JPS62176514A - Powder collector - Google Patents

Powder collector

Info

Publication number
JPS62176514A
JPS62176514A JP1881486A JP1881486A JPS62176514A JP S62176514 A JPS62176514 A JP S62176514A JP 1881486 A JP1881486 A JP 1881486A JP 1881486 A JP1881486 A JP 1881486A JP S62176514 A JPS62176514 A JP S62176514A
Authority
JP
Japan
Prior art keywords
plates
powders
powder
main body
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1881486A
Other languages
Japanese (ja)
Inventor
Joji Yamaya
山家 譲二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP1881486A priority Critical patent/JPS62176514A/en
Publication of JPS62176514A publication Critical patent/JPS62176514A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To remove powders in air current with a minimized pressure loss and without clogging by laminating plates with spacers providing micro spaces between each plate and connecting the micro spaces with a passage. CONSTITUTION:A main body 4 is formed by laminating plates 1, 1 to the direc tion of thickness with spacers providing micro spaces between each plates. A passage 5 for powders passing through by air current, with which said micro spaces are connected, is provided in the main body 4. Powders 7 floating in air current passes through said passage 5 as show by an arrow mark A and sent to micro spaces of the main body 4. At that time, a streamlined flow is formed in air current by micro spaces formed with each of plates 1, by which floating powders are agglomerated and dropped over the plates 1. Super micro powders carrying large displacement amount given by Brownian movement are adhered to the plates 1. Powders thus collected rotate on the plates 1 by 90 degrees, knocked off by a hammering device or the like and collected into a hopper 8.

Description

【発明の詳細な説明】 産業上の利用分野 この発明はセラミックス工業、金属粉末工業、その他の
粉体を扱う産業において用いられる粉体捕集器に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a powder collector used in the ceramic industry, metal powder industry, and other industries that handle powder.

従来の技術 従来、この種の粉体なIJill造する際に用いられる
乾式プロセスは、公知のため図示は省略するが一般に粉
体を空気等の気体に浮遊させて流し。
BACKGROUND OF THE INVENTION Conventionally, the dry process used to produce this type of powder IJill is generally known, and is not shown in the drawings, but the powder is generally suspended in a gas such as air and then allowed to flow.

その気流中から粉体のみを取り出し、採集する。Only the powder is extracted from the airflow and collected.

+1で一矛の温を躊捕沼か有すAフィルタ マはバッグ
を用いて捕集するのが普通である。
A filter that has a temperature of +1 and is capable of capturing only a single amount of heat is normally collected using a bag.

発明が解決しようとする問題点 しかし上記従来の方法によると、それに使用するフィル
タ又はバッグの目詰りを起し易い難点があり、又その場
合の気流の流速は、見かけ流速1 (ml/−8程度で
あり、処理流速も小さい、従ってそれらの装置は大面積
、大容積のものを要し、その上圧力損失が大きに、所要
動力が大きくなるという欠点がある。
Problems to be Solved by the Invention However, the conventional method described above has the disadvantage that the filter or bag used therein tends to become clogged, and in this case, the flow rate of the airflow is an apparent flow rate of 1 (ml/-8). The processing flow rate is also low, and therefore these devices require a large area and large volume, and have the drawbacks of large pressure loss and large power requirements.

この発明はこのような問題を解決するため釦なされたも
ので、その目的は前記従来の装置のような目詰りを起す
ことがなに、処理流速も比較的大きに、圧力損失はごく
少に、かつ比較的簡単な構造の粉体捕集器を提供するこ
とである。
This invention was developed to solve these problems, and its purpose is to eliminate the clogging that occurs in the conventional devices, to achieve a relatively high processing flow rate, and to minimize pressure loss. It is an object of the present invention to provide a powder collector having a relatively simple structure.

問題点を解決するための手段 この発明を、実施例を示す図面について述べると、牙1
図〜矛4図において、板体1と板体1とを厚さ方向に、
かつスペーサー2により微小間隙3を持たせて重ね合せ
、本体4を形成し。
Means for Solving the Problems This invention will be described with reference to the drawings showing the embodiments.
In Figures 4 to 4, plate 1 and plate 1 are shown in the thickness direction,
Then, they are overlapped with a small gap 3 provided by a spacer 2 to form a main body 4.

該本体4を、気流による粉体の通路5に、前記微小間1
11i3を該通路5に連通させて設けたことを特徴とす
る粉体捕集器である。なお牙1図〜才3図においてスペ
ーサ2は図が(I雑となるので省略されている。
The main body 4 is placed in the passage 5 of the powder by the air flow, and the minute gap 1 is
11i3 is provided in communication with the passage 5. Note that the spacer 2 is omitted in Figures 1 to 3 because the illustrations are sloppy.

作用 矛1図において気流中に浮遊した粉体7は、矢印A7に
示すよ5に前記通路5を通り1本体4の前記微少間Va
3に送入される。この場合前記気流は板体1相互の形成
する微少間隙3により層流流れを形成し、このため浮遊
する粉体は凝集を起し易くなり、凝集して板体1上に落
下する。
In FIG. 1, the powder 7 floating in the airflow passes through the passage 5 as indicated by arrow A7 and reaches the minute gap Va between the main body 4.
3. In this case, the airflow forms a laminar flow due to the minute gaps 3 formed between the plates 1, and therefore the floating powder tends to aggregate, and falls onto the plate 1 as agglomerates.

又特に細い超微粉体の場合ブラウン運動による変位量(
平均自由行路)が非常に大きに、この変位量が前記微小
間隙3に達することKより板体1表面につく1mち上記
微小間隙3中を数秒の滞留時間で通過することKより板
体1の表面忙付着する。又は付着する確率が極めて大き
い。
In addition, especially in the case of thin ultrafine powder, the amount of displacement due to Brownian motion (
The mean free path) is very large, and the amount of displacement reaches the microgap 3, which means that the displacement of 1m on the surface of the plate 1 passes through the microgap 3 in a residence time of several seconds. It adheres to the surface of the body. Or the probability of adhesion is extremely high.

このように上記二つの機能、即ち粉体の凝集による沈降
とブラウン運動による板体1表面への付着により、板体
1表面に捕集される。粉体な失った気流はそのまま@少
間隙3中を流れ、本体4の外部に流出する。そして前記
板体1表面に捕集された粉体7は適宜な方法忙より集成
される。
In this way, the particles are collected on the surface of the plate 1 due to the two functions described above, namely, sedimentation due to agglomeration of the powder and adhesion to the surface of the plate 1 due to Brownian motion. The airflow that is lost due to powder flows directly through the small gap 3 and flows out of the main body 4. The powder 7 collected on the surface of the plate 1 is collected by an appropriate method.

実施例 矛1図〜才3図において、8はホッパであり。Example In figures 1 to 3, number 8 is the hopper.

9はケーシング、10は回転ケーシング、11は入口、
 12は出口を示す。又13は回転ケーシングlOの扉
、14は蝶番、15は固定部、16は回転中心を示す、
なお回転ケーシングlOを回転させる駆動装置は図示を
省略されている。
9 is a casing, 10 is a rotating casing, 11 is an inlet,
12 indicates the exit. 13 is the door of the rotating casing lO, 14 is the hinge, 15 is the fixed part, and 16 is the center of rotation.
Note that illustration of a drive device for rotating the rotating casing IO is omitted.

矛1図において粉体7は気流により矢印A7 K示すよ
うに供給され、前記のようKal小間43中に入り、板
体1表面に捕集される。この捕集が充分行われたならば
jp2図に示すように1回転ケーシング10を一例とし
て矢印AIO万回に回転する。又それと共に扉13を、
蝶番14により矢印A13方向に回転し、開扉する。モ
して才3図に示すように固定部15に1足する。回転ケ
ーシング10は回転中心16を中心として、−例として
90度回転し、図示しないストッパにより停止させられ
、矛3図に示す状態となるにの状態において図示しない
槌打装置、又は振動装置が作動し、板体1表面に捕集さ
れていた粉体7はホッパ8内に落下し、集成される。
In Figure 1, the powder 7 is supplied by the airflow as shown by the arrow A7K, enters the Kal booth 43 as described above, and is collected on the surface of the plate 1. If this collection has been sufficiently performed, the casing 10 is rotated once as shown in FIG. Also, along with that, door 13,
The hinge 14 rotates in the direction of arrow A13 to open the door. Then add 1 to the fixed part 15 as shown in Figure 3. The rotating casing 10 rotates, for example, 90 degrees around the center of rotation 16, is stopped by a stopper (not shown), and a hammering device or a vibration device (not shown) is activated in the state shown in FIG. 3. However, the powder 7 collected on the surface of the plate 1 falls into the hopper 8 and is aggregated.

上記集成が終了すれば1回転ケーシングlOを反矢印A
IO方向に90度回転し、かつ扉13を矛2図に示すよ
5に閉止し、再び粉体の捕集を行う。
When the above assembly is completed, move the casing 10 for one rotation to the opposite arrow A.
It is rotated 90 degrees in the IO direction, and the door 13 is closed at 5 as shown in Figure 2, and the powder is collected again.

次に、実施例の詳細について述べると1.iF1図に示
す本体4の長さLは1?PL〜5?FL程度に形成され
、微小間93はl m −−0,2y−a程度に形成さ
れる。
Next, the details of the example will be described.1. Is the length L of the main body 4 shown in the iF1 diagram 1? PL~5? It is formed to be approximately FL, and the minute gap 93 is formed to be approximately l m −0,2y−a.

そして本体4中を流れる気流の流速は0.05WL/Q
〜1.07PL/ S程度であり、この気流のレイノル
ズ故FLeは、常温で、空気の場合約lθ以下となる。
The velocity of the airflow flowing through the main body 4 is 0.05WL/Q.
~1.07 PL/S, and the Reynolds-induced FLe of this air flow is approximately lθ or less in the case of air at room temperature.

即ち完全に層流を形成する。そして、この状態で浮遊し
て流れる粉体は、凝集を起す可能性が非常に高い0例え
ば1μm粒径級の粉体はlOμm粒径級となり、この場
合自然落下の限界速度は0.3aa10程度となるので
1本体4内では例えば0.5 fi鴬の微小間隙では滞
留時間(L=2−。
That is, a completely laminar flow is formed. Powder that floats and flows in this state has a very high possibility of causing agglomeration.For example, powder with a particle size of 1 μm becomes a particle size of 10 μm, and in this case, the limit speed of free fall is about 0.3aa10 Therefore, within one main body 4, for example, the residence time in a minute gap of 0.5 fi (L=2-).

v = 0.2 fPL/ sとすれば10秒)内に充
分板体1上に落下する0以上のように粉体を凝集させ、
沈降によって捕集する。
If v = 0.2 fPL/s, the powder is agglomerated so that it falls sufficiently onto the plate 1 within 10 seconds),
Collected by sedimentation.

このような機能がオー忙あげられる。Functions like this are very useful.

第二にあげられる機能は特に細い粉体、即ち超微粉体(
0,01Am −1,0μ”L粒径)の場合、ブラウン
運動による変位量(平均自由行路)が非常に大きに、0
,1 try yn / B 〜1.0−−/ Sのオ
ーダーとなるので、例えば0.2WL?PL級の微小間
[3を数秒間経過して通過することKより、板体1の表
面に付着する確率は極めて大きい。
The second function is to produce particularly fine powders, that is, ultrafine powders (
0.01Am - 1.0μ"L grain size), the displacement due to Brownian motion (mean free path) is very large, 0.
, 1 try yn / B ~ 1.0--/ S, so for example, 0.2 WL? The probability of adhesion to the surface of the plate 1 is extremely high, since it passes through the PL class minute gap [3] after a few seconds.

このような二つの機能、即ち粉体の凝集による沈降とブ
ラウン連動による板体1表面への移行により、非常に高
い捕集効率で粉体を捕集することができる。なお前記板
体1は一例として薄いステンレス板、又は高分子材料の
薄板に金属コーティングを施したものが用いられた。
Due to these two functions, namely, sedimentation due to agglomeration of powder and transfer to the surface of the plate 1 due to Brownian interlocking, powder can be collected with extremely high collection efficiency. As the plate 1, for example, a thin stainless steel plate or a thin plate of a polymer material coated with metal was used.

次に、前記板体−1の、微小間隙3形成方法について述
べると、これは、矛4図に示すように板体1に、−例と
して半球状の突起を、スペーサ2として形成し、このよ
うに形成した板体1相互を重ね合せることKより構成さ
れる。そしてこの場合スペーサ2の高さはほぼ1mm〜
Q、2yamとし、製作はプレス等によって行う。又ス
ペー?2はごばん目状、千鳥状等適宜の形状に配設し、
その間隔はほぼ5WL?FL〜15myyLとされる。
Next, the method for forming the minute gap 3 in the plate body 1 will be described. As shown in FIG. It is constructed by overlapping the plate bodies 1 formed in the above manner. In this case, the height of spacer 2 is approximately 1 mm ~
Q, 2yam, manufactured by press etc. Space again? 2 is arranged in an appropriate shape such as a grid pattern or a staggered pattern,
Is the interval approximately 5WL? FL ~ 15myyL.

次に、矛5図及び矛6図に示すものは、前記本体10回
転中心16を気流方向と直角方向にして形成されたもの
であり、このよ5に形成することによりケーシング9は
回転しなくても良い利点を有する。
Next, what is shown in Figures 5 and 6 is one in which the rotation center 16 of the main body 10 is formed in a direction perpendicular to the airflow direction, and by forming it in this way 5, the casing 9 does not rotate. It also has good advantages.

なおこのような場合、矛6図に示すように本体1を90
度回転して、粉体7を、図示しない加振装置、又は槌打
装置によりホッパ8内に落下させるが、その際前記気流
は通行を停止されるため図示しないバイパスにより通行
させる。又は一時通行を停止する。
In such a case, as shown in Figure 6, the main body 1 should be
The powder 7 is rotated once and dropped into the hopper 8 by a vibrating device or a hammering device (not shown), but at that time, the air flow is stopped, so it is passed through a bypass (not shown). Or temporarily stop traffic.

このように形成された装置では前記微小間Va、3、は
平面状の隙間であり、気流の流速はほぼI WL/ 0
以下であるので、本体1の長さLがx−n’−3−cm
度の長さを有しても、圧力損失は極めて少に、数十ミリ
水柱以下である。(常温、気流が空気の場合) 次に、牙7図に示すものは本体4を、上下方向に傾斜さ
せて設けたもので、粉体7を浮遊させた気流は矢印A7
方向に供給し、板体IKW集された粉体7は、その形態
のまま加振、又は槌打することによりホッパ8内に落下
させる。なおホッパ8と、気流の入口11とは、水平方
向において岨鰭して形成されている。
In the device formed in this way, the minute gap Va,3 is a planar gap, and the airflow velocity is approximately IWL/0.
Since it is as follows, the length L of the main body 1 is x-n'-3-cm
Even with a long length, the pressure loss is extremely small, less than several tens of millimeters of water column. (At room temperature, when the air flow is air) Next, the one shown in Fig. 7 has the main body 4 inclined in the vertical direction, and the air flow with the powder 7 suspended is shown by the arrow A7.
The powder 7 fed in the direction of the plate IKW is dropped into the hopper 8 by being shaken or hammered in that form. Note that the hopper 8 and the airflow inlet 11 are formed as a slope in the horizontal direction.

又27図に示す装置において、粉体を浮遊させた気流は
上方から供給しても差支えはない。
Moreover, in the apparatus shown in FIG. 27, there is no problem in supplying the airflow containing suspended powder from above.

又1.?8図に示すものは板体1をほぼ円筒状に形成し
たものであって、この場合同心円状でなに、正面渦巻き
状に形成する。
Also 1. ? In the case shown in FIG. 8, the plate body 1 is formed into a substantially cylindrical shape, and in this case, it is formed into a concentric circular shape or a front spiral shape.

この形式は、コア17に、前記スペーサ2を有する板体
1を図示のように巻きけけることにより容易に形成でき
るので好ましい、このような形式のものは、加振の際コ
ア17の軸を垂直方向とする。又は矛7図に示すように
形成して使用してもよい。
This type is preferable because it can be easily formed by wrapping the plate 1 having the spacer 2 around the core 17 as shown in the figure. Vertical direction. Alternatively, it may be formed and used as shown in Figure 7.

発明の効果 この発明は前記のように構成され、板体と板体とを厚さ
方向に、かつスペーサにより微小間隙を持たせて重ね合
せ、本体を形成し、該本体を、気流による粉体の通路に
、前記微小間隙を該通路に連通させて設けたことにより
、前記従来の装置のような目詰りな起すことがなに、処
理流速は比較的大きに、圧力損失はごく少に、かつ比較
的簡単な構造の、粉体捕集器を提供することができる。
Effects of the Invention The present invention is constructed as described above, and a main body is formed by overlapping the plate bodies in the thickness direction with a small gap provided by the spacer, and the main body is made to absorb powder by airflow. By providing the minute gap in communication with the passage, there is no clogging as in the conventional apparatus, the processing flow rate is relatively high, the pressure loss is very small, Moreover, it is possible to provide a powder collector with a relatively simple structure.

【図面の簡単な説明】[Brief explanation of drawings]

オ1図〜オ4図はこの発明の実施例を示すもので1.f
’1図は粉体捕集器の縦断面図、矛2図は、1−1図の
■−■巌町面図、矛3図は矛2図と異る状態の、n−n
標断面図、矛4図は矛1図の部分の詳細図、牙5図、矛
6図はこの発明の+9の宙添儲Iか云L +51ヅば粉
体捕集器のη断面図、矛6図は1.t−5図と異る状態
の、粉体捕集器の縦断面図、矛7図はこの発明の矛3の
実施例を示し、粉体捕集器の縦断面図、矛8図はこの発
明の牙4の実施例を示し、粉体捕集器の横断面図である
。 1・・・板体 2・・・スペーサ 3・・・微小間隙 4・・・本体 5・・・粉体の通路
Figures O1 to O4 show embodiments of this invention.1. f
Figure 1 is a vertical cross-sectional view of the powder collector, Figure 2 is a view of ■-■ Iwao town in Figure 1-1, Figure 3 is a different state from Figure 2, n-n.
Figure 4 is a detailed view of the part shown in Figure 1, Figures 5 and 6 are cross-sectional views of the powder collector of +9 of this invention. The 6th figure of the spear is 1. Figure 7, a vertical cross-sectional view of the powder collector in a state different from Figure t-5, shows an embodiment of Figure 3 of the present invention, and Figure 8, a longitudinal cross-sectional view of the powder collector, shows this embodiment. FIG. 2 is a cross-sectional view of a powder collector, showing an embodiment of the teeth 4 of the invention. 1... Plate 2... Spacer 3... Minute gap 4... Main body 5... Powder passage

Claims (1)

【特許請求の範囲】[Claims] 板体と板体とを厚さ方向に、かつスペーサにより微小間
隙を持たせて重ね合せ、本体を形成し、該本体を、気流
による粉体の通路に、前記微小間隙を該通路に連通させ
て設けたことを特徴とする粉体捕集器。
A main body is formed by overlapping the plate bodies in the thickness direction with a small gap provided by a spacer, and the main body is connected to a passage for the powder by air flow, and the small gap is communicated with the passage. A powder collector characterized by being provided with a
JP1881486A 1986-01-30 1986-01-30 Powder collector Pending JPS62176514A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1881486A JPS62176514A (en) 1986-01-30 1986-01-30 Powder collector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1881486A JPS62176514A (en) 1986-01-30 1986-01-30 Powder collector

Publications (1)

Publication Number Publication Date
JPS62176514A true JPS62176514A (en) 1987-08-03

Family

ID=11982043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1881486A Pending JPS62176514A (en) 1986-01-30 1986-01-30 Powder collector

Country Status (1)

Country Link
JP (1) JPS62176514A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004523346A (en) * 2001-01-19 2004-08-05 アンスティテュ フランセ デュ ペトロール Separator made of porous material such as felt
JP2011212557A (en) * 2010-03-31 2011-10-27 Nippon Kinzoku Co Ltd Filter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004523346A (en) * 2001-01-19 2004-08-05 アンスティテュ フランセ デュ ペトロール Separator made of porous material such as felt
JP2007222871A (en) * 2001-01-19 2007-09-06 Ifp Separator
JP2011212557A (en) * 2010-03-31 2011-10-27 Nippon Kinzoku Co Ltd Filter

Similar Documents

Publication Publication Date Title
CN105642062B (en) The device and method of fine particle in a kind of hypergravity removing gas
CN100531862C (en) Apparatus and method for removing grains with combined action of sound wave and additional seed grain
JPH09164344A (en) Cyclone dust collector
JPH0139807B2 (en)
JPS62176514A (en) Powder collector
US2947164A (en) Cascade impactor for sampling smokes, dusts, and fumes
JPH0420655B2 (en)
CN107159449B (en) The apparatus and method of magnetic-particle in rotating excitation field gas recovery
CN107086054B (en) A kind of aerosol fillter based on microfluid inertial impactor principle
CN109224644A (en) Axial-flow type dust-extraction unit and method
JP2003190838A (en) Cyclone type fine powder catcher
CN210876272U (en) Industrial production is with clear device of dividing
JPS56121622A (en) Granulating and collecting device for molten slag
JP2000344348A (en) Powdery and granular material capturing device
US4004942A (en) Process and apparatus for cleaning particulate materials
CN208595664U (en) Ventiduct system
JP2000202325A (en) Separation of fine particle in dispersion, classification of fine particle, measuring of adsorption force of fine particle, and apparatus for implementing them
JPH11104514A (en) Drum type magnetic foreign matter recovering device
CN2328427Y (en) Rotary flow type static dust collector
CN217699393U (en) Crushing system and rotary type squeezing equipment for separating material film
JP3355773B2 (en) Cyclone
JPS627480A (en) Method and device for separating froth
JPH085555B2 (en) Continuous discharge device for powder and granules
JP2946229B2 (en) Ultra fine powder classifier
JPS63137782A (en) Granule separator