JPH044274B2 - - Google Patents

Info

Publication number
JPH044274B2
JPH044274B2 JP1620786A JP1620786A JPH044274B2 JP H044274 B2 JPH044274 B2 JP H044274B2 JP 1620786 A JP1620786 A JP 1620786A JP 1620786 A JP1620786 A JP 1620786A JP H044274 B2 JPH044274 B2 JP H044274B2
Authority
JP
Japan
Prior art keywords
group
producing
inorganic layered
porous material
layered porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1620786A
Other languages
Japanese (ja)
Other versions
JPS62176969A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1620786A priority Critical patent/JPS62176969A/en
Publication of JPS62176969A publication Critical patent/JPS62176969A/en
Publication of JPH044274B2 publication Critical patent/JPH044274B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/20Mica; Vermiculite
    • C04B14/206Mica or vermiculite modified by cation-exchange; chemically exfoliated vermiculate

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Civil Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔技術分野〕 この発明は、断熱性に優れた無機層状多孔体の
製法に関する。 〔背景技術〕 空隙を形成する層状多孔体として、膨潤性層状
化合物の層間に水酸化物等の異種物質を挿入反応
させたインターカレーシヨン物質がある(たとえ
ば、特開昭54−5884号公報および特開昭54−
16386号公報参照)。ところが、このものは、層間
距離が10Å以下と小さいため、吸着水の影響を受
けやすく、また、断熱性の点でもあまりすぐれて
いるとはいえないものである。 これに対し、微細多孔質粘土材料として、スメ
クタイト型鉱物に水溶性高分子化合物を混合した
ものを使用し、それに、陽イオン性酸化物あるい
は重合体状シリカをインターカレーシヨンするこ
とが、特開昭60−131878号公報、特開昭60−
137812号公報、特開昭60−137813号公報、特開昭
60−155526号公報、ならびに、特開昭60−166217
号公報等に示されている。これらの方法によれ
ば、層間距離を前述のインターカレーシヨン物質
の場合の10Å以下から、30Å程度にまで拡げるこ
とができる。しかしながら、この方法によつて形
成された層状多孔体では、前述したように層間距
離を30Å程度にまで拡げることができても、その
空隙内に水分が吸着されやすいため、この水分の
吸着による各層間の熱的な短絡が発生することが
さけられず、熱物性の向上が期待できない。 〔発明の目的〕 この発明は、このような事情に鑑みて層間に比
較的大きな空隙を有して断熱効果に優れた無機層
状多孔体の製法を提供することを目的としてい
る。 〔発明の開示〕 このような目的を達成するためにこの発明は、
膨潤させた膨潤性層状化合物の層間に、水溶性高
分子化合物および第4級アンモニウム塩のうちの
少なくとも一方を挿入するとともに、あらかじめ
シランカツプリング剤で表面を処理したシリカゾ
ルをも前記層間に挿入し、乾燥・焼成を行つて前
記層間に微細な空隙を形成するようにする無機層
状多孔体の製法を要旨とする。 以下に、この発明を、その1実施例をあらわす
図面を参照しつつ詳しく説明する。 構造を模式化してあらわした第1図にみるよう
に、この発明の無機層状多孔体の製法によつて得
られる無機層状多孔体Aは、無機層状化合物の層
1,1間に、シリカ2が挿入固定されている。そ
のため、その層間の空隙3が30〜600Åに保持さ
れている。 膨潤性層状化合物としては、Na−モンモリロ
ナイト、Ca−モンモリロナイト、酸性白土、3
−八面体合成スメクタイト、Na−ヘクトライト、
Li−ヘクトライト、Na−テニオライト、Li−テ
ニオライトおよび合成雲母(Naフツ素四ケイ素
雲母)等が挙げられるが、膨潤性層状化合物であ
りさえすれば、これらに限られるものではない。
Ca−モンモリロナイトおよび酸性白土等のよう
な膨潤性層状化合物を主材として用いる場合に
は、強い剪断力を加えないと膨潤しにくいので、
膨潤時は混練する必要がある。 シリカゾルの表面を処理するためのシランカツ
プリング剤の種類も、この発明では特に限定され
ないが、たとえば、以下の式()であらわされ
た化合物がこの発明に好ましいものとしてあげら
れる。 RSiX3 ……() 式中Rは、有機材料と結合する置換基をもつ有
機官能性基をあらわしており、好ましいものとし
ては、アミノ基、ビニル基、エポキシ基等があげ
られる。また、式中Xは、無機材料と反応する加
水分解性基をあらわしており、好ましいものとし
ては、Cl、F等のハロゲンや、メトキシ基、エト
キシ基等のアルコキシ基があげられる。 この発明において、シリカゲルの表面を以上の
ようなシランカツプリング剤であらかじめ処理し
ておくのは、つぎのような理由による。 すなわち、シリカゲルは、通常、その表面がマ
イナスにチヤージしたものであるため、これを、
そのままに使用したのでは、やはり、同じくマイ
ナスにチヤージしている前記層1,1間に挿入す
ることがむずかしい。ところが、このようなシリ
カゾルの表面を前記シランカツプリング剤で処理
すると、シリカゲルの表面がプラスにチヤージし
た処理物2′となり、それによつて前記層1,1
間への挿入が容易となるのである。 水溶性高分子化合物としては種々のものが考え
られるが、たとえは、ポリビニルアルコール、ポ
リエチレングリコール、ポリエチレンオキサイ
ド、メチルセルロース、カルボキシメチルセルロ
ース、ポリアクリル酸ソーダおよびポリビニルピ
ロリドン等が好ましいものとして挙げられる。ま
た、第4級アンモニウム塩としても、種々のもの
が考えられるが、その中でも、オクタデシル基、
ヘキサデシル基、テトラデシル基およびドデシル
基等の基を有するものが好ましい。このような第
4級アンモニウム塩としては、次のような化合物
があるが、層間を押し広げてシリカゾル挿入を助
け、かつ、焼成によつて気化して層間に空隙を残
すものであれば、これ以外のものを使用すること
もできる。 オクタデシルトリメチルアンモニウム塩、オク
タデシルジメチルアンモニウム塩、ヘキサデシル
トリメチルアンモニウム塩、テトラデシルトリメ
チルアンモニウム塩、テトラデシルメチルアンモ
