JPS62176969A - Manufacture of inorganic layered porous body - Google Patents

Manufacture of inorganic layered porous body

Info

Publication number
JPS62176969A
JPS62176969A JP1620786A JP1620786A JPS62176969A JP S62176969 A JPS62176969 A JP S62176969A JP 1620786 A JP1620786 A JP 1620786A JP 1620786 A JP1620786 A JP 1620786A JP S62176969 A JPS62176969 A JP S62176969A
Authority
JP
Japan
Prior art keywords
group
inorganic layered
layered porous
compound
porous material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1620786A
Other languages
Japanese (ja)
Other versions
JPH044274B2 (en
Inventor
勝 横山
平尾 正三
隆 岸本
孝一 高濱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP1620786A priority Critical patent/JPS62176969A/en
Publication of JPS62176969A publication Critical patent/JPS62176969A/en
Publication of JPH044274B2 publication Critical patent/JPH044274B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/20Mica; Vermiculite
    • C04B14/206Mica or vermiculite modified by cation-exchange; chemically exfoliated vermiculate

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Civil Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔技術分野〕 この発明は、断熱性に優れた無機層状多孔体の製法に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a method for producing an inorganic layered porous material having excellent heat insulation properties.

〔背景技術〕[Background technology]

空隙を有する層状多孔体として、膨潤性層状化合物の層
間に水酸化物等の異種物質を挿入反応させたインターカ
レーション物質がある(たとえば、特開昭54−588
4号公鞠および特開昭54−16386号公報参照)。
As a layered porous material having voids, there is an intercalation material in which a different substance such as hydroxide is inserted between layers of a swellable layered compound (for example, Japanese Patent Application Laid-Open No. 54-588
(See Publication No. 4 and Japanese Unexamined Patent Publication No. 16386/1986).

ところが、このものは、層間距離が10Å以下と小さい
ため、吸着水の影響を受けやすく、また、断熱性の点で
もあまりすぐれているとはいえないものである。
However, since this material has a small interlayer distance of 10 Å or less, it is easily affected by adsorbed water, and it cannot be said to have very good heat insulation properties.

これに対し、微細多孔質粘土材料として、スメクタイト
型鉱物に水溶性高分子化合物を混合したものを使用し、
それに、陽イオン性酸化物あるいは重合体状シリカをイ
ンターカレーションすることが、特開昭60−1318
78号公報、特開昭60−137812号公報、特開昭
60−137813号公報、特開昭60−155526
号公報、ならびに、特開昭60−166217号公報等
に示されている。これらの方法によれば、層間距離を前
述のインターカレーション物質の場合め10Å以下から
、30人程度にまで拡げることができる。しかしながら
、この方法によって形成された層状多孔体では、前述し
たように層間距離を30人程度にまで拡げることができ
ても、その空隙内に水分が吸着されやすいため、この水
分の吸着による各層間の熱的な短絡が発生することがさ
けられず、熱物性の向上が期待できない。
In contrast, we used a mixture of smectite minerals and water-soluble polymer compounds as microporous clay materials.
In addition, intercalation of cationic oxide or polymeric silica has been proposed in JP-A-60-1318.
78, JP 60-137812, JP 60-137813, JP 60-155526
No. 60-166217, etc. According to these methods, the interlayer distance can be increased from 10 Å or less in the case of the above-mentioned intercalation material to about 30. However, in the layered porous body formed by this method, even if the interlayer distance can be increased to about 30 people as described above, moisture is likely to be adsorbed within the pores. It is unavoidable that a thermal short circuit will occur, and no improvement in thermal properties can be expected.

〔発明の目的〕[Purpose of the invention]

この発明は、このような事情に鑑みて層間に比較的大き
な空隙を有して断熱効果に優れた無機層状多孔体の製法
を提供することを目的としている〔発明の開示〕 このような目的を達成するためにこの発明は、膨潤させ
た膨潤性層状化合物の層間に、水溶性高分子化合物およ
び第4級アンモニウム塩のうちの少なくとも一方を挿入
するとともに、あらかじめシランカップリング剤で表面
を処理したシリカゾルをも前記層間に挿入し、乾燥・焼
成を行って前記層間に微細な空隙を形成するようにする
無機層状多孔体の製法を要旨とする。
In view of these circumstances, the present invention aims to provide a method for producing an inorganic layered porous material having relatively large voids between layers and having excellent heat insulation effect.[Disclosure of the Invention] In order to achieve this, the present invention involves inserting at least one of a water-soluble polymer compound and a quaternary ammonium salt between the layers of a swollen layered compound, and treating the surface with a silane coupling agent in advance. The gist of the present invention is a method for producing an inorganic layered porous body in which silica sol is also inserted between the layers, and then dried and fired to form fine voids between the layers.

以下に、この発明を、その1実施例をあられす図面を参
照しつつ詳しく説明する。
Hereinafter, one embodiment of the present invention will be described in detail with reference to the accompanying drawings.

構造を模式化してあられした第1図にみるように、この
発明の無機層状多孔体の製法によって得られる無機層状
多孔体Aは、無機層状化合物の層1.1間に、シリカ2
が挿入固定されている。そのため、その層間の空隙3が
30〜600人に保持されている。
As shown in FIG. 1, which schematically shows the structure, the inorganic layered porous material A obtained by the inorganic layered porous material manufacturing method of the present invention has silica 2 between the layers 1.1 of the inorganic layered compound.
The insertion has been fixed. Therefore, the gap 3 between the layers is maintained between 30 and 600 people.

膨潤性層状化合物としては、Na−モンモリロナイト 
Ca−モンモリロナイト酸性白土、3−八面体合成スメ
クタイト Na−ヘクトライト、Li−ヘクトライト、
Na−テニオライト、Li−テニオライトおよび合成雲
母(Naフッ素四ケイ素雲母)等が挙げられるが、膨潤
性層状化合物でありさえすれば、これらに限られるもの
ではない。Ca−モンモリロナイトおよび酸性白土等の
ような膨潤性層状化合物を主材として用いる場合には、
強い剪断力を加えないと膨潤しにくいので、膨潤時は混
練する必要がある。
As the swelling layered compound, Na-montmorillonite
Ca-montmorillonite acid clay, 3-octahedral synthetic smectite Na-hectorite, Li-hectorite,
Examples include Na-teniolite, Li-teniolite, and synthetic mica (Na-fluorotetrasilicon mica), but the compound is not limited to these as long as it is a swellable layered compound. When using a swellable layered compound such as Ca-montmorillonite and acid clay as the main material,
It is difficult to swell unless a strong shearing force is applied, so it is necessary to knead it during swelling.

シリカゾルの表面を処理するためのシランカップリング
剤の種類も、この発明では特に限定されないが、たとえ
ば、以下の式(1)であらわされた化合物がこの発明に
好ましいものとしてあげられる。
The type of silane coupling agent for treating the surface of the silica sol is not particularly limited in this invention, but for example, a compound represented by the following formula (1) is preferred for this invention.

R31X、      ・・・(1) 式中Rは、有機材料と結合する置換基をもつ有機官能性
基をあられしており、好ましいものとしては、アミノ基
、ビニル基、エポキシ基等があげられる。また、式中X
は、無機材料と反応する加水分解性基をあ−られしてお
り、好ましいものとしては、CI、F等のハロゲンや、
メトキシ基、エトキシ基等のアルコキシ基があげられる
R 31 Also, in the formula
has a hydrolyzable group that reacts with inorganic materials, and preferable ones include halogens such as CI and F,
Examples include alkoxy groups such as methoxy and ethoxy groups.

この発明において、シリカゾルの表面を以上のようなシ
ランカップリング剤であらかじめ処理しておくのは、つ
ぎのような理由による。
In this invention, the reason why the surface of the silica sol is previously treated with the silane coupling agent as described above is as follows.

すなわち、シリカゾルは、通常、その表面がマイナスに
チャージしたものであるため、これを、そのまま使用し
たのでは、やはり、同じくマイナスにチャージしている
前記層1.1間に挿入することがむずかしい。ところが
、このようなシリカゾルの表面を前記シランカップリン
グ剤で処理すると、シリカゾルの表面がプラスにチャー
ジした処理物2′となり、それによって前記層1.1間
への挿入が容易となるのである。
That is, since the surface of silica sol is normally negatively charged, if it is used as is, it is difficult to insert it between the layers 1.1 which are also negatively charged. However, when the surface of such a silica sol is treated with the silane coupling agent, the surface of the silica sol becomes a positively charged treated product 2', which facilitates insertion between the layers 1.1.

水溶性高分子化合物としては種々のものが考えられるが
、たとえば、ポリビニルアルコール、ポリエチレングリ
コール、ポリエチレンオキサイド、メチルセルロース、
カルボキシメチルセルロース、ポリアクリル酸ソーダお
よびポリビニルピロリドン等が好ましいものとして挙げ
られる。また、第4級アンモニウム塩としても、種々の
ものが考えられるが、その中でも、オクタデシル基、ヘ
キサデシル基、テトラデシル基およびドデシル基等の基
を有するものが好ましい。このような第4級アンモニウ
ム塩としては、次のような化合物があるが、層間を押し
広げてシリカゾルの挿入を助け、かつ、焼成によって気
化して層間に空隙を残すものであれば、これ以外のもの
を使用することもできる。
Various water-soluble polymer compounds can be considered, such as polyvinyl alcohol, polyethylene glycol, polyethylene oxide, methyl cellulose,
Preferred examples include carboxymethylcellulose, sodium polyacrylate, and polyvinylpyrrolidone. Furthermore, various types of quaternary ammonium salts can be considered, but among them, those having groups such as octadecyl group, hexadecyl group, tetradecyl group, and dodecyl group are preferable. Examples of such quaternary ammonium salts include the following compounds, but other compounds may also be used as long as they help insert silica sol by expanding the interlayer space and are vaporized by firing to leave voids between the layers. You can also use one.

オクタデシルジメチルアンモニウム塩、オクタデシルジ
メチルアンモニウム塩、ヘキサデシルトリメチルアンモ
ニウム塩、テトラデシルトリメチルアンモニウム塩、テ
トラデシルジメチルアンモニウム塩。
Octadecyldimethylammonium salt, octadecyldimethylammonium salt, hexadecyltrimethylammonium salt, tetradecyltrimethylammonium salt, tetradecyldimethylammonium salt.

つぎに、この無機層状多孔体の製法について、その1実
施例を模式化して表した図面に基づいて詳しく説明する
Next, a method for manufacturing this inorganic layered porous body will be explained in detail based on drawings schematically showing one example thereof.

膨潤性粘土鉱物のような物質は、第2図に示すように、
膨潤性層状化合物AIの集まりでできている。主材たる
この化合物A、を水などの溶媒と混合(必要に応じ混練
)して、第3図にみるように、層1,1間に溶媒4を含
ませてあらかじめ膨潤させておく。溶媒としては、一般
に水が用いられるが、それ以外の極性溶媒、たとえば、
メタノール、DMF、DMSOを単独で、あるいは、混
合して用いるようにしても構わない。
Substances such as swellable clay minerals, as shown in Figure 2,
It is made of a collection of swellable layered compounds AI. This compound A, which is the main material, is mixed with a solvent such as water (kneaded if necessary), and as shown in FIG. 3, the solvent 4 is impregnated between the layers 1 and 1 to swell it in advance. Water is generally used as a solvent, but other polar solvents such as
Methanol, DMF, and DMSO may be used alone or in combination.

つぎに、シリカゾルの表面を、シランカップリング剤で
処理する。この処理によって、第4図(a)にみるよう
に、表面がプラスにチャージした処理物2′が得られる
。こうしてできた処理物2′に、前記水溶性高分子化合
物および第4級アンモニウム塩のうちの少くとも一方を
ソフトピラー5として配合して、第4図(b)にみるよ
うに、充分均一になるまで混合する。
Next, the surface of the silica sol is treated with a silane coupling agent. Through this treatment, a treated object 2' whose surface is positively charged is obtained, as shown in FIG. 4(a). At least one of the water-soluble polymer compound and the quaternary ammonium salt is blended into the treated product 2' as soft pillars 5, as shown in FIG. 4(b). Mix until combined.

得られた混合物を、あらかじめ、膨潤させておいた前記
膨潤性層状化合物と混合して、第5図に示すように層状
化合物の層1,1間に挿入(インターカレーション)す
る。そうすると、水溶性高分子化合物や第4級アンモニ
ウム塩がソフトピラー5として、この層1. 1間を押
し拡げて保持し、それとともに、処理物2′の動きを鈍
(してこの層間にとどめる働きをする。とどめられた処
理物2゛はその表面の正電荷が層1表面のマイナス部分
と電気的に結合して、それによって、層1.1間を押し
広げたまま保持することができると考えられる。混合時
の温度は60〜70℃前後で行うことが望ましい。  
 ′ この反応溶液を遠心分離して脱水を行ったのち、ヘラな
どで板状に配向させる。この板状材を60℃程度の温度
で温風乾燥等によって乾燥したあと、さらに、300〜
600℃、好ましくは450〜550℃で焼成する。こ
の焼成によって、前記水溶性高分子化合物や第4級アン
モニウム塩はCOz、NH:+、Hz O等に変化して
除去され、これらが存在した空間は、そのまま空隙3と
なり、第1図に示したように、層間にシリカ2が挿入さ
れた板状の無機層状多孔体を得ることができる。
The obtained mixture is mixed with the swelling layered compound which has been swollen in advance, and is inserted (intercalated) between the layers 1 and 1 of the layered compound as shown in FIG. Then, the water-soluble polymer compound and quaternary ammonium salt form the soft pillars 5 in this layer 1. At the same time, it slows down the movement of the treated material 2' and holds it between the layers.The retained treated material 2' has a positive charge on its surface that is equal to the negative charge on the surface of layer 1. It is considered that the layer 1.1 can be electrically coupled with the other parts, thereby keeping the gap between the layers 1.1 expanded.The temperature during mixing is preferably about 60 to 70°C.
' This reaction solution is dehydrated by centrifugation, and then oriented into a plate shape using a spatula or the like. After drying this plate material by hot air drying at a temperature of about 60℃,
Calcination is performed at 600°C, preferably 450-550°C. By this calcination, the water-soluble polymer compound and quaternary ammonium salt are changed into COz, NH:+, HzO, etc. and removed, and the spaces where these existed remain as voids 3, as shown in Figure 1. As described above, a plate-shaped inorganic layered porous body in which silica 2 is inserted between the layers can be obtained.

このようにして得られた無機層状多孔体は、その全体の
40%以上が層間隔30〜600人を保持しており、第
1図矢印B方向の断熱性に優れている。
The inorganic layered porous material thus obtained has a layer spacing of 30 to 600 in more than 40% of the total, and has excellent heat insulation properties in the direction of arrow B in FIG.

なお、以上の実施例では、シリカゾルとソフトピラーと
を混合しておいてから、膨潤性層状化合物の層間に挿入
しているが、これは、別々に、前記挿間に挿入されるよ
うであってもかまわない。
Note that in the above examples, the silica sol and the soft pillars are mixed and then inserted between the layers of the swellable layered compound, but this is different from inserting them separately into the interlayers. It doesn't matter.

以下に、実施例を詳しく説明する。Examples will be described in detail below.

(実施例1) 膨潤性層状化合物としてNa−モンモリロナイト(クニ
ミネ工業側製りニピアF)を用意し、これを、あらかじ
め水に分散させて水溶液を得た。
(Example 1) Na-montmorillonite (Nipia F manufactured by Kunimine Industries) was prepared as a swellable layered compound and was previously dispersed in water to obtain an aqueous solution.

つぎに、その表面をアミノシランカップリング剤で処理
したシリカゾル(日産化学工業■製、スノーテックスC
K−XS)の10重量%水溶液を用意し、これに、ソフ
トピラーとして、水溶性高分子化合物である分子量22
000のポリビニルアルコールを加えて充分に混合し、
混合物を得た。
Next, a silica sol (manufactured by Nissan Chemical Industries, Ltd., Snowtex C) whose surface was treated with an aminosilane coupling agent was applied.
A 10% by weight aqueous solution of K-XS) is prepared, and a water-soluble polymer compound with a molecular weight of 22 is added to it as a soft pillar.
Add 000 polyvinyl alcohol and mix thoroughly.
A mixture was obtained.

得られた混合物を前記水溶液とともにフラスコ中に入れ
て混合し、充分に攪拌して60℃の温度で90分間挿入
反応させた。それぞれの配合比は、重量比でNa−モン
モリロナイト:水:シリカゾル:ポリビニルアルコール
= 1 : 125 : 6 : 0゜1であった。挿
入反応後、これを遠心分離し、ヘラで板状配向させ60
℃の温度で温風乾燥させた。これを電気炉中に入れ、4
50℃で焼成し厚み1、5 ***の板状無機層状多孔
体試料を得た。
The resulting mixture was put into a flask together with the aqueous solution, mixed, stirred thoroughly, and subjected to an insertion reaction at a temperature of 60° C. for 90 minutes. The respective compounding ratios were Na-montmorillonite:water:silica sol:polyvinyl alcohol=1:125:6:0.1 in weight ratio. After the insertion reaction, it was centrifuged and oriented in a plate shape using a spatula for 60 minutes.
Dry with warm air at a temperature of °C. Put this in an electric furnace and
A plate-like inorganic layered porous material sample having a thickness of 1.5 *** was obtained by firing at 50°C.

(実施例2) ソフトピラーとして、第4級アンモニウム塩であるオク
タデシルトリメチルアルモニウムクロライド(日本油脂
■製ニッサンカチオンAB、23重量%水溶液)を使用
した以外は実施例1と同様にして板状無機層状多孔体試
料を得た。それぞれの配合比は、重量比でNa−モンモ
リロナイト:水ニジリカゾル:第4級アンモニウム塩=
1:125:6:4.4であった。
(Example 2) A plate-like inorganic material was prepared in the same manner as in Example 1, except that octadecyltrimethylalmonium chloride (Nissan Cation AB manufactured by NOF ■, 23% by weight aqueous solution), which is a quaternary ammonium salt, was used as the soft pillar. A layered porous material sample was obtained. The respective compounding ratios are Na-montmorillonite: water nijirica sol: quaternary ammonium salt =
The ratio was 1:125:6:4.4.

(実施例3) 配合比を、重量比でNa−モンモリロナイト:水ニジリ
カゾル:第4級アンモニウム塩=1=10:6:4.4
とし、万能ミキサー中で反応を行った以外は実施例2と
同様にして板状無機層状多孔体試料を得た。
(Example 3) The weight ratio of the compounding ratio is Na-montmorillonite: water nijirica sol: quaternary ammonium salt = 1 = 10:6:4.4
A plate-like inorganic layered porous material sample was obtained in the same manner as in Example 2 except that the reaction was carried out in a universal mixer.

(実施例4) ソフトピラーとして、オクタデルジルトリメチルアンモ
ニウムクロライドとヘキサデシルトリメチルアンモニウ
ムクロライドの2つの第4級アンモニウム塩を混合した
もの(ライオン油脂■製アーカード2HT−75,混合
比は、重量比でオクタデシル:ヘキサデシル=75:2
4)を使用した以外は実施例2と同様にして板状無機層
状多孔゛体試料を得た。なお、配合比は、重量比でNa
 −モンモリロナイト:水ニジリカゾル:第4級アンモ
ニウム塩=1:125:6:1であった。
(Example 4) As a soft pillar, a mixture of two quaternary ammonium salts, octadelzyltrimethylammonium chloride and hexadecyltrimethylammonium chloride (Alucard 2HT-75 manufactured by Lion Yushi ■, the mixing ratio is in weight ratio) Octadecyl:hexadecyl=75:2
A plate-shaped inorganic layered porous body sample was obtained in the same manner as in Example 2 except that 4) was used. In addition, the compounding ratio is Na
- Montmorillonite: Water Nijirica sol: Quaternary ammonium salt = 1:125:6:1.

(実施例5) 膨潤性層状化合物として合成雲母(ドビー化学工業01
製ダイモナイ1−HG)を用いた以外は実施例2と同様
にして板状無機層状多孔体試料を得た。各成分の配合比
は、重量比で合成雲母:水ニジリカゾル:第4級アンモ
ニウム塩=1:125:6:4.4であった。
(Example 5) Synthetic mica (Dobby Chemical Industry 01
A plate-shaped inorganic layered porous material sample was obtained in the same manner as in Example 2 except that Daimonai 1-HG (manufactured by Daimonai Co., Ltd.) was used. The blending ratio of each component was synthetic mica: water nizirica sol: quaternary ammonium salt = 1:125:6:4.4 in weight ratio.

、(比較例1) コロイダルシリカとして、シランカップリング剤で表面
を処理していないもの(平均粒度130人、20重量%
水溶液)を、膨潤性層状化合物としてNa−モンモリロ
ナイト(クニミネ工業■製りニビアF)を、それぞれ使
用し、これを水溶性高分子化合物であるポリエチレンオ
キサイド(明成化学■製アルコックスE75.平均分子
1t150万〜220万)および水とともに70℃で4
0分間混合した。この混合物をヘラなどで板状に配肖さ
せ乾燥後、400℃、2時間の焼成を行い、板状成形体
試料を得た。
(Comparative Example 1) Colloidal silica whose surface was not treated with a silane coupling agent (average particle size 130, 20% by weight)
Aqueous solution) and Na-montmorillonite (NIVIA F, manufactured by Kunimine Industries Ltd.) as a swelling layered compound were used, and polyethylene oxide, a water-soluble polymer compound (ALCOX E75, manufactured by Meisei Chemical Ltd., average molecular weight of 1t150) was used. 4 million to 2.2 million) and water at 70℃
Mixed for 0 minutes. This mixture was shaped into a plate using a spatula, dried, and then fired at 400°C for 2 hours to obtain a plate-shaped molded sample.

なお、Na−モンモリロナイト、水、コロイダルシリカ
、ポリエチレンオキサイドの配合比は、重量比で、1:
10:3:0.1であった。
The weight ratio of Na-montmorillonite, water, colloidal silica, and polyethylene oxide is 1:
The ratio was 10:3:0.1.

これら実施例で得られた成形体試料の開孔率。Porosity of molded body samples obtained in these Examples.

層間距離、密度、熱伝導率を測定し、その結果を、公知
の方法で得た無機層状多孔体からなる成形体試料2石膏
ボードおよび砂の成形体の3つの比較例の結果と併せて
第1表に示す。なお、開孔率はつぎのような式 によって得られる。比表面積は窒素吸着法におけるBE
Tの方法、平均層間距離(細孔分布)は窒素吸着法にお
けるCI法を用いて得た。窒素吸着’AHはカンタクロ
ーム社のオートソープ6を用いた。熱伝導測定は、キセ
ノンフラッシュ法による熱伝導率測定装置を用いた。
The interlayer distance, density, and thermal conductivity were measured, and the results were combined with the results of three comparative examples of sample 2 of a molded body made of an inorganic layered porous body obtained by a known method: a gypsum board and a molded body of sand. It is shown in Table 1. Note that the porosity is obtained by the following formula. The specific surface area is BE in the nitrogen adsorption method.
The average interlayer distance (pore distribution) was obtained using the CI method in the nitrogen adsorption method. Autosoap 6 manufactured by Quantachrome was used for nitrogen adsorption 'AH. The thermal conductivity measurement was performed using a thermal conductivity measuring device using the xenon flash method.

(発明の効果〕 この発明の無機層状多孔体の製法は、以上のように構成
されているため、無機化合物によって全体の40%以上
が層間隔を30〜600人に保持されて開孔率が30%
以上になっており、低熱伝導率であって断熱材等にを用
な断熱性に非常にすぐれた無機層状多孔体を確実に得る
ことができるようになる。
(Effects of the Invention) Since the method for producing an inorganic layered porous material of the present invention is configured as described above, the layer spacing is maintained at 30 to 600 in more than 40% of the total by the inorganic compound, and the porosity is reduced. 30%
As described above, it is possible to reliably obtain an inorganic layered porous body with low thermal conductivity and excellent heat insulating properties that can be used as a heat insulating material and the like.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は無機層状多孔体の模式的側面図、第2図は膨潤
性層状化合物の模式的側面図、第3図はその膨潤に至る
状態を説明する説明図、第4図(a)はシリカゾルの表
面をシランカップリング剤で処理した状態を説明する説
明図、第4図(b)は第4図(alのシリカゾルにさら
にソフトピラーを加えた状態を説明する説明図、第5図
は第4図(blの混合物を膨潤性層状化合物の層間に挿
入した状態を説明する説明図である。 A・・・無機層状多孔体 A、・・・膨潤性無機層状化
合物 1・・・層 2・・・シリカ 3・・・空隙 5
・・・ソフトピラー 代理人 弁理士  松 本 武 彦 第1図 第3図 (a) 一一一
Figure 1 is a schematic side view of an inorganic layered porous material, Figure 2 is a schematic side view of a swellable layered compound, Figure 3 is an explanatory diagram illustrating the state leading to swelling, and Figure 4 (a) is An explanatory diagram explaining the state in which the surface of the silica sol has been treated with a silane coupling agent, FIG. 4(b) is an explanatory diagram explaining the state in which soft pillars are further added to the silica sol in FIG. FIG. 4 (This is an explanatory diagram illustrating the state in which the mixture of bl is inserted between the layers of the swellable layered compound. A... Inorganic layered porous body A,... Swellable inorganic layered compound 1... Layer 2 ...Silica 3...Void 5
...Soft Pillar Agent Patent Attorney Takehiko Matsumoto Figure 1 Figure 3 (a) 111

Claims (6)

【特許請求の範囲】[Claims] (1)膨潤させた膨潤性層状化合物の層間に、水溶性高
分子化合物および第4級アンモニウム塩のうちの少なく
とも一方を挿入するとともに、あらかじめシランカップ
リング剤で表面を処理したシリカゾルをも前記層間に挿
入し、乾燥・焼成を行って前記層間に微細な空隙を形成
するようにする無機層状多孔体の製法。
(1) At least one of a water-soluble polymer compound and a quaternary ammonium salt is inserted between the layers of the swollen layered compound, and a silica sol whose surface has been previously treated with a silane coupling agent is also inserted between the layers. A method for producing an inorganic layered porous material, which is inserted into a layer, dried and fired to form fine voids between the layers.
(2)シランカップリング剤が下記の式( I )であら
わされた化合物、 RSiX_3・・・( I ) ただし、Rは有機材料と結合する置換基をもつ有機官能
性基をあらわし、Xは無機材料と反応する加水分解性基
をあらわす。 である特許請求の範囲第1項記載の無機層状多孔体の製
法。
(2) A compound in which the silane coupling agent is represented by the following formula (I), RSiX_3... (I) where R represents an organic functional group having a substituent that binds to an organic material, and X represents an inorganic Represents a hydrolyzable group that reacts with the material. A method for producing an inorganic layered porous material according to claim 1.
(3)水溶性高分子化合物が、ポリビニルアルコール、
ポリエチレングリコール、ポリエチレンオキサイド、メ
チルセルロース、カルボキシメチルセルロース、ポリア
クリル酸ソーダ、および、ポリビニルピロリドンからな
る群より選ばれた少なくとも1つの化合物である特許請
求の範囲第1項または第2項記載の無機層状多孔体の製
法。
(3) The water-soluble polymer compound is polyvinyl alcohol,
The inorganic layered porous material according to claim 1 or 2, which is at least one compound selected from the group consisting of polyethylene glycol, polyethylene oxide, methylcellulose, carboxymethylcellulose, sodium polyacrylate, and polyvinylpyrrolidone. manufacturing method.
(4)第4級アンモニウム塩が、オクタデシル基、ヘキ
サデシル基、テトラデシル基、および、ドデシル基から
なる群より選ばれた少なくとも1つの基を有するもので
ある特許請求の範囲第1項ないし第3項のいずれかに記
載の無機層状多孔体の製法。
(4) Claims 1 to 3, wherein the quaternary ammonium salt has at least one group selected from the group consisting of octadecyl group, hexadecyl group, tetradecyl group, and dodecyl group. A method for producing an inorganic layered porous material according to any one of the above.
(5)膨潤性層状化合物が、Na−モンモリロナイト、
Ca−モンモリロナイト、酸性白土、3−八面体合成ス
メクタイト、Na−ヘクトライト、Li−ヘクトライト
、Na−テニオライト、Li−テニオライトおよび合成
雲母からなる群より選ばれた少なくとも1つである特許
請求の範囲第1項ないし第4項のいずれかに記載の無機
層状多孔体の製法。
(5) The swelling layered compound is Na-montmorillonite,
The claim is at least one selected from the group consisting of Ca-montmorillonite, acid clay, 3-octahedral synthetic smectite, Na-hectolite, Li-hectolite, Na-teniolite, Li-teniolite, and synthetic mica. A method for producing an inorganic layered porous body according to any one of Items 1 to 4.
(6)空隙が30〜600Åである特許請求の範囲第1
項ないし第5項のいずれかに記載の無機層状多孔体の製
法。
(6) Claim 1 in which the void is 30 to 600 Å
A method for producing an inorganic layered porous material according to any one of Items 1 to 5.
JP1620786A 1986-01-27 1986-01-27 Manufacture of inorganic layered porous body Granted JPS62176969A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1620786A JPS62176969A (en) 1986-01-27 1986-01-27 Manufacture of inorganic layered porous body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1620786A JPS62176969A (en) 1986-01-27 1986-01-27 Manufacture of inorganic layered porous body

Publications (2)

Publication Number Publication Date
JPS62176969A true JPS62176969A (en) 1987-08-03
JPH044274B2 JPH044274B2 (en) 1992-01-27

Family

ID=11910067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1620786A Granted JPS62176969A (en) 1986-01-27 1986-01-27 Manufacture of inorganic layered porous body

Country Status (1)

Country Link
JP (1) JPS62176969A (en)

Also Published As

Publication number Publication date
JPH044274B2 (en) 1992-01-27

Similar Documents

Publication Publication Date Title
Fernández-Saavedra et al. Polymer-clay nanocomposites as precursors of nanostructured carbon materials for electrochemical devices: templating effect of clays
JPS62176969A (en) Manufacture of inorganic layered porous body
JPS63185871A (en) Manufacture of inorganic layered porous body
JPS62176911A (en) Preparation of inorganic lamellar porous body
JPS62176967A (en) Manufacture of inorganic layered porous body
JPS62241879A (en) Manufacture of inorganic layer porous body
JPS6385067A (en) Manufacture of inorganic layered porous body
JPS62260779A (en) Manufacture of inorganic layer porous body
JPS62202877A (en) Manufacture of inorganic layer porous body
JPS63159269A (en) Manufacture of inorganic porous body
JPS62176968A (en) Manufacture of inorganic layered porous body
JPS62123078A (en) Manufacture of inorganic layered porous body
JPS63319277A (en) Production of layered inorg. porous body
JPH0428671B2 (en)
JPS62278174A (en) Manufacture of inorganic layer porous body
JPS61215276A (en) Manufacture of inorganic layer porous body
JPS61209970A (en) Manufacture of inorganic layer porous body
JPS6379773A (en) Manufacture of inorganic layered porous body
JPS62119182A (en) Manufacture of inorganic layer porous body
JPS62123081A (en) Manufacture of inorganic layered porous body
JPH10244527A (en) Method for mixing ceramic powder batch
JPS62241880A (en) Manufacture of inorganic layer porous body
JPS62241881A (en) Manufacture of inorganic layer porous body
JPH044276B2 (en)
JPS62123079A (en) Manufacture of inorganic layered porous body

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees