JPS62176967A - Manufacture of inorganic layered porous body - Google Patents

Manufacture of inorganic layered porous body

Info

Publication number
JPS62176967A
JPS62176967A JP1620386A JP1620386A JPS62176967A JP S62176967 A JPS62176967 A JP S62176967A JP 1620386 A JP1620386 A JP 1620386A JP 1620386 A JP1620386 A JP 1620386A JP S62176967 A JPS62176967 A JP S62176967A
Authority
JP
Japan
Prior art keywords
inorganic layered
layered porous
porous material
inorganic
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1620386A
Other languages
Japanese (ja)
Inventor
平尾 正三
隆 岸本
勝 横山
孝一 高濱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP1620386A priority Critical patent/JPS62176967A/en
Publication of JPS62176967A publication Critical patent/JPS62176967A/en
Pending legal-status Critical Current

Links

Landscapes

  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔技術分野〕 この発明は、断熱性に優れた無機層状多孔体の製法に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a method for producing an inorganic layered porous material having excellent heat insulation properties.

〔背景技術〕[Background technology]

空隙を有する層状多孔体として、膨潤性層状化合物の層
間に水酸化物等の異種物質を挿入反応させたインターカ
レーション物質がある(たとえば、特開昭54−588
4号公報および特開昭54−16386号公報参照)。
As a layered porous material having voids, there is an intercalation material in which a different substance such as hydroxide is inserted between layers of a swellable layered compound (for example, Japanese Patent Application Laid-Open No. 54-588
4 and JP-A-54-16386).

ところが、このものは、層間距離が10Å以下と小さい
ため、吸着水の影響を受けやすく、また、断熱性の点で
もあまりすぐれているとはいえないものである。
However, since this material has a small interlayer distance of 10 Å or less, it is easily affected by adsorbed water, and it cannot be said to have very good heat insulation properties.

これに対し、微細多孔質粘土材料として、スメクタイト
型鉱物に水溶性高分子化合物を混合したものを使用し、
それに、陽イオン性酸化物あるいは重合体状シリカをイ
ンターカレーションすることが、特開昭60−1318
78号公報、特開昭60−137812号公報、特開昭
60−137813号公報、特開昭60−155526
号公報、ならびに、特開昭60−166217号公報等
に示されている。これらの方法によれば、層間距離を前
述のインターカレーション物質の場合の10Å以下から
、30人程度にまで拡げることができる。しかしながら
、この方法によって形成された層状多孔体では、前述し
たように層間距離を30人程度にまで拡げることができ
ても、その空隙内に水分が吸着されやすいため、この水
分の吸着による各層間の熱的な短絡が発生することがさ
けられず、熱物性の向上が期待できない。
In contrast, we used a mixture of smectite minerals and water-soluble polymer compounds as microporous clay materials.
In addition, intercalation of cationic oxide or polymeric silica has been proposed in JP-A-60-1318.
78, JP 60-137812, JP 60-137813, JP 60-155526
No. 60-166217, etc. According to these methods, the interlayer distance can be increased from 10 Å or less in the case of the above-mentioned intercalation material to about 30. However, in the layered porous body formed by this method, even if the interlayer distance can be increased to about 30 people as described above, moisture is likely to be adsorbed within the pores. It is unavoidable that a thermal short circuit will occur, and no improvement in thermal properties can be expected.

〔発明の目的〕[Purpose of the invention]

この発明は、このような事情に鑑みて層間に比較的大き
な空隙を有して断熱効果に優れた無機層状多孔体の製法
を提供することを目的としている〔発明の開示〕 このような目的を達成するためにこの発明は、膨潤させ
た膨潤性層状化合物の層間に、あらかじめシランカップ
リング剤で表面を処理したシリカゾルを挿入し、乾燥を
行って前記層間に微細な空隙を形成するようにする無機
層状多孔体の製法を要旨とする。
In view of these circumstances, the present invention aims to provide a method for producing an inorganic layered porous material having relatively large voids between layers and having excellent heat insulation effect.[Disclosure of the Invention] In order to achieve this, the present invention inserts a silica sol whose surface has been previously treated with a silane coupling agent between the layers of the swellable layered compound, and then dries it to form fine voids between the layers. The gist is a method for producing inorganic layered porous materials.

以下に、この発明を、その1実施例をあられす図面を参
照しつつ詳しく説明する。
Hereinafter, one embodiment of the present invention will be described in detail with reference to the accompanying drawings.

構造を模式化してあられした第1図にみるように、この
発明の無機層状多孔体の製法によって得られる無機層状
多孔体Aは、無機層状化合物の層1、 1間に、シリカ
2が挿入固定されている。そのため、その層間の空隙3
が30〜600人に保持されている。
As shown in FIG. 1, which schematically shows the structure, the inorganic layered porous material A obtained by the inorganic layered porous material manufacturing method of the present invention has silica 2 inserted and fixed between the layers 1 and 1 of the inorganic layered compound. has been done. Therefore, the void 3 between the layers
is maintained by 30 to 600 people.

膨潤性層状化合物としては、Na−モンモリロナイト、
Ca−モンモリロナイト、酸性白土、3−八面体合成ス
メクタイF I N a−ヘクトライト、Li−へクト
ライl−、Na−テニオライト、Li−テニオライトお
よび合成雲母(Naフッ素素子ケイ素雲母等が挙げられ
るが、膨潤性層状化合物でありさえすれば、これらに限
られるものではない。Ca−モンモリロナイトおよび酸
性白土等のような膨潤性層状化合物を主材として用いる
場合には、強い剪断力を加えないと膨潤しにくいので、
膨潤時は混練する必要がある。
Examples of the swelling layered compound include Na-montmorillonite,
Ca-montmorillonite, acid clay, 3-octahedral synthetic smectite FINa-hectorite, Li-hectolyl-, Na-teniolite, Li-teniolite, and synthetic mica (Na-fluorine element silicon mica, etc.) The compound is not limited to these as long as it is a swellable layered compound.When a swellable layered compound such as Ca-montmorillonite or acid clay is used as the main material, it will swell unless strong shearing force is applied. Because it is difficult,
It is necessary to knead during swelling.

シリカゾルの表面を処理するためのシランカップリング
剤の種類も、この発明では特に限定されないが、たとえ
ば、以下の式(I)であらわされた化合物がこの発明に
好ましいものとしてあげられる。
The type of silane coupling agent for treating the surface of the silica sol is not particularly limited in this invention, but for example, a compound represented by the following formula (I) is preferred for this invention.

R31X:+      ・・・(1)式中Rは、を機
材材と結合する置換基をもつ有機官能性基をあられして
おり、好ましいものとしては、アミノ基、ビニル基、エ
ポキシ基等があげられる。また、式中Xは、無機材料と
反応する加水分解性基をあられしており、好ましいもの
としては、CI、F等のハロゲンや、メトキシ基、エト
キシ基等のアルコキシ基があげられる。
R 31 It will be done. Further, in the formula, X represents a hydrolyzable group that reacts with an inorganic material, and preferable examples include halogens such as CI and F, and alkoxy groups such as methoxy group and ethoxy group.

この発明において、シリカゾルの表面を以上のようなシ
ランカップリング剤であらかじめ処理しておくのは、つ
ぎのような理由による。
In this invention, the reason why the surface of the silica sol is previously treated with the silane coupling agent as described above is as follows.

すなわち、シリカゾルは、通常、その表面がマイナスに
チャージしたものであるため、これを、そのまま使用し
たのでは、やはり、同じくマイナスにチャージしている
前記層1.1間に挿入することがむずかしい。ところが
、このようなシリカゾルの表面を前記シランカップリン
グ剤で処理すると、第6図にみるように、シリカゾルの
表面がプラスにチャージした処理物2′となり、それに
よって前記層1. 1間への挿入が容易となるのである
That is, since the surface of silica sol is normally negatively charged, if it is used as is, it is difficult to insert it between the layers 1.1 which are also negatively charged. However, when the surface of such silica sol is treated with the silane coupling agent, as shown in FIG. 6, the surface of the silica sol becomes a positively charged treated product 2', thereby causing the layer 1. This makes it easy to insert it between the two spaces.

つぎに、この無機層状多孔体の製法について、そのl実
施例を模式化して表した図面に基づいて詳しく説明する
Next, a method for manufacturing this inorganic layered porous body will be explained in detail based on drawings schematically showing one embodiment thereof.

膨潤性粘土鉱物のような物質は、第2図に示すように、
膨潤性層状化合物A、の集まりでできている。主材たる
この化合物A、を水などの溶媒と混合(必要に応じ混練
)して、第3図にみるように、層1.1間に溶媒4を含
ませてあらかじめ膨潤させておく。溶媒としては、一般
に水が用いられるが、それ以外の極性溶媒、たとえば、
メタノール、DMF、DMSOを単独で、あるいは、混
合して用いるようにしても構わない。
Substances such as swellable clay minerals, as shown in Figure 2,
It is made up of a collection of swellable layered compounds A. This compound A, which is the main material, is mixed with a solvent such as water (kneaded if necessary), and as shown in FIG. 3, the solvent 4 is impregnated between the layers 1.1 and swelled in advance. Water is generally used as a solvent, but other polar solvents such as
Methanol, DMF, and DMSO may be used alone or in combination.

つぎに、シリカゾルの表面を、シランカップリング剤で
処理する。この処理によって、前述したとおり、第6図
にみるように、その表面がプラスにチャージした処理物
2′が得られる。こうしてできた処理物2′を、あらか
じめ、膨潤させておいた前記膨潤性層状化合物と混合し
て、第4図に示すように層状化合物の層1.1間に挿入
(インターカレーション)する。この挿入によって、処
理物2′の表面電荷が層1表面のマイナス部分と電気的
に結合して、層1,1間を押し広げたまま保持すること
ができると考えられる。混合時の温度は6O〜70℃前
後で行うことが望ましい。
Next, the surface of the silica sol is treated with a silane coupling agent. Through this treatment, as described above, a treated object 2' whose surface is positively charged as shown in FIG. 6 is obtained. The treated product 2' thus produced is mixed with the swelling layered compound which has been swollen in advance and inserted (intercalated) between the layers 1.1 of the layered compound as shown in FIG. It is thought that by this insertion, the surface charge of the treated object 2' is electrically coupled to the negative portion of the surface of the layer 1, and the gap between the layers 1 and 1 can be maintained while being expanded. It is desirable that the mixing temperature be around 60 to 70°C.

この反応溶液を遠心分離して脱水を行ったのち、第5図
にみるように、ヘラなどで板状に配向させる。この板状
材を60℃程度の温度で温風乾燥等によって乾燥すると
、第1図に示したように、層間にシリカ2が挿入された
板状の無機層状多孔体を得ることができる。また、乾燥
した板状材を、さらに、300〜600℃、好ましくは
450〜550℃で焼成することが望ましい。
After dehydrating this reaction solution by centrifugation, it is oriented into a plate shape using a spatula or the like, as shown in FIG. When this plate-shaped material is dried by hot air drying or the like at a temperature of about 60° C., a plate-shaped inorganic layered porous body in which silica 2 is inserted between the layers can be obtained as shown in FIG. Moreover, it is desirable that the dried plate material is further fired at 300 to 600°C, preferably 450 to 550°C.

このようにして得られた無機層状多孔体は、その全体の
40%以上が層間隔30〜600人を保持しており、第
1図矢印B方向の断熱性に優れている。
The inorganic layered porous material thus obtained has a layer spacing of 30 to 600 in more than 40% of the total, and has excellent heat insulation properties in the direction of arrow B in FIG.

以下に、実施例を詳しく説明する。Examples will be described in detail below.

(実施例1) 膨潤性層状化合物としてNa−モンモリロナイト(クニ
ミネ工業■製りニピアF)を用意し、これを、あらかじ
め水に分散させて、0.8重量%水溶液を得た。つぎに
、その表面をアミノシランカップリング剤で処理したシ
リカゾル(日産化学工業■製スノーテックスCK−XS
、10重量%水溶液)を用意し、これを前記水溶液と混
合し、充分に攪拌して60℃の温度で挿入反応させた。
(Example 1) Na-montmorillonite (Nipia F, manufactured by Kunimine Industries, Ltd.) was prepared as a swellable layered compound and was previously dispersed in water to obtain a 0.8% by weight aqueous solution. Next, a silica sol (Snowtex CK-XS manufactured by Nissan Chemical Industries, Ltd.) whose surface was treated with an aminosilane coupling agent was used.
, a 10% by weight aqueous solution) was prepared, mixed with the aqueous solution, thoroughly stirred, and subjected to an insertion reaction at a temperature of 60°C.

それぞれの配合比は、重量比でNa−モンモリロナイト
が1に対して、シリカゾルが0.6の割合であった。挿
入反応後、これを遠心分離し、ヘラで板状に配向させ6
0℃の温度で温風乾燥させた。これを電気炉中に入れ、
450℃で焼成し厚み1.51の板状無機層状多孔体試
料を得た。
The respective compounding ratios were 1 part Na-montmorillonite and 0.6 parts silica sol by weight. After the insertion reaction, this was centrifuged and oriented into a plate shape with a spatula.
It was dried with warm air at a temperature of 0°C. Put this in an electric furnace,
A plate-like inorganic layered porous material sample having a thickness of 1.51 mm was obtained by firing at 450°C.

(実施例2) シリカゾルの、Na−モンモリロナイト1に対する配合
比が重量比で0.2であった以外は実施例1と同様にし
て板状無機層状多孔体試料を得た。
(Example 2) A plate-like inorganic layered porous material sample was obtained in the same manner as in Example 1, except that the weight ratio of silica sol to Na-montmorillonite 1 was 0.2.

(実施例3) 膨潤性層状化合物として合成雲母(ドビー化学工業側製
ダイモナイ)HG)を用いた以外は実施例1と同様にし
て板状無機層状多孔体試料を得た(比較例1) コロイダルシリカとしてシランカップリング剤で表面を
処理していないもの(平均粒度130人、20重量%水
溶液)を、膨潤性層状化合物としてNa−モンモリロナ
イト(クニミネ工業■製りニピアF)を、それぞれ使用
し、これを水溶性高分子化合物であるポリエチレンオキ
サイド(明成化学■製アルコックスE75.平均分子量
150万〜220万)および水とともに70’Cで40
分間混合した。この混合物をヘラなとて板状に配向させ
乾燥後、400℃、2時間の焼成を行い、板状成形体試
料を得た。
(Example 3) A plate-shaped inorganic layered porous material sample was obtained in the same manner as in Example 1 except that synthetic mica (Daimonai HG manufactured by Dobby Chemical Industries) was used as the swelling layered compound (Comparative Example 1) Colloidal Silica whose surface was not treated with a silane coupling agent (average particle size 130, 20% aqueous solution) was used, and Na-montmorillonite (Nipia F manufactured by Kunimine Kogyo ■) was used as the swelling layered compound. This was mixed with polyethylene oxide, a water-soluble polymer compound (Alcox E75 manufactured by Meisei Chemical Co., Ltd., average molecular weight 1.5 million to 2.2 million), and water at 70'C for 40 minutes.
Mixed for a minute. This mixture was flattened and oriented into a plate shape, dried, and then fired at 400°C for 2 hours to obtain a plate-shaped molded sample.

なお、Na−モンモリロナイト水、コロイダルシリカ、
ポリエチレンオキサイドの配合比は、重量比で1:10
:3:0.1であった。
In addition, Na-montmorillonite water, colloidal silica,
The blending ratio of polyethylene oxide is 1:10 by weight.
:3:0.1.

(比較例2) シリカゾルとして、シランカップリング剤で表面を処理
していないもの(8産化学工業(4@製スノーテツクス
XS)を使用した以外は実施例1と同様にして板状無機
層状多孔体試料を得た。
(Comparative Example 2) A plate-shaped inorganic layered porous material was prepared in the same manner as in Example 1, except that a silica sol whose surface was not treated with a silane coupling agent (Snowtex XS manufactured by Yasan Kagaku Kogyo (4@)) was used. A sample was obtained.

これら実施例および比較例で得られた成形体試料の開孔
率2層間距離、密度、熱伝導率を測定し、その結果を、
石膏ボードおよび砂の成形体の2つの比較例の結果と併
せて第1表に示す。なお、開孔率はつぎのような式 によって得られる。比表面積は窒素吸着法におけるBE
Tの方法、平均層間距離(細孔分布)は窒素吸着法にお
けるCI法を用いて得た。窒素吸着装置はカンタクロー
ム社のオートソーブ6を用いた。熱伝導測定は、キセノ
ンフラッシュ法による熱伝導率測定装置を用いた。
The porosity, the distance between two layers, the density, and the thermal conductivity of the molded body samples obtained in these Examples and Comparative Examples were measured, and the results were as follows:
The results are shown in Table 1 together with the results of two comparative examples of gypsum board and sand molded bodies. Note that the porosity is obtained by the following formula. The specific surface area is BE in the nitrogen adsorption method.
The average interlayer distance (pore distribution) was obtained using the CI method in the nitrogen adsorption method. The nitrogen adsorption device used was Autosorb 6 manufactured by Quantachrome. The thermal conductivity measurement was performed using a thermal conductivity measuring device using the xenon flash method.

〔発明の効果〕〔Effect of the invention〕

この発明の無機層状多孔体の製法は、以上のように構成
されているため、無機化合物によって全体の40%以上
が層間隔を30〜600人に保持されて開孔率が30%
以上になっており、低熱伝導率であって断熱材等に有用
な断熱性に非常にすぐれた無機層状多孔体を確実に得る
ことができるようになる。
Since the method for manufacturing an inorganic layered porous material of the present invention is configured as described above, the layer spacing is maintained at 30 to 600 in more than 40% of the total by the inorganic compound, and the porosity is 30%.
As described above, it is possible to reliably obtain an inorganic layered porous body that has low thermal conductivity and has excellent heat insulating properties that are useful for heat insulating materials and the like.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は無機層状多孔体の模式的側面図、第2図は膨潤
性層状化合物の模式的側面図、第3図はその膨潤に至る
状態を説明する説明図、第4図は溶液中における反応物
の挿入途中の状態を説明する説明図、第5図は無機層状
多孔体を配向させ板状にした状態を説明する説明図、第
6図はシリカゾルの表面をシランカップリング剤で処理
した状態を説明する説明図である。 A・・・無機層状多孔体 A1・・・膨潤性無機層状化
合物 1・・・層 2・・・シリカ 3・・・空隙代理
人 弁理士  松 本 武 彦 第1図 第3図 第4図 第5図 第6図
Fig. 1 is a schematic side view of an inorganic layered porous material, Fig. 2 is a schematic side view of a swellable layered compound, Fig. 3 is an explanatory diagram explaining the state leading to swelling, and Fig. 4 is a schematic side view of an inorganic layered porous material. An explanatory diagram explaining the state in the middle of inserting the reactant, Figure 5 is an explanatory diagram explaining the state in which the inorganic layered porous material is oriented and made into a plate shape, and Figure 6 is an explanatory diagram explaining the state in which the inorganic layered porous material is oriented and made into a plate shape. Figure 6 is the surface of the silica sol treated with a silane coupling agent. It is an explanatory diagram explaining a state. A...Inorganic layered porous material A1...Swellable inorganic layered compound 1...Layer 2...Silica 3...Void agent Patent attorney Takehiko Matsumoto Figure 1 Figure 3 Figure 4 Figure 5 Figure 6

Claims (5)

【特許請求の範囲】[Claims] (1)膨潤させた膨潤性層状化合物の層間に、あらかじ
めシランカップリング剤で表面を処理したシリカゾルを
挿入し、乾燥を行って前記層間に微細な空隙を形成する
ようにする無機層状多孔体の製法。
(1) An inorganic layered porous material in which silica sol whose surface has been previously treated with a silane coupling agent is inserted between the layers of the swellable layered compound and dried to form fine voids between the layers. Manufacturing method.
(2)シランカップリング剤が下記の式( I )であら
わされた化合物、 RSiX_3・・・( I ) ただし、Rは有機材料と結合する置換基をもつ有機官能
性基をあらわし、Xは無機材料と反応する加水分解性基
をあらわす。 である特許請求の範囲第1項記載の無機層状多孔体の製
法。
(2) A compound in which the silane coupling agent is represented by the following formula (I), RSiX_3... (I) where R represents an organic functional group having a substituent that binds to an organic material, and X represents an inorganic Represents a hydrolyzable group that reacts with the material. A method for producing an inorganic layered porous material according to claim 1.
(3)膨潤性層状化合物が、Na−モンモリロナイト、
Ca−モンモリロナイト、酸性白土、3−八面体合成ス
メクタイト、Na−ヘクトライト、Li−ヘクトライト
、Na−テニオライト、Li−テニオライトおよび合成
雲母からなる群より選ばれた少なくとも1つである特許
請求の範囲第1項または第2項記載の無機層状多孔体の
製法。
(3) The swelling layered compound is Na-montmorillonite,
The claim is at least one selected from the group consisting of Ca-montmorillonite, acid clay, 3-octahedral synthetic smectite, Na-hectolite, Li-hectolite, Na-teniolite, Li-teniolite, and synthetic mica. A method for producing an inorganic layered porous material according to item 1 or 2.
(4)空隙が30〜600Åである特許請求の範囲第1
項ないし第3項のいずれかに記載の無機層状多孔体の製
法。
(4) Claim 1 in which the void is 30 to 600 Å
A method for producing an inorganic layered porous material according to any one of items 1 to 3.
(5)乾燥を行ったのち、焼成を行う特許請求の範囲第
1項ないし第4項のいずれかに記載の無機層状多孔体の
製法。
(5) The method for producing an inorganic layered porous body according to any one of claims 1 to 4, which comprises drying and then firing.
JP1620386A 1986-01-27 1986-01-27 Manufacture of inorganic layered porous body Pending JPS62176967A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1620386A JPS62176967A (en) 1986-01-27 1986-01-27 Manufacture of inorganic layered porous body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1620386A JPS62176967A (en) 1986-01-27 1986-01-27 Manufacture of inorganic layered porous body

Publications (1)

Publication Number Publication Date
JPS62176967A true JPS62176967A (en) 1987-08-03

Family

ID=11909949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1620386A Pending JPS62176967A (en) 1986-01-27 1986-01-27 Manufacture of inorganic layered porous body

Country Status (1)

Country Link
JP (1) JPS62176967A (en)

Similar Documents

Publication Publication Date Title
JPS6025540B2 (en) Expandable ceramic fiber felt
Fernández-Saavedra et al. Polymer-clay nanocomposites as precursors of nanostructured carbon materials for electrochemical devices: templating effect of clays
JPS63185871A (en) Manufacture of inorganic layered porous body
JPS62176967A (en) Manufacture of inorganic layered porous body
JPS62176911A (en) Preparation of inorganic lamellar porous body
JPS62176969A (en) Manufacture of inorganic layered porous body
JPS62123078A (en) Manufacture of inorganic layered porous body
JPS62176968A (en) Manufacture of inorganic layered porous body
JPS62119182A (en) Manufacture of inorganic layer porous body
JPS63159269A (en) Manufacture of inorganic porous body
JPS62123081A (en) Manufacture of inorganic layered porous body
JPS61215276A (en) Manufacture of inorganic layer porous body
JPS62202877A (en) Manufacture of inorganic layer porous body
JPS62241879A (en) Manufacture of inorganic layer porous body
JPS62123079A (en) Manufacture of inorganic layered porous body
JPS62241881A (en) Manufacture of inorganic layer porous body
JPS61209970A (en) Manufacture of inorganic layer porous body
JPS62260779A (en) Manufacture of inorganic layer porous body
JPS6385067A (en) Manufacture of inorganic layered porous body
JPS6379773A (en) Manufacture of inorganic layered porous body
JPS62246879A (en) Manufacture of inorganic layer porous body
JPS62123080A (en) Manufacture of inorganic layered porous body
JPS61203505A (en) Manufacture of inorganic conducting composition
JPS63319277A (en) Production of layered inorg. porous body
JPH0428671B2 (en)