ニウム塩。 つぎに、この無機層状多孔体の製法について、
その1実施例を模式化して表した図面に基づいて
詳しく説明する。 膨潤性粘土鉱物のような物質は、第2図に示す
ように、膨潤性層状化合物A1の集まりでできて
いる。主材たる化合物A1を水などの溶媒と混合
(必要に応じ混練)して、第3図にみるように、
層1,1間に溶媒4を含ませてあらかじめ膨潤さ
せておく。溶媒としては、一般に水が用いられる
が、それ以外の極性溶媒、たとえば、メタノー
ル、DMF、DMSOを単独で、あるいは、混合し
て用いるようにしても構わない。 つぎに、シリカゾルの表面を、シランカツプリ
ング剤で処理する。この処理によつて、第4図a
にみるように、表面がプラスにチヤージした処理
物2′が得られる。こうしてできた処理物2′に、
前記水溶性高分子化合物および第4級アンモニウ
ム塩のうちの少くとも一方をソフトピラー5とし
て配合して、第4図bにみるように、充分均一に
なるまで混合する。 得られた混合物を、あらかじめ、膨潤させてお
いた前記膨潤性層状化合物と混合して、第5図に
示すように層状化合物の層1,1間に挿入(イン
ターカレーシヨン)する。そうすると、水溶性高
分子化合物や第4級アンモニウム塩がソフトピラ
ー5として、この層1,1間を押し拡げて保持
し、それとともに、処理物2′の動きを鈍くして
この層間にとどめる働きをする。とどめられた処
理物2′はその表面の正電荷が層1表面のマイナ
ス部分と電気的に結合して、それによつて、層
1,1間を押し広げたまた保持することができる
と考えられる。混合時の温度は60〜70℃前後で行
うことが望ましい。 この反応溶液を遠心分離して脱水を行つたの
ち、ヘラなどで板状に配向させる。この板状材を
60℃程度の温度で温風乾燥等によつて乾燥したあ
と、さらに、300〜600℃、好ましくは450〜550℃
で焼成する。この焼成によつて、前記水溶性高分
子化合物や第4級アンモニウム塩はCO2、NH3
H2O等に変化して除去され、これらが存在した
空間は、そのまま空隙3となり、第1図に示した
ように、層間にシリカ2が挿入された板状の無機
層状多孔体を得ることができる。 このようにして得られた無機層状多孔体は、そ
の全体の40%以上が層間隔30〜600Åを保持して
おり、第1図矢印B方向の断熱性に優れている。 なお、以上の実施例では、シリカゲルとソフト
ピラーとを混合しておいてから、膨潤性層状化合
物の層間に挿入しているが、これは、別々に、前
記挿間に挿入されるようであつてもかまわない。 以下に、実施例を詳しく説明する。 実施例 1 膨潤性層状化合物としてNa−モンモリロナイ
ト(クニミネ工業(株)製クニピアF)を用意し、こ
れを、あらかじめ水に分散させて水溶液を得た。
つぎに、その表面をアミノシランカツプリング剤
で処理したシリカゾル(日産化学工業(株)製、スノ
ーテツクスCK−XS)の10重量%水溶液を用意
し、これに、ソフトピラーとして、水溶性高分子
化合物である分子量22000のポリビニルアルコー
ルを加えて充分に混合し、混合物を得た。得られ
た混合物を前記水溶液とともにフラスコ中に入れ
て混合し、充分に撹拌して60℃の温度で90分間挿
入反応させた。それぞれの配合比は、重量比で
Na−モンモリロナイト:水:シリカゾル:ポリ
ビニルアルコール=1:125:6:0.1であつた。
挿入反応後、これを遠心分離し、ヘラで板状配向
させ60℃の温度で温風乾燥させた。これを電気炉
中に入れ、450℃で焼成し厚み1.5mmの板状無機層
状多孔体試料を得た。 実施例 2 ソフトピラーとして、第4級アンモニウム塩で
あるオクタデシルトリメチルアルモニウムクロラ
イド(日本油脂(株)ニツサンカチオンAB、23重量
%水溶液)を使用した以外は実施例1と同様にし
て板状無機層状多孔体試料を得た。それぞれの配
合比は、重量比でNa−モンモリロナイト:水:
シリカゾル:第4級アンモニウム塩=1:125:
6:4.4であつた。 実施例 3 配合比を、重量比でNa−モンモリロナイト:
水:シリカゲル:第4級アンモニウム塩=1:
10:6:4.4とし、万能ミキサー中で反応を行つ
た以外は実施例2と同様にして板状無機層状多孔
体試料を得た。 実施例 4 ソフトピラーとして、オクタデルシルトリメチ
ルアンモニウムクロライドとヘキサデシルトリメ
チルアンモニウムクロライドの2つの第4級アン
モニウム塩を混合したもの(ライオン油脂(株)製ア
ーカード2HT−72、混合比は、重量比でオクタ
デシル:ヘキサデシル=75:24)を使用した以外
は実施例2と同様にして板状無機層状多孔体試料
を得た。なお、配合比は、重量比でNa−モンモ
リロナイト:水:シリカゲル:第4級アンモニウ
ム塩=1:125:6:1であつた。 実施例 5 膨潤性層状化合物として合成雲母(トピー化学
工業(株)ダイモナイトHG)を用いた以外は実施例
2と同様にして板状無機層状多孔体試料を得た。
各成分の配合比は、重量比で合成雲母:水:シリ
カゲル:第4級アンモニウム塩=1:125:6:
4.4であつた。 比較例 1 コロイダルシリカとして、シランカツプリング
剤で表面を処理していないもの(平均粒度130Å、
20重量%水溶液)を、膨潤性層状化合物として
Na−モンモリロナイト(クニミネ工業(株)製クニ
ピアF)を、それぞれ使用し、これを水溶性高分
子化合物であるポリエチレンオキサイド(明成化
学(株)製アルコツクスE75、平均分子量15万〜220
万)および水とともに70℃で40分間混合した。こ
の混合物をヘラなどで板状に配向させ乾燥後、
400℃、2時間の焼成を行い、板状成形体試料を
得た。 なお、Na−モンモリロナイト、水、コロイダ
ルシリカ、ポリエチレンオキサイドの配合比は、
重量比で、1:10:3:0.1であつた。 これら実施例で得られた成形体試料の開孔率、
層間距離、密度、熱伝導率を測定し、その結果
を、公知の方法で得た無機層状多孔体からなる成
形体試料、石膏ボードおよび砂の成形体の3つの
比較例の結果と併せて第1表に示す。なお、開孔
率はつぎのような式 開孔率=〔試料の表面積〕−〔層間の無機化合物の表
面積〕−〔試料中の層状化合物の外表面積〕/〔試料中
の層状化合物の重さ〕×〔層状化合物の全層開孔時の理
論的比表面積〕 によつて得られる。比表面積は窒素吸着法におけ
るBETの方法、平均層間距離(細孔分布)は窒
素吸着法におけるCI法を用いて得た。窒素吸着
装置はカンタクローム社のオートソープ6を用い
た。熱伝導測定は、キセノンブラツシユ法による
熱伝導率測定装置を用いた。
[Technical Field] The present invention relates to a method for producing an inorganic layered porous body with excellent heat insulation properties. [Background Art] As a layered porous material that forms voids, there is an intercalation material in which a different substance such as hydroxide is inserted and reacted between layers of a swellable layered compound (for example, Japanese Patent Laid-Open No. 54-5884 and Japanese Unexamined Patent Publication 1973-
(See Publication No. 16386). However, since this material has a small interlayer distance of 10 Å or less, it is easily affected by adsorbed water, and it cannot be said to have very good thermal insulation properties. On the other hand, it has been proposed in Japanese Patent Publication No. 2006-11111 to use a mixture of smectite minerals and water-soluble polymer compounds as a microporous clay material, and intercalate the mixture with cationic oxides or polymeric silica. Publication No. 131878, 1984, Japanese Patent Application Publication No. 1983-
Publication No. 137812, Japanese Unexamined Patent Publication No. 137813, Japanese Unexamined Patent Publication No. 1983-137813
Publication No. 60-155526 and JP-A-60-166217
It is shown in the publication number etc. According to these methods, the interlayer distance can be increased from 10 Å or less in the case of the above-mentioned intercalation material to about 30 Å. However, in the layered porous material formed by this method, even if the interlayer distance can be increased to about 30 Å as described above, water is likely to be adsorbed within the voids. The occurrence of thermal short circuits between layers is unavoidable, and improvement in thermal properties cannot be expected. [Object of the Invention] In view of the above circumstances, an object of the present invention is to provide a method for producing an inorganic layered porous body having relatively large voids between layers and having an excellent heat insulating effect. [Disclosure of the invention] In order to achieve the above object, this invention
At least one of a water-soluble polymer compound and a quaternary ammonium salt is inserted between the layers of the swollen layered compound, and a silica sol whose surface has been previously treated with a silane coupling agent is also inserted between the layers. The gist of this invention is a method for producing an inorganic layered porous body which is dried and fired to form fine voids between the layers. Hereinafter, the present invention will be explained in detail with reference to the drawings showing one embodiment thereof. As shown in FIG. 1, which schematically shows the structure, the inorganic layered porous material A obtained by the method for producing an inorganic layered porous material of the present invention has silica 2 between the layers 1 and 1 of the inorganic layered compound. Insertion is fixed. Therefore, the gap 3 between the layers is maintained at 30 to 600 Å. Swellable layered compounds include Na-montmorillonite, Ca-montmorillonite, acid clay, 3
- Octahedral synthetic smectite, Na-hectite,
Examples include Li-hectorite, Na-teniolite, Li-teniolite, and synthetic mica (Na-fluorine-tetrasilicon mica), but the compound is not limited to these as long as it is a swellable layered compound.
When using a swellable layered compound such as Ca-montmorillonite or acid clay as the main material, it is difficult to swell unless strong shearing force is applied.
It is necessary to knead during swelling. The type of silane coupling agent for treating the surface of the silica sol is not particularly limited in this invention, but for example, compounds represented by the following formula () are preferred for this invention. RSiX 3 ...() In the formula, R represents an organic functional group having a substituent that binds to an organic material, and preferred examples include an amino group, a vinyl group, and an epoxy group. Further, in the formula, X represents a hydrolyzable group that reacts with an inorganic material, and preferable examples include halogens such as Cl and F, and alkoxy groups such as methoxy and ethoxy groups. In this invention, the reason why the surface of the silica gel is pretreated with the silane coupling agent as described above is as follows. In other words, silica gel usually has a negatively charged surface, so this
If used as is, it would be difficult to insert it between the layers 1 and 1, which are also negatively charged. However, when the surface of such silica sol is treated with the silane coupling agent, the surface of the silica gel becomes a treated product 2' with a positive charge, thereby causing the layers 1, 1 to
This makes it easy to insert it between the two. Various water-soluble polymer compounds can be considered, but preferred examples include polyvinyl alcohol, polyethylene glycol, polyethylene oxide, methylcellulose, carboxymethylcellulose, sodium polyacrylate, and polyvinylpyrrolidone. In addition, various quaternary ammonium salts can be considered, among which octadecyl group,
Those having groups such as hexadecyl group, tetradecyl group and dodecyl group are preferred. Examples of such quaternary ammonium salts include the following compounds, but as long as they help insert silica sol by expanding the interlayer space and are vaporized by firing to leave voids between the layers, these compounds can be used. You can also use something else. Octadecyltrimethylammonium salt, octadecyldimethylammonium salt, hexadecyltrimethylammonium salt, tetradecyltrimethylammonium salt, tetradecylmethylammonium salt. Next, regarding the manufacturing method of this inorganic layered porous material,
One embodiment will be explained in detail based on the drawings schematically showing one embodiment. Materials such as swellable clay minerals are made up of a collection of swellable layered compounds A1 , as shown in Figure 2. As shown in Figure 3, the main material compound A 1 is mixed with a solvent such as water (kneaded if necessary).
Solvent 4 is impregnated between layers 1 and 1 to swell them in advance. Water is generally used as the solvent, but other polar solvents such as methanol, DMF, and DMSO may be used alone or in combination. Next, the surface of the silica sol is treated with a silane coupling agent. Through this process, FIG.
As shown in the figure, a treated product 2' with a positively charged surface is obtained. To the processed material 2′ created in this way,
At least one of the water-soluble polymer compound and the quaternary ammonium salt is blended as a soft pillar 5, and mixed until sufficiently uniform as shown in FIG. 4b. The resulting mixture is mixed with the swellable layered compound that has been swollen in advance and inserted between layers 1 and 1 of the layered compound as shown in FIG. 5 (intercalation). Then, the water-soluble polymer compound and quaternary ammonium salt serve as soft pillars 5 to spread and hold the space between the layers 1 and 1, and at the same time, to slow down the movement of the material 2' and hold it between the layers. do. It is thought that the positive charge on the surface of the retained treated material 2' electrically couples with the negative portion on the surface of layer 1, thereby expanding and holding the space between layers 1 and 1. . The temperature during mixing is preferably around 60 to 70°C. This reaction solution is centrifuged to dehydrate it, and then oriented into a plate shape using a spatula or the like. This plate material
After drying by hot air drying etc. at a temperature of about 60℃, further drying at 300 to 600℃, preferably 450 to 550℃
Fire it with By this calcination, the water-soluble polymer compound and quaternary ammonium salt are converted into CO 2 , NH 3 ,
They are converted into H 2 O, etc. and removed, and the spaces where these existed remain as voids 3 to obtain a plate-shaped inorganic layered porous material with silica 2 inserted between the layers, as shown in Figure 1. I can do it. The inorganic layered porous material thus obtained has a layer spacing of 30 to 600 Å in more than 40% of the total, and has excellent heat insulation properties in the direction of arrow B in FIG. Note that in the above examples, the silica gel and the soft pillars are mixed and then inserted between the layers of the swellable layered compound, but it seems that they are inserted separately into the interlayers. It doesn't matter. Examples will be described in detail below. Example 1 Na-montmorillonite (Kunipia F, manufactured by Kunimine Kogyo Co., Ltd.) was prepared as a swellable layered compound, and was previously dispersed in water to obtain an aqueous solution.
Next, a 10% by weight aqueous solution of silica sol (Snowtex CK-XS, manufactured by Nissan Chemical Industries, Ltd.) whose surface was treated with an aminosilane coupling agent was prepared, and a water-soluble polymer compound was added to it as a soft pillar. Polyvinyl alcohol with a molecular weight of 22,000 was added and thoroughly mixed to obtain a mixture. The resulting mixture was put into a flask together with the aqueous solution, mixed, stirred thoroughly, and subjected to an insertion reaction at a temperature of 60° C. for 90 minutes. The compounding ratio of each is expressed as a weight ratio.
The ratio of Na-montmorillonite:water:silica sol:polyvinyl alcohol was 1:125:6:0.1.
After the insertion reaction, this was centrifuged, oriented in a plate shape with a spatula, and dried with warm air at a temperature of 60°C. This was placed in an electric furnace and fired at 450°C to obtain a plate-like inorganic layered porous material sample with a thickness of 1.5 mm. Example 2 A plate-like inorganic material was prepared in the same manner as in Example 1, except that octadecyltrimethylalmonium chloride (Nitsusan Cation AB, Nippon Oil & Fats Co., Ltd., 23% by weight aqueous solution), which is a quaternary ammonium salt, was used as the soft pillar. A layered porous material sample was obtained. The respective compounding ratios are Na-montmorillonite:water:
Silica sol: Quaternary ammonium salt = 1:125:
6:4.4. Example 3 Compounding ratio of Na-montmorillonite by weight:
Water: Silica gel: Quaternary ammonium salt = 1:
A plate-like inorganic layered porous material sample was obtained in the same manner as in Example 2, except that the ratio was 10:6:4.4 and the reaction was carried out in a universal mixer. Example 4 As a soft pillar, a mixture of two quaternary ammonium salts, octadelcyltrimethylammonium chloride and hexadecyltrimethylammonium chloride (Alucard 2HT-72 manufactured by Lion Yushi Co., Ltd., the mixing ratio was A plate-like inorganic layered porous material sample was obtained in the same manner as in Example 2 except that octadecyl:hexadecyl=75:24) was used. The blending ratio was Na-montmorillonite:water:silica gel:quaternary ammonium salt=1:125:6:1 by weight. Example 5 A plate-shaped inorganic layered porous material sample was obtained in the same manner as in Example 2, except that synthetic mica (Dimonite HG, manufactured by Topy Chemical Industries, Ltd.) was used as the swelling layered compound.
The mixing ratio of each component is synthetic mica: water: silica gel: quaternary ammonium salt = 1:125:6:
It was 4.4. Comparative Example 1 Colloidal silica whose surface was not treated with a silane coupling agent (average particle size 130 Å,
20% aqueous solution) as a swellable layered compound.
Sodium-montmorillonite (Kunipia F manufactured by Kunimine Kogyo Co., Ltd.) was used, and this was combined with polyethylene oxide, a water-soluble polymer compound (Arcotox E75 manufactured by Meisei Chemical Co., Ltd., with an average molecular weight of 150,000 to 220
10,000) and water at 70°C for 40 minutes. After drying, orient this mixture into a plate shape using a spatula, etc.
Firing was performed at 400°C for 2 hours to obtain a plate-shaped molded body sample. The blending ratio of Na-montmorillonite, water, colloidal silica, and polyethylene oxide is as follows:
The weight ratio was 1:10:3:0.1. The porosity of the molded body samples obtained in these Examples,
The interlayer distance, density, and thermal conductivity were measured, and the results were combined with the results of three comparative examples: a molded body sample made of an inorganic layered porous material obtained by a known method, a gypsum board, and a molded body of sand. It is shown in Table 1. The porosity is determined by the following formula: Porosity = [Surface area of sample] - [Surface area of inorganic compound between layers] - [Outer surface area of layered compound in sample] / [Weight of layered compound in sample] × [Theoretical specific surface area when all layers of the layered compound are open] The specific surface area was obtained using the BET method in the nitrogen adsorption method, and the average interlayer distance (pore distribution) was obtained using the CI method in the nitrogen adsorption method. The nitrogen adsorption device used was Autosoap 6 manufactured by Quantachrome. The thermal conductivity measurement was performed using a thermal conductivity measurement device using the xenon brush method.

【表】【table】

〔発明の効果〕〔Effect of the invention〕

この発明の無機層状多孔体の製法は、以上のよ
うに構成されているため、無機化合物によつて全
体の40%以上が層間隔を30〜600Åに保持されて
開孔率が30%以上になつており、低熱伝導率であ
つて断熱材等に有用な断熱性に非常にすぐれた無
機層状多孔体を確実に得ることができるようにな
る。
Since the manufacturing method of the inorganic layered porous material of the present invention is configured as described above, the layer spacing of 40% or more of the whole is maintained at 30 to 600 Å by the inorganic compound, and the porosity is increased to 30% or more. It becomes possible to reliably obtain an inorganic layered porous material which has a low thermal conductivity and has excellent heat insulating properties that are useful for heat insulating materials and the like.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は無機層状多孔体の模式的側面図、第2
図は膨潤性層状化合物の模式的側面図、第3図は
その膨潤に至る状態を説明する説明図、第4図a
はシリカゾルの表面をシランカツプリング剤で処
理した状態を説明する説明図、第4図bは第4図
aのシリカゾルにさらにソフトピラーを加えた状
態を説明する説明図、第5図は第4図bの混合物
を膨潤性層状化合物の層間に挿入した状態を説明
する説明図である。 A……無機層状多孔体、A1……膨潤性無機層
状化合物、1……層、2……シリカ、3……空
隙、5……ソフトピラー。
Figure 1 is a schematic side view of an inorganic layered porous material, Figure 2 is a schematic side view of an inorganic layered porous material;
The figure is a schematic side view of the swellable layered compound, Figure 3 is an explanatory diagram illustrating the state leading to swelling, and Figure 4 a.
is an explanatory diagram illustrating the state in which the surface of the silica sol has been treated with a silane coupling agent, FIG. FIG. 3 is an explanatory diagram illustrating a state in which the mixture of FIG. b is inserted between layers of a swellable layered compound. A...Inorganic layered porous material, A1 ...Swellable inorganic layered compound, 1...Layer, 2...Silica, 3...Void, 5...Soft pillar.

Claims (1)

【特許請求の範囲】 1 膨潤させた膨潤性層状化合物の層間に、水溶
性高分子化合物および第4級アンモニウム塩のう
ちの少なくとも一方を挿入するとともに、あらか
じめシランカツプリング剤で表面を処理したシリ
カゾルをも前記層間に挿入し、乾燥・焼成を行な
つて前記層間に微細な空隙を形成するようにする
無機層状多孔体の製法。 2 シランカツプリング剤が下記式()であら
わされた化合物、 RSiX3 ……() 〔ただし、Rは有機材料と結合する置換基をもつ
有機官能性基をあらわし、Xは無機材料と反応す
る加水分解性基をあらわす。〕 である特許請求の範囲第1項記載の無機層状多孔
体の製法。 3 水溶性高分子化合物が、ポリビニルアルコー
ル、ポリエチレングリコール、ポリエチレンオキ
サイド、メチルセルロース、カルボキシメチルセ
ルロース、ポリアクリル酸ソーダ、および、ポリ
ビニルピロリドンからなる群より選ばれた少なく
とも1つの化合物である特許請求の範囲第1項ま
たは第2項記載の無機層状多孔体の製法。 4 第4級アンモニウム塩が、オクタデシル基、
ヘキサデシル基、テトラデシル基、および、ドデ
シル基からなる群より選ばれた少なくとも1つの
基を有するものである特許請求の範囲第1項ない
し第3項のいずれかに記載の無機層状多孔体の製
法。 5 膨潤性層状化合物が、Na−モンモリロナイ
ト、Ca−モンモリロナイト、酸性白土、3−八
面体合成スメクタイト、Na−ヘクトライト、Li
−ヘクトライト、Na−テニオライト、Li−テニ
オライトおよび合成雲母からなる群より選ばれた
少なくとも1つである特許請求の範囲第1項ない
し第4項のいずれかに記載の無機層状多孔体の製
法。 6 空隙が30〜600Åである特許請求の範囲第1
項ないし第5項のいずれかに記載の無機層状多孔
体の製法。
[Scope of Claims] 1. A silica sol in which at least one of a water-soluble polymer compound and a quaternary ammonium salt is inserted between the layers of a swollen layered compound, and the surface of which has been previously treated with a silane coupling agent. A method for producing an inorganic layered porous body, which comprises also inserting a material between the layers, and drying and firing the material to form fine voids between the layers. 2 A compound in which the silane coupling agent is represented by the following formula (), RSiX 3 ... () [However, R represents an organic functional group having a substituent that bonds with an organic material, and X reacts with an inorganic material. Represents a hydrolyzable group. ] A method for producing an inorganic layered porous material according to claim 1. 3. Claim 1, wherein the water-soluble polymer compound is at least one compound selected from the group consisting of polyvinyl alcohol, polyethylene glycol, polyethylene oxide, methylcellulose, carboxymethylcellulose, sodium polyacrylate, and polyvinylpyrrolidone. A method for producing an inorganic layered porous material according to item 1 or 2. 4 The quaternary ammonium salt has an octadecyl group,
4. The method for producing an inorganic layered porous material according to any one of claims 1 to 3, which has at least one group selected from the group consisting of a hexadecyl group, a tetradecyl group, and a dodecyl group. 5 Swelling layered compounds include Na-montmorillonite, Ca-montmorillonite, acid clay, 3-octahedral synthetic smectite, Na-hectrite, Li
- The method for producing an inorganic layered porous material according to any one of claims 1 to 4, which is at least one selected from the group consisting of hectorite, Na-teniolite, Li-teniolite, and synthetic mica. 6 Claim 1 in which the void is 30 to 600 Å
A method for producing an inorganic layered porous material according to any one of Items 1 to 5.
JP1620786A 1986-01-27 1986-01-27 Manufacture of inorganic layered porous body Granted JPS62176969A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1620786A JPS62176969A (en) 1986-01-27 1986-01-27 Manufacture of inorganic layered porous body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1620786A JPS62176969A (en) 1986-01-27 1986-01-27 Manufacture of inorganic layered porous body

Publications (2)

Publication Number Publication Date
JPS62176969A JPS62176969A (en) 1987-08-03
JPH044274B2 true JPH044274B2 (en) 1992-01-27

Family

ID=11910067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1620786A Granted JPS62176969A (en) 1986-01-27 1986-01-27 Manufacture of inorganic layered porous body

Country Status (1)

Country Link
JP (1) JPS62176969A (en)

Also Published As

Publication number Publication date
JPS62176969A (en) 1987-08-03

Similar Documents

Publication Publication Date Title
US6225394B1 (en) Intercalates formed by co-intercalation of onium ion spacing/coupling agents and monomer, oligomer or polymer ethylene vinyl alcohol (EVOH) intercalants and nanocomposites prepared with the intercalates
CA2211603C (en) Exfoliated layered materials and nanocomposites comprising said exfoliated layered materials having water-insoluble oligomers or polymers adhered thereto
WO2000009605A1 (en) Intercalates formed with mxd6 nylon intercalants
Fernández-Saavedra et al. Polymer-clay nanocomposites as precursors of nanostructured carbon materials for electrochemical devices: templating effect of clays
JPH044274B2 (en)
JPS63185871A (en) Manufacture of inorganic layered porous body
JPH044275B2 (en)
JPS62176911A (en) Preparation of inorganic lamellar porous body
JPS6385067A (en) Manufacture of inorganic layered porous body
JPH0455149B2 (en)
JPS62176967A (en) Manufacture of inorganic layered porous body
JPH0228545B2 (en) MUKISOJOTAKOTAINOSEIHO
JPH044276B2 (en)
JPS62202877A (en) Manufacture of inorganic layer porous body
JPH0577606B2 (en)
JPS62241879A (en) Manufacture of inorganic layer porous body
JPS6246489B2 (en)
JPH10244527A (en) Method for mixing ceramic powder batch
JPS62278174A (en) Manufacture of inorganic layer porous body
JPS60131878A (en) Manufacture of microporous clay material
JPS62123081A (en) Manufacture of inorganic layered porous body
JPS62241881A (en) Manufacture of inorganic layer porous body
JPH01115880A (en) Production of inorganic laminar porous form
JPS6250407B2 (en)
JPS62119182A (en) Manufacture of inorganic layer porous body

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees