 2 The purpose is to take the reaction force from the segment (not shown) assembled at the rear by the propulsion jack (not shown) inside, excavate, and build the roof shield tunnel.

ベースマシンとしてのトンネル掘削機1に搭載されている比抵抗センサ5は、図3(図1、図2)に示すように、基部6とに対して5つの電極(7a、7b、7c、7d、7e)を備え、基部6の両側端部側の2つの電極が第1電流電極7a、第2電流電極7b、第1電流電極7aと第2電流電極7bの間の中央側の2つの電極が第1電圧電極7c、第2電圧電極7dとされている。また、比抵抗センサ5には通電装置と演算装置(不図示)が接続されている。 As shown in FIG. 3 (FIGS. 1 and 2), the specific resistance sensor 5 mounted on the tunnel excavator 1 as a base machine has five electrodes (7a, 7b, 7c, 7d) with respect to the base 6. , 7e), and the two electrodes on both side ends of the base 6 are the first current electrode 7a, the second current electrode 7b, and the two electrodes on the center side between the first current electrode 7a and the second current electrode 7b. Is the first voltage electrode 7c and the second voltage electrode 7d. Further, an energizing device and an arithmetic unit (not shown) are connected to the resistivity sensor 5.

そして、図4に示すように、通電装置により第1電流電極7a、第2電流電極7bに所定の電流を流し、電圧を第1電圧電極7c、第2電圧電極7dで計測することにより、演算装置がそれらの計測値から地山Gの比抵抗を演算し、これに基づき地山Gの状況を把握することができる。 Then, as shown in FIG. 4, a predetermined current is passed through the first current electrode 7a and the second current electrode 7b by the energizing device, and the voltage is measured by the first voltage electrode 7c and the second voltage electrode 7d. The device can calculate the specific resistance of the ground G from those measured values, and based on this, the situation of the ground G can be grasped.

また、本実施形態の地質探査装置では比抵抗センサ5が回転カッタ3の外周端面に設置され、これにより、回転カッタ3の回転に伴って比抵抗センサ5が地中において回転軌跡を描いてその位置が刻々と移動し、且つトンネル掘削機1の掘進に伴って比抵抗センサ5が地中を前方に移動していく。このように構成することによって、回転カッタ3の回転に伴い比抵抗センサ5が順次移動し、その移動範囲の全領域における比抵抗を計測し演算して3次元データを得ることができる。よって、ルーフシールドトンネルの外周地山Gの地質状況を全周かつ全長にわたって正確に把握することが可能である。 Further, in the geological exploration device of the present embodiment, the resistivity sensor 5 is installed on the outer peripheral end surface of the rotary cutter 3, whereby the resistivity sensor 5 draws a rotation locus in the ground as the rotation cutter 3 rotates. The position moves every moment, and the resistivity sensor 5 moves forward in the ground as the tunnel excavator 1 excavates. With this configuration, the resistivity sensor 5 moves sequentially with the rotation of the rotary cutter 3, and the resistivity in the entire region of the movement range can be measured and calculated to obtain three-dimensional data. Therefore, it is possible to accurately grasp the geological condition of the outer ground G of the roof shield tunnel over the entire circumference and the entire length.

一方、本実施形態の比抵抗センサ5は、従来と異なり、図3(図1、図2)に示すように、中央側の2つの第1電圧電極7c、第2電圧電極7dの間に第3電圧電極7eを備えて構成されている。 On the other hand, the resistivity sensor 5 of the present embodiment is different from the conventional one, and as shown in FIGS. 3 (1 and 2), the resistivity sensor 5 is located between the two central voltage electrodes 7c and 7d. It is configured to include a three-voltage electrode 7e.

これにより、中央側の第1電圧電極7cと第2電圧電極7dの間で電圧を計測するとともに、第1電圧電極7c(あるいは第2電圧電極7d)と第3電圧電極7eの間でも電圧を計測することができる。 As a result, the voltage is measured between the first voltage electrode 7c and the second voltage electrode 7d on the center side, and the voltage is also measured between the first voltage electrode 7c (or the second voltage electrode 7d) and the third voltage electrode 7e. Can be measured.

すなわち、本実施形態の比抵抗センサ5においては、外側2本の第1電流電極7aと第2電流電極7bから電流を流し、第1電流電極7aと第2電流電極7bの間の中央の2本の第1電圧電極7cと第2電圧電極7dで電位(抵抗値)を測定し、比抵抗値に換算し、砂層、粘土層など、地山Gの状況を判別する。 That is, in the specific resistance sensor 5 of the present embodiment, a current is passed from the two outer first current electrodes 7a and the second current electrode 7b, and the central 2 between the first current electrode 7a and the second current electrode 7b. The potential (resistance value) is measured by the first voltage electrode 7c and the second voltage electrode 7d of the book, converted into the specific resistance value, and the state of the ground G such as the sand layer and the clay layer is discriminated.

さらに、第1電圧電極7cと第2電圧電極7dの間に第3電圧電極7eを設けたことにより、第1電圧電極7cと第3電圧電極7e、及び/又は第2電圧電極7dと第3電圧電極7eの間の電位(抵抗値)を測定することができる。 Further, by providing the third voltage electrode 7e between the first voltage electrode 7c and the second voltage electrode 7d, the first voltage electrode 7c and the third voltage electrode 7e, and / or the second voltage electrode 7d and the third The potential (resistance value) between the voltage electrodes 7e can be measured.

このとき、図4に示すように、第1電圧電極7cと第3電圧電極7eの間の離間(距離)及び/又は第2電圧電極7dと第3電圧電極7eの間の離間を所定の距離寸法で設定しておくことにより、外側2本の第1電圧電極7cと第2電圧電極7dでは、表層部G1のオーバーカット範囲泥土等とそれより深部の地山Gを合せた抵抗値を計測することができ、第1電圧電極7cと第3電圧電極7e、及び/又は第2電圧電極7dと第3電圧電極7eでは、オーバーカット分泥土などの表層部G1のみの抵抗値を計測することが可能になる。 At this time, as shown in FIG. 4, the separation (distance) between the first voltage electrode 7c and the third voltage electrode 7e and / or the separation between the second voltage electrode 7d and the third voltage electrode 7e is a predetermined distance. By setting the dimensions, the resistance value of the two outer first voltage electrodes 7c and the second voltage electrode 7d, which is the sum of the overcut range mud of the surface layer G1 and the ground G deeper than it, is measured. At the first voltage electrode 7c and the third voltage electrode 7e, and / or the second voltage electrode 7d and the third voltage electrode 7e, the resistance value of only the surface layer portion G1 such as overcut mud is measured. Becomes possible.

よって、外側2本の第1電圧電極7cと第2電圧電極7dで計測した抵抗値から第1電圧電極7cと第3電圧電極7e、又は第2電圧電極7dと第3電圧電極7eで計測した抵抗値を「控除する」ことにより、オーバーカット範囲の泥土の影響等を除くことができ、純粋に地山G部分の抵抗値を精度よく測定することが可能になる。
なお、本実施形態において、上記の「控除する」は、外側2本の第1電圧電極7cと第2電圧電極7dで計測した抵抗値から第1電圧電極7cと第3電圧電極7e、又は第2電圧電極7dと第3電圧電極7eで計測した抵抗値を引くという単純計算を行うのではなく、外側2本の第1電圧電極7cと第2電圧電極7dで計測される抵抗値について、オーバーカット範囲の泥土が及ぼす影響を含んだ理論的な予測値を、仮に決めた地山G部分の抵抗値と、第1電圧電極7cと第3電圧電極7e、又は第2電圧電極7dと第3電圧電極7eで計測した抵抗値の片方、又は両方を用いて計算し、この泥土の影響を含めた第1電圧電極7cと第2電圧電極7dによる理論予測値が実際の計測値と十分に近くなるように地山G部分の抵抗値を逐次近似計算によって求めることを意味する。
Therefore, from the resistance values measured by the two outer first voltage electrodes 7c and the second voltage electrode 7d, the resistance values were measured by the first voltage electrode 7c and the third voltage electrode 7e, or the second voltage electrode 7d and the third voltage electrode 7e. By "deducting" the resistance value, the influence of mud in the overcut range can be removed, and the resistance value of the ground G portion can be measured purely with high accuracy.
In the present embodiment, the above "deduct" means the first voltage electrode 7c and the third voltage electrode 7e, or the third voltage electrode 7e, from the resistance values measured by the two outer first voltage electrodes 7c and the second voltage electrode 7d. Instead of performing a simple calculation of subtracting the resistance values measured by the 2nd voltage electrode 7d and the 3rd voltage electrode 7e, the resistance values measured by the 2 outer 1st voltage electrodes 7c and the 2nd voltage electrode 7d are over. The theoretical predicted value including the influence of the mud in the cut range is the resistance value of the ground G part, which is tentatively determined, and the first voltage electrode 7c and the third voltage electrode 7e, or the second voltage electrode 7d and the third. Calculated using one or both of the resistance values measured by the voltage electrode 7e, the theoretical predicted values by the first voltage electrode 7c and the second voltage electrode 7d including the influence of this mud are sufficiently close to the actual measured values. It means that the resistance value of the ground G portion is obtained by sequential approximation calculation so as to be.

したがって、本実施形態の地質探査装置及び地質探査方法によれば、第3電圧電極7eを備えることにより、オーバーカット分泥土等の表層部G1のみの抵抗値を計測することができ、オーバーカット範囲の泥土の影響等を取り除き、精度よく地山Gの抵抗値を計測することが可能になる。よって、正確で信頼性の高い地山探査/地質探査を行うことが可能になる。 Therefore, according to the geological exploration device and the geological exploration method of the present embodiment, by providing the third voltage electrode 7e, it is possible to measure the resistance value of only the surface layer portion G1 such as the overcut cob, and the overcut range. It is possible to accurately measure the resistance value of the ground G by removing the influence of mud and the like. Therefore, accurate and highly reliable geological exploration / geological exploration can be performed.

以上、本発明に係る地質探査装置及び地質探査方法の一実施形態について説明したが、本発明は上記の一実施形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更可能である。 Although one embodiment of the geological exploration apparatus and the geological exploration method according to the present invention has been described above, the present invention is not limited to the above one embodiment and can be appropriately changed without departing from the spirit of the present invention. ..

例えば、本実施形態では、SR−JP工法においてルーフシールドトンネルを施工する際にその周囲地山を探査する場合を一例として挙げ、ルーフシールドトンネルを掘削するためのトンネル掘削機(シールド掘削機)1を比抵抗センサ5を設置するためのベースマシンとしたが、ベースマシンとしては前面に回転カッタを備えてその外周端面に比抵抗センサを装着可能なものであれば良く、シールド掘削機に限らず各種のトンネル掘削機を採用可能である。 For example, in the present embodiment, a case of exploring the surrounding ground when constructing a roof shield tunnel in the SR-JP method is taken as an example, and a tunnel excavator (shield excavator) 1 for excavating the roof shield tunnel. Was used as the base machine for installing the specific resistance sensor 5, but the base machine may be any one that has a rotating cutter on the front surface and can be equipped with the specific resistance sensor on the outer peripheral end face thereof, and is not limited to the shield excavator. Various tunnel excavators can be adopted.

さらに、本発明の地質探査装置(及び地質探査方法)は、本実施形態のようにトンネル掘削時における地山探査を目的として各種のトンネル掘削機をベースマシンとすることに限定する必要もなく、各種分野において様々な目的で地質探査を行う場合全般に広く適用可能であり、本発明の地質探査装置(及び地質探査方法)の具体的な構成はその目的や使用状況に応じて変更可能である。 Further, the geological exploration device (and the geological exploration method) of the present invention does not need to be limited to using various tunnel excavators as a base machine for the purpose of geological exploration at the time of tunnel excavation as in the present embodiment. It is widely applicable to the case of performing geological exploration for various purposes in various fields, and the specific configuration of the geological exploration device (and geological exploration method) of the present invention can be changed according to the purpose and usage conditions. ..

すなわち、本実施形態ではトンネル掘削時にその周囲地山を探査することを目的とするものであることから、比抵抗センサ5を設置するためのベースマシンをトンネル掘削機1としてその回転カッタ3の外周端面に比抵抗センサ5を設置した(つまり、比抵抗センサ5を回転させるための回転体としてトンネル掘削機の回転カッタ3を利用したものであるといえる)が、本発明はトンネル掘削機をベースマシンとすることに限定するものではないし、比抵抗センサ5を回転させるための回転体としてトンネル掘削機の回転カッタ3を利用することに限定する必要もない。 That is, since the purpose of this embodiment is to explore the surrounding ground during tunnel excavation, the base machine for installing the specific resistance sensor 5 is used as the tunnel excavator 1 and the outer circumference of the rotary cutter 3 is used as the tunnel excavator 1. Although the specific resistance sensor 5 is installed on the end face (that is, it can be said that the rotary cutter 3 of the tunnel excavator is used as a rotating body for rotating the specific resistance sensor 5), the present invention is based on the tunnel excavator. It is not limited to the machine, and it is not necessary to limit the use of the rotary cutter 3 of the tunnel excavator as a rotating body for rotating the specific resistance sensor 5.

1 トンネル掘削機(ベースマシン)
2 スキンプレート
3 回転カッタ(回転体)
5 比抵抗センサ
6 基部
7 電極
7a 第1電流電極
7b 第2電流電極
7c 第1電圧電極
7d 第2電圧電極
7e 第3電圧電極
G 地山
G1 表層部
1 Tunnel excavator (base machine)
2 Skin plate 3 Rotating cutter (rotating body)
5 Specific resistance sensor 6 Base 7 Electrode 7a 1st current electrode 7b 2nd current electrode 7c 1st voltage electrode 7d 2nd voltage electrode 7e 3rd voltage electrode G Ground G1 Surface layer

Claims (2)

所定の間隔をあけて並設される電流電極と電圧電極を有する比抵抗センサを用いて地山の比抵抗値を計測する地質探査方法であって、
前記比抵抗センサとして、両外側にそれぞれ設けられる第1電流電極と第2電流電極と、前記第1電流電極と前記第2電流電極の間に設けられる第1電圧電極と第2電圧電極と、前記第1電圧電極と前記第2電圧電極の間に設けられる第3電圧電極と、からなる5つの電極のみを備え、
前記第1電流電極と前記第2電流電極で通電し、前記第1電圧電極と前記第2電圧電極の間の電位を計測することで表層部のオーバーカット範囲泥土等とそれより深部の地山を合わせた第1抵抗値を計測するとともに、前記第1電圧電極と前記第3電圧電極、及び/又は前記第2電圧電極と前記第3電圧電極の間の電位を計測することで前記表層部のみの第2抵抗値を計測し、前記第1抵抗値から前記第2抵抗値を控除することで前記地山部分の比抵抗値を求めるようにしたことを特徴とする地質探査方法。
It is a geological exploration method that measures the specific resistance value of the ground using a specific resistance sensor that has a current electrode and a voltage electrode that are arranged side by side at a predetermined interval.
As the specific resistance sensor, a first current electrode and a second current electrode provided on both outer sides, and a first voltage electrode and a second voltage electrode provided between the first current electrode and the second current electrode, respectively, It is provided with only five electrodes including a third voltage electrode provided between the first voltage electrode and the second voltage electrode.
By energizing the first current electrode and the second current electrode and measuring the potential between the first voltage electrode and the second voltage electrode, the overcut range of the surface layer is mud and the ground deeper than it. The surface layer portion is measured by measuring the combined first resistance value and measuring the potential between the first voltage electrode and the third voltage electrode, and / or between the second voltage electrode and the third voltage electrode. A geological exploration method characterized in that the specific resistance value of the ground portion is obtained by measuring the second resistance value of the electric current and subtracting the second resistance value from the first resistance value.
前記比抵抗センサはトンネル掘削機の回転カッタの外周端面に取り付けられ、
前記回転カッタの移動に伴って、前記比抵抗センサの移動範囲の全領域の前記比抵抗値を求めることを特徴とする請求項1に記載の地質探査方法。
The resistivity sensor is attached to the outer peripheral end face of the rotary cutter of the tunnel excavator.
The geological exploration method according to claim 1, wherein the specific resistance value of the entire region of the moving range of the specific resistance sensor is obtained as the rotary cutter moves.
JP2016200112A 2016-10-11 2016-10-11 Geological exploration method Active JP6902342B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016200112A JP6902342B2 (en) 2016-10-11 2016-10-11 Geological exploration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016200112A JP6902342B2 (en) 2016-10-11 2016-10-11 Geological exploration method

Publications (2)

Publication Number Publication Date
JP2018063124A JP2018063124A (en) 2018-04-19
JP6902342B2 true JP6902342B2 (en) 2021-07-14

Family

ID=61967677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016200112A Active JP6902342B2 (en) 2016-10-11 2016-10-11 Geological exploration method

Country Status (1)

Country Link
JP (1) JP6902342B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7305596B2 (en) * 2020-06-04 2023-07-10 株式会社クボタ Work equipment and geological survey support system
KR102467925B1 (en) * 2020-10-08 2022-11-17 주식회사 브이씨 Green information measuring apparatus and hole cutter including the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4796186A (en) * 1985-06-03 1989-01-03 Oil Logging Research, Inc. Conductivity determination in a formation having a cased well
JPH02140350U (en) * 1989-04-20 1990-11-22
JP3041426B1 (en) * 1999-05-31 2000-05-15 農林水産省農業工学研究所長 Fill dam management system by resistivity tomography and its management method
JP2003215180A (en) * 2002-01-18 2003-07-30 Non-Destructive Inspection Co Ltd Method and instrument for measuring specific resistance
JP5778527B2 (en) * 2011-09-07 2015-09-16 清水建設株式会社 Geological exploration equipment

Also Published As

Publication number Publication date
JP2018063124A (en) 2018-04-19

Similar Documents

Publication Publication Date Title
CN108798690B (en) Combined TBM for realizing geological detection and geological detection tunneling method
Liu et al. Comprehensive ahead prospecting for hard rock TBM tunneling in complex limestone geology: a case study in Jilin, China
JP6251128B2 (en) Judgment method of soil distribution by shield machine
JP6902342B2 (en) Geological exploration method
JP4664942B2 (en) Shield machine and tunnel method
CN105652311A (en) Micro-seismic monitoring method for monitoring water inrush of base plate
JP5778527B2 (en) Geological exploration equipment
US20230184983A1 (en) Vector-resistivity-based real-time advanced detection method for water-bearing hazard body
JPH1061384A (en) Wear diagnosis method of cutter of tunnel excavating equipment
JP5128912B2 (en) Groundwater exploration method in the ground in front of the tunnel
CN110318736B (en) Karst tunnel water detection device and water plugging construction method based on karst tunnel water detection device
DE102007021399A1 (en) Geoelectrical parameter determining method for measuring device for e.g. gas exploration, involves utilizing shield and measuring electrodes for frequency-dependent determination based on analysis of measuring circuit resistances
JP3513758B2 (en) Visualization method of arbitrary section of ground
JP3099025B2 (en) Method of detecting leakage from earth retaining wall
JP5417232B2 (en) Exploration system, shield machine and shield machine excavation method
JP5048601B2 (en) Sediment flow measuring device in chamber and shield machine
JP2016000939A (en) Tunnel excavator
CN111025410A (en) Electrical method advanced detection system and method
JP3943430B2 (en) Method for predicting natural conditions ahead of face and excavation method
CN111156051A (en) Tunnel surrounding rock internal displacement monitoring system and collapse early warning method
JP2873397B2 (en) Land Survey System
JPH10220182A (en) Specific resistivity measuring device and tunnel excavating machine using the same device
KR101791588B1 (en) Tunnel boring machine with ground prediction device and ground prediction method of using the same
CN212003265U (en) Tunnel surrounding rock internal displacement monitoring system
JPH0223674Y2 (en)

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161110

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200519

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200713

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20200925

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210601

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210621

R150 Certificate of patent or registration of utility model

Ref document number: 6902342

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150