JPS6217646B2 - - Google Patents

Info

Publication number
JPS6217646B2
JPS6217646B2 JP57014819A JP1481982A JPS6217646B2 JP S6217646 B2 JPS6217646 B2 JP S6217646B2 JP 57014819 A JP57014819 A JP 57014819A JP 1481982 A JP1481982 A JP 1481982A JP S6217646 B2 JPS6217646 B2 JP S6217646B2
Authority
JP
Japan
Prior art keywords
hydrogen gas
gas
engine
pressure
combustion chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57014819A
Other languages
Japanese (ja)
Other versions
JPS58133449A (en
Inventor
Kenji Watanabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP57014819A priority Critical patent/JPS58133449A/en
Priority to US06/425,915 priority patent/US4508064A/en
Priority to IN1195/CAL/82A priority patent/IN158105B/en
Priority to AU89443/82A priority patent/AU565499B2/en
Priority to KR8204738A priority patent/KR880001683B1/en
Priority to AT82305920T priority patent/ATE25277T1/en
Priority to EP82305920A priority patent/EP0079736B1/en
Priority to DE8282305920T priority patent/DE3275306D1/en
Priority to FI823825A priority patent/FI69912C/en
Priority to IL67192A priority patent/IL67192A0/en
Priority to DK499782A priority patent/DK499782A/en
Priority to IE2674/82A priority patent/IE53478B1/en
Priority to PH28118A priority patent/PH20355A/en
Priority to YU02524/82A priority patent/YU252482A/en
Priority to MX195138A priority patent/MX154827A/en
Priority to HU823628A priority patent/HU193154B/en
Priority to NO823763A priority patent/NO823763L/en
Priority to BR8206568A priority patent/BR8206568A/en
Priority to DD82244829A priority patent/DD205959A5/en
Priority to ES517360A priority patent/ES517360A0/en
Priority to CA000415442A priority patent/CA1192107A/en
Publication of JPS58133449A publication Critical patent/JPS58133449A/en
Publication of JPS6217646B2 publication Critical patent/JPS6217646B2/ja
Priority to KR1019880004679A priority patent/KR880001431B1/en
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/20Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K21/00Steam engine plants not otherwise provided for
    • F01K21/02Steam engine plants not otherwise provided for with steam-generation in engine-cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K21/00Steam engine plants not otherwise provided for
    • F01K21/04Steam engine plants not otherwise provided for using mixtures of steam and gas; Plants generating or heating steam by bringing water or steam into direct contact with hot gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B43/00Engines characterised by operating on gaseous fuels; Plants including such engines
    • F02B43/10Engines or plants characterised by use of other specific gases, e.g. acetylene, oxyhydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B47/00Methods of operating engines involving adding non-fuel substances or anti-knock agents to combustion air, fuel, or fuel-air mixtures of engines
    • F02B47/02Methods of operating engines involving adding non-fuel substances or anti-knock agents to combustion air, fuel, or fuel-air mixtures of engines the substances being water or steam
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/20Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products
    • F02C3/30Adding water, steam or other fluids for influencing combustion, e.g. to obtain cleaner exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B1/00Engines characterised by fuel-air mixture compression
    • F02B1/02Engines characterised by fuel-air mixture compression with positive ignition
    • F02B1/04Engines characterised by fuel-air mixture compression with positive ignition with fuel-air mixture admission into cylinder
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Fuel-Injection Apparatus (AREA)

Description

【発明の詳細な説明】 本発明は水素ガスエンジンに関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a hydrogen gas engine.

周知の如く水素ガスエンジンは石油系燃料エン
ジンに比較して燃費の経済性と無公害という利点
を有するため、既に各種の分野において試作研究
がなされている。しかし乍ら今日まで試作された
殆んどの水素ガスエンジンは、出力、エンジン形
状及び重量及び経済性などの面において従来の石
油系燃料を用いるエンジンに比較して実用性が大
幅に劣り、開発に行詰りを生じているのが現状で
ある。
As is well known, hydrogen gas engines have advantages over petroleum-based fuel engines in terms of economical fuel consumption and non-pollution, and therefore, prototype research has already been carried out in various fields. However, most of the hydrogen gas engines that have been prototyped to date are significantly inferior in practicality to engines that use conventional oil-based fuels in terms of output, engine shape, weight, and economic efficiency, and are therefore difficult to develop. The current situation is that there is an impasse.

従来において試みられた水素エンジンが未だ実
用の段階に到達し得ない根本的な原因は、その全
ての試みが水素ガスの燃焼爆発エネルギーを石油
系燃料の燃焼爆発エネルギーと同様そのままの形
で機械的運動エネルギーに転換させようと試みて
いるからに外ならない。
The fundamental reason why hydrogen engines that have been attempted in the past have not yet reached the stage of practical use is that all attempts have been made to mechanically capture the combustion explosive energy of hydrogen gas in the same way as the combustion explosive energy of petroleum-based fuels. This is because we are trying to convert it into kinetic energy.

水素ガスを機械的運動エネルギーを得るための
燃料として考察した場合、水素ガスはその燃焼速
度が石油系燃料のそれと比較して著しく急速であ
り、その結果得られる燃焼爆発エネルギーの機械
的運動エネルギーへの転換率が著しく低いため、
機械的運動エネルギーに転換されない残余熱エネ
ルギーが蓄積増大するとゝなり燃焼室形成部分及
びその周辺機器の異常温度上昇を来し、水素ガス
の燃焼室内への円滑な供給と要求着火時期とが不
確実となつて適切なエンジン駆動が行えないこ
とゝなる。
When hydrogen gas is considered as a fuel for obtaining mechanical kinetic energy, its combustion rate is significantly faster than that of petroleum-based fuels, and as a result, the resulting combustion explosion energy is converted into mechanical kinetic energy. Because the conversion rate of
As residual thermal energy that is not converted into mechanical kinetic energy accumulates and increases, it causes an abnormal temperature rise in the combustion chamber forming part and its peripheral equipment, making it uncertain whether the hydrogen gas will be smoothly supplied into the combustion chamber and the required ignition timing will be uncertain. As a result, the engine cannot be driven properly.

従来においても水素ガスを燃焼した場合の高負
荷時におけるバツクフアイヤ及びノツキングの発
生及び過熱部分の温度降下を目的として、水素ガ
スと共に水を吸入させる方法は提唱されている。
しかし乍ら従来におけるこの種の試みは、いずれ
も水素と水と空気とを予め混合した状態で燃焼室
内に送るというものであるため、バツクフアイヤ
やノツキングの防止は或る程度はたし得ても最大
出力時には充分に効果を得ることができないとい
う問題点を有していた。
Conventionally, a method has been proposed in which water is inhaled together with hydrogen gas for the purpose of generating backfire and knocking and lowering the temperature of overheated parts during high loads when hydrogen gas is combusted.
However, in all conventional attempts of this kind, hydrogen, water, and air are mixed beforehand and sent into the combustion chamber, so although it is possible to prevent backfire and knocking to some extent, There was a problem in that a sufficient effect could not be obtained at maximum output.

本発明は上記の如き従来における水素ガスエン
ジンの問題点を解消し、水素ガスの燃焼爆発エネ
ルギーの機械的運動エネルギーへの転換率を高め
得る実用化可能な水素ガスエンジンの提供を目的
としたものである。
The present invention aims to solve the problems of conventional hydrogen gas engines as described above, and to provide a practical hydrogen gas engine that can increase the conversion rate of hydrogen gas combustion explosion energy into mechanical kinetic energy. It is.

本発明に係る水素ガスエンジンは、水素ガスを
燃焼室内において着火燃焼させることにより生ず
る熱エネルギーを機械的運動エネルギーとして利
用することはもとより、燃焼室内に前記水素ガス
とは別に水を水素ガスと予混合の状態ではなく霧
水の状態で直接噴射供給することによつて、前記
水素ガスの燃焼熱エネルギーを利用して該霧水を
蒸気エネルギーに転換し、前記水素ガスの燃焼爆
発エネルギーと蒸気エネルギーとの併合作用によ
り、動力源としての機械的運動エネルギーへの転
換率が高められるようにすると共に、斯る方式に
基いて得られる駆動力が高負荷の状態はもとより
低負荷の状態においても支障なく円滑に得られる
ようにしたことを特徴とするものである。
The hydrogen gas engine according to the present invention not only utilizes thermal energy generated by igniting and burning hydrogen gas in a combustion chamber as mechanical kinetic energy, but also pre-prepare water and hydrogen gas in the combustion chamber separately from the hydrogen gas. By directly injecting and supplying mist water instead of a mixed state, the combustion heat energy of the hydrogen gas is used to convert the mist water into steam energy, and the combustion explosion energy of the hydrogen gas and steam energy are The combined effect of this method increases the conversion rate to mechanical kinetic energy as a power source, and the driving force obtained based on this method does not interfere with high-load conditions as well as low-load conditions. It is characterized by being able to be obtained smoothly without any problems.

次に本発明に係る水素エンジンを図示の実施例
に基いて詳記すれば、第1図は本発明をレシプロ
エンジンに適用した場合におけるシリンダーの断
面図である。図示の如くシリンダー1におけるシ
リンダーヘツド2には点火プラグ3、吸入バルブ
4及び排気バルブ5と共に、水素ガス加圧噴射ノ
ズル6と霧水噴射ノズル7とを、夫々水素ガス8
及び霧水9が燃焼室10内に噴出されるように併
設する。これらの水素ガス加圧噴射ノズル6及び
霧水噴射ノズル7は、いずれも図示外の供給装置
より水素ガス8及び霧水9を同時にもしくはタイ
ミングをずらした状態で燃焼室10内に噴射す
る。
Next, the hydrogen engine according to the present invention will be described in detail based on the illustrated embodiment. FIG. 1 is a sectional view of a cylinder when the present invention is applied to a reciprocating engine. As shown in the figure, a cylinder head 2 of a cylinder 1 is equipped with a spark plug 3, an intake valve 4, an exhaust valve 5, a hydrogen gas pressurized injection nozzle 6 and a mist injection nozzle 7, respectively.
and mist water 9 are installed side by side so that it is spouted into the combustion chamber 10. These hydrogen gas pressurized injection nozzle 6 and mist water injection nozzle 7 both inject hydrogen gas 8 and mist water 9 into the combustion chamber 10 from a supply device not shown, either simultaneously or at staggered timing.

水素ガス8及び霧水9の噴射は、通常の石油系
燃料によるエンジンと同様吸入バルブ4と排気バ
ルブ5とが共に閉じられた状態でピストン12が
上昇する圧縮行程において行われ、ピストン12
が上死点に達する直前に夫々の噴射が止められ、
同時に点火プラグ3により圧縮された水素ガスに
点着火される。水素ガスの着火燃焼による熱エネ
ルギーは直接機械的運動エネルギーに転換される
と共に、その一部が燃焼室10内の霧水を瞬間的
に蒸気エネルギーに変化させ、水素ガスの爆発熱
エネルギーと蒸気エネルギーとが併合してピスト
ン12を押し下げる機械的運動エネルギーに転換
される。前記爆発行程に引続いて行われる排気及
び吸入の各行程は通常の石油系燃料エンジンと同
様である。
The injection of hydrogen gas 8 and mist water 9 is carried out during the compression stroke in which the piston 12 moves up with both the intake valve 4 and the exhaust valve 5 closed, as in a normal petroleum fuel engine.
Each injection is stopped just before reaching top dead center,
At the same time, the compressed hydrogen gas is ignited by the spark plug 3. Thermal energy due to ignition and combustion of hydrogen gas is directly converted into mechanical kinetic energy, and a portion of it instantly changes the mist water in the combustion chamber 10 into steam energy, resulting in the explosion of hydrogen gas and steam energy. are combined and converted into mechanical kinetic energy that pushes down the piston 12. The exhaust and intake strokes that follow the explosion stroke are similar to those of a normal petroleum fuel engine.

第2図はこの水素ガスエンジンの燃料供給路を
示す系統図であり、水素ガス8は容器13よりガ
ス供給路14を通り、気化器23を通ることなく
シリンダー1内に直接加圧噴射される。この供給
路14は容器13の口部に設けた圧力調整器15
により水素ガスを約5Kgf/cm2程度の圧力で供給
するが、途中にチエツクバルブ16及び減圧と流
量調整を行えるレギユレータ17を有しており、
水素ガスはレギユレータ17を通り、0.5Kgf/
cm2程度の低圧で加圧噴射ノズル6へ送られ、該ノ
ズル6により所定の圧力でシリンダー1内に加圧
噴射される。また前記ガス供給路14におけるチ
エツクバルブ16が設けられた部分の両側には、
低負荷用の低圧ガス供給用バイパス18が設けら
れている。このバイパス18はチエツクバルブ1
9と圧力調整器20とを備え、該圧力調整器20
により容器13より約5Kgf/cm2程度で送られる
ガスを0.1Kgf/cm2程度に減圧するようになつて
いる。このバイパス18はアイドル運転の如き低
負荷の状態のとき、例えばアクセルペダル21に
設けられたリミツトスイツチ22が戻つたペダル
21により閉じられることにより、該バイパス1
8のチエツクバルブ19を開き、同時に供給路1
4のチエツクバルブ16が閉じられて前記の如く
0.1Kgf/cm2程度に減圧された低圧ガスがレギユ
レータ17内に送られる。しかし乍ら該レギユレ
ータ17の設定圧はバイパス18からの流入圧よ
りも大きいのでバイパス18からの低圧ガスは
0.1Kgf/cm2程度の低圧のまゝで加圧噴射ノズル
6に送られ、該ノズル6により所定の圧力に加圧
された状態でシリンダー1内に噴射される。
FIG. 2 is a system diagram showing the fuel supply path of this hydrogen gas engine. Hydrogen gas 8 passes from the container 13 through the gas supply path 14 and is directly injected under pressure into the cylinder 1 without passing through the vaporizer 23. . This supply path 14 is connected to a pressure regulator 15 provided at the mouth of the container 13.
Hydrogen gas is supplied at a pressure of approximately 5 Kgf/cm 2 , and there is a check valve 16 and a regulator 17 that can reduce the pressure and adjust the flow rate.
Hydrogen gas passes through regulator 17 and has a rate of 0.5Kgf/
It is sent to a pressurized injection nozzle 6 at a low pressure of about cm2 , and is injected into the cylinder 1 at a predetermined pressure by the nozzle 6. Further, on both sides of the portion of the gas supply path 14 where the check valve 16 is provided,
A low-pressure gas supply bypass 18 for low loads is provided. This bypass 18 is the check valve 1
9 and a pressure regulator 20, the pressure regulator 20
The pressure of the gas sent from the container 13 at about 5 Kgf/cm 2 is reduced to about 0.1 Kgf/cm 2 . When the bypass 18 is in a low load state such as idling, for example, the limit switch 22 provided on the accelerator pedal 21 is closed by the pedal 21 returning to its original position.
8, and at the same time open the check valve 19 of supply path 1.
4 check valve 16 is closed as described above.
Low-pressure gas whose pressure is reduced to about 0.1 Kgf/cm 2 is sent into the regulator 17 . However, since the set pressure of the regulator 17 is higher than the inflow pressure from the bypass 18, the low pressure gas from the bypass 18 is
It is sent to the pressurizing injection nozzle 6 at a low pressure of about 0.1 Kgf/cm 2 , and is injected into the cylinder 1 after being pressurized to a predetermined pressure by the nozzle 6 .

アクセルペダル21が踏み込まれて高負荷の状
態となると、前記スイツチ22が開かれ、バイパ
ス18のチエツクバルブ19が閉じられ、同時に
供給路14のチエツクバルブ16が開かれるの
で、容器13からのガスはレギユレータ17に送
られ、該レギユレータ17により設定された0.5
Kgf/cm2程度の圧力で加圧噴射ノズル6へ送ら
れ、該ノズル6により所定圧に加圧されてシリン
ダー1内に噴射される。
When the accelerator pedal 21 is depressed and the load is high, the switch 22 is opened, the check valve 19 of the bypass 18 is closed, and at the same time the check valve 16 of the supply path 14 is opened, so that the gas from the container 13 is 0.5 sent to the regulator 17 and set by the regulator 17
It is sent to the pressurizing injection nozzle 6 at a pressure of approximately Kgf/cm 2 , pressurized to a predetermined pressure by the nozzle 6, and injected into the cylinder 1.

エンジンの回転数の変化に伴う水素ガス8の供
給量の増減は、気化器23における絞り弁の開閉
度合により気化器23と前記レギユレータ17と
を結ぶバキユームパイプ24を通して行われるレ
ギユレータ17の流量調節により得られる。
Increases and decreases in the supply amount of hydrogen gas 8 due to changes in engine speed can be achieved by adjusting the flow rate of the regulator 17 through the vacuum pipe 24 connecting the carburetor 23 and the regulator 17, depending on the degree of opening and closing of the throttle valve in the carburetor 23. It will be done.

水素ガス8と共にシリンダー1内に噴射される
霧水9は、タンク25からフイードポンプ26を
有する管27により送られる水を、エンジン回転
数に応じて制御される噴射ポンプ28により、回
転数の変化に対応した供給量が調整されるように
して霧状に噴射することにより得られる。
The mist water 9 that is injected into the cylinder 1 together with the hydrogen gas 8 is produced by feeding water from a tank 25 through a pipe 27 having a feed pump 26, and adjusting the rotation speed by an injection pump 28 that is controlled according to the engine speed. It is obtained by spraying in the form of a mist in such a way that the corresponding supply amount is adjusted.

第3図は本発明をロータリーエンジンに適用し
た場合の燃料供給路系統図である。この場合にお
いては、水素ガス8の供給系統は前記のレシプロ
エンジンの場合と同じであるが、霧水9の供給系
統が若干レシプロエンジンの場合と相違してい
る。このロータリーエンジンの場合には、霧水用
の水はタンク25からフイードポンプ26により
気化器23に送られ、該気化器23により霧状化
されて空気と共に吸気口11を通してローターハ
ウジング111内に噴射される。一方水素ガス8
はレギユレータ17から吸気口11の一部に設け
られたノズル61より吸気口11内に噴射され
る。この水素ガス8の噴射と霧水9との吸気口1
1への噴射は別々に行われるという意味において
水素ガスと水と空気とを予め混合した状態でシリ
ンダー内に供給するという従来より知られる予混
合方式とは基本的に相違する。
FIG. 3 is a fuel supply path system diagram when the present invention is applied to a rotary engine. In this case, the hydrogen gas 8 supply system is the same as in the reciprocating engine described above, but the mist water 9 supply system is slightly different from that in the reciprocating engine. In the case of this rotary engine, water for fogging is sent from a tank 25 to a vaporizer 23 by a feed pump 26, atomized by the vaporizer 23, and injected together with air into the rotor housing 111 through the intake port 11. Ru. On the other hand, hydrogen gas 8
is injected into the intake port 11 from the regulator 17 through a nozzle 61 provided in a part of the intake port 11 . Inlet port 1 for injecting this hydrogen gas 8 and mist water 9
This is fundamentally different from the conventionally known premixing method in which hydrogen gas, water, and air are supplied into the cylinder in a premixed state in the sense that they are injected separately.

この発明に係る水素ガスエンジンにおいては、
水素ガス自体の燃焼速度は早いが、この燃焼によ
つてもたらされる霧水の蒸気化速度が石油系燃料
の燃焼速度に比較して遅いため、水素ガスの爆発
燃焼と霧水の蒸気化とが同一燃焼室内で一連のつ
ながりを持つ状態で行われその結果機械的運動エ
ネルギーへの転換を石油系燃料の燃焼による機械
的運動エネルギーへの転換に近い状態とすること
ができる。その結果この発明に係る水素ガスエン
ジンにおいては、水素ガスのみを燃焼させた場合
に機械的運動エネルギーとして有効に転換できず
に徒らに排出されていた水素ガスの熱エネルギー
を逃がすことなく効率良く利用することができ、
その分機械的運動エネルギーを増大させることが
可能となる。
In the hydrogen gas engine according to this invention,
Although the combustion speed of hydrogen gas itself is fast, the vaporization speed of the mist produced by this combustion is slow compared to the combustion speed of petroleum-based fuels, so the explosive combustion of hydrogen gas and the vaporization of the mist occur. This is carried out in a series of connections within the same combustion chamber, and as a result, the conversion to mechanical kinetic energy can be made in a state similar to the conversion to mechanical kinetic energy by combustion of petroleum-based fuel. As a result, in the hydrogen gas engine according to the present invention, the thermal energy of the hydrogen gas, which could not be effectively converted into mechanical kinetic energy and was wasted when only hydrogen gas was combusted, is efficiently emitted without escaping. can be used,
It becomes possible to increase mechanical kinetic energy accordingly.

またこのエンジンにおいては、水素ガスと共に
燃焼室内に供給される水を、水素ガスとは予め混
合されていない霧水の状態で直接供給するので、
該霧水の供給により燃焼室内において蒸気エネル
ギーの発生を得ることができ、この蒸気エネルギ
ーの発生が水素ガスの燃焼に基く機械的運動エネ
ルギーへの転換率を向上することに役立つ。しか
もこの霧水の供給により水素ガスの燃焼に伴う残
余熱エネルギーが減少するため、燃焼室形成部分
並びに燃焼室周辺機器部の温度上昇を抑制するこ
とができ、従つて水素ガスの燃焼室内への円滑な
供給と、要求される着火時期とが得られるという
利点を備えている。
In addition, in this engine, the water that is supplied into the combustion chamber together with hydrogen gas is directly supplied in the form of mist water that is not mixed with hydrogen gas in advance.
By supplying the fog water, steam energy can be generated within the combustion chamber, and this steam energy generation serves to improve the conversion rate of hydrogen gas into mechanical kinetic energy based on combustion. Moreover, the supply of this mist water reduces the residual thermal energy associated with the combustion of hydrogen gas, so it is possible to suppress the temperature rise in the combustion chamber forming part and the peripheral equipment of the combustion chamber, and therefore prevent hydrogen gas from entering the combustion chamber. It has the advantages of smooth supply and required ignition timing.

またこの発明の水素ガスエンジンでは、水素ガ
スの供給路14に低負荷時の運転に適した設定圧
以下の低圧水素ガスを供給し得る低圧ガス供給用
バイパス18を有するため、前記供給路14を通
じての高負荷時の運転を円滑に行えることはもと
より、アイドル運転の如き低負荷時の運転も該バ
イパス18を通じての低圧ガスの供給により支障
なく円滑に持続することができる。実験によれば
市販の1800c.c.レシプロエンジン車及びロータリー
エンジン車のエンジンをそのまゝ用いて本発明を
適用した結果低速走行はもとより120Km迄の高速
走行を支障なく行うことができた。
Further, in the hydrogen gas engine of the present invention, since the hydrogen gas supply path 14 has a low pressure gas supply bypass 18 that can supply low pressure hydrogen gas at a pressure lower than the set pressure suitable for operation at low load, the hydrogen gas engine Not only can operation under high load be performed smoothly, but also operation under low load such as idling operation can be continued smoothly without any trouble by supplying low pressure gas through the bypass 18. According to experiments, when the present invention was applied to the engines of commercially available 1800 c.c. reciprocating engine cars and rotary engine cars, it was possible to run not only at low speeds but also at high speeds up to 120 km without any problems.

従つてこの発明によれば水素ガスの燃焼爆発エ
ネルギーを蒸気エネルギーとの併合により機械的
運動エネルギーに効率よく転換利用できるので、
従来より実用化が問題とされていた新しい動力源
としての水素ガスエンジンを確実に実用化し得る
という効果を有するものである。
Therefore, according to this invention, the combustion explosion energy of hydrogen gas can be efficiently converted into mechanical kinetic energy by merging it with steam energy.
This has the effect of making it possible to reliably put into practical use a hydrogen gas engine as a new power source, which has hitherto been a problem.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る水素ガスエンジンをレシ
プロエンジンに適用した場合のシリンダーの断面
図、第2図は第1図に示す水素ガスエンジンの燃
料供給系統図、第3図は本発明に係る水素ガスエ
ンジンをロータリーエンジンに適用した場合にお
ける燃料供給系統図である。図において、 1:シリンダー、111:ローターハウジン
グ、3:点火プラグ、4:吸入バルブ、5:排気
バルブ、6:水素ガス加圧噴射ノズル、61:水
素ガス噴射ノズル、7:霧水噴射ノズル、8:水
素ガス、9:霧水、10:燃焼室、11:吸気
口、12:ピストン、13:水素ガス容器、1
4:ガス供給路、15,20:圧力調整器、1
6,19:チエツクバルブ、17:レギユレー
タ、18:低圧ガス供給用バイパス、23:気化
器、24:バキユームパイプ、25:水タンク、
28:噴射ポンプ。
Fig. 1 is a cross-sectional view of a cylinder when the hydrogen gas engine according to the present invention is applied to a reciprocating engine, Fig. 2 is a fuel supply system diagram of the hydrogen gas engine shown in Fig. 1, and Fig. 3 is a cross-sectional view of a cylinder according to the present invention. It is a fuel supply system diagram when a hydrogen gas engine is applied to a rotary engine. In the figure, 1: cylinder, 111: rotor housing, 3: spark plug, 4: intake valve, 5: exhaust valve, 6: hydrogen gas pressurized injection nozzle, 61: hydrogen gas injection nozzle, 7: mist injection nozzle, 8: hydrogen gas, 9: mist water, 10: combustion chamber, 11: intake port, 12: piston, 13: hydrogen gas container, 1
4: Gas supply path, 15, 20: Pressure regulator, 1
6, 19: Check valve, 17: Regulator, 18: Low pressure gas supply bypass, 23: Vaporizer, 24: Vacuum pipe, 25: Water tank,
28: Injection pump.

Claims (1)

【特許請求の範囲】[Claims] 1 空気を圧縮した燃焼室内に水素ガスと霧水と
を夫々直噴出して、水素ガスを着火燃焼すること
により霧水を蒸気化し、水素ガスの燃焼爆発エネ
ルギーと霧水の蒸気化による蒸気エネルギーとを
併合作用させる水素ガスエンジンにおいて、水素
ガス容器と燃焼室との間の水素ガス供給路に、低
負荷の状態において前記ガス供給路を閉じ、該ガ
ス供給路内の供給圧よりも低い低圧ガスを燃焼室
内に供給し得る低圧ガス供給用バイパスを備えた
水素ガスエンジン。
1 Directly inject hydrogen gas and mist into a combustion chamber containing compressed air, vaporize the mist by igniting and burning the hydrogen gas, and generate combustion explosive energy from the hydrogen gas and steam energy from the vaporization of the mist. In a hydrogen gas engine that operates in combination with a hydrogen gas container and a combustion chamber, the gas supply path is closed in a low load state, and a low pressure lower than the supply pressure in the gas supply path is provided. A hydrogen gas engine equipped with a low-pressure gas supply bypass that can supply gas into the combustion chamber.
JP57014819A 1981-11-12 1982-02-03 Hydrogen gas engine Granted JPS58133449A (en)

Priority Applications (22)

Application Number Priority Date Filing Date Title
JP57014819A JPS58133449A (en) 1982-02-03 1982-02-03 Hydrogen gas engine
US06/425,915 US4508064A (en) 1981-11-12 1982-09-28 Internal combustion engine of hydrogen gas
IN1195/CAL/82A IN158105B (en) 1981-11-12 1982-10-14
AU89443/82A AU565499B2 (en) 1981-11-12 1982-10-18 Hydrogen gas engine
KR8204738A KR880001683B1 (en) 1981-11-12 1982-10-22 Internal combustion engine of hydrogen gas
AT82305920T ATE25277T1 (en) 1981-11-12 1982-11-05 INTERNAL ENGINE FOR HYDROGEN GAS.
EP82305920A EP0079736B1 (en) 1981-11-12 1982-11-05 Internal combustion engine for hydrogen gas
DE8282305920T DE3275306D1 (en) 1981-11-12 1982-11-05 Internal combustion engine for hydrogen gas
FI823825A FI69912C (en) 1981-11-12 1982-11-08 VAETEGASFOERBRAENNINGSMOTOR
IL67192A IL67192A0 (en) 1981-11-12 1982-11-08 Hydrogen gas internal combustion engine
DK499782A DK499782A (en) 1981-11-12 1982-11-09 Hydrogen gas combustion engine
IE2674/82A IE53478B1 (en) 1981-11-12 1982-11-10 Internal combustion engine for hydrogen gas
PH28118A PH20355A (en) 1981-11-12 1982-11-10 Internal combustion engine for hydrogen gas
YU02524/82A YU252482A (en) 1981-11-12 1982-11-10 Hydrogen using, gas engine with internal combustion
MX195138A MX154827A (en) 1981-11-12 1982-11-11 IMPROVEMENTS IN AN INTERNAL COMBUSTION ENGINE, WHICH USES AS A GAS HYDROGEN FUEL
HU823628A HU193154B (en) 1981-11-12 1982-11-11 Internal combustion engine operating by hydrogen gas
NO823763A NO823763L (en) 1981-11-12 1982-11-11 ENGINE WITH INTERNAL COMBUSTION OF HYDROGEN.
BR8206568A BR8206568A (en) 1981-11-12 1982-11-11 INTERNAL COMBUSTION ENGINE FOR HYDROGEN GAS
DD82244829A DD205959A5 (en) 1981-11-12 1982-11-12 AIR OR MIXTURES COMPRESSIVE ENGINE
ES517360A ES517360A0 (en) 1981-11-12 1982-11-12 INTERNAL COMBUSTION ENGINE OF HYDROGEN GAS.
CA000415442A CA1192107A (en) 1981-11-12 1982-11-12 Internal combustion engine of hydrogen gas
KR1019880004679A KR880001431B1 (en) 1981-11-12 1988-04-23 Hydrogen gas tubine engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57014819A JPS58133449A (en) 1982-02-03 1982-02-03 Hydrogen gas engine

Publications (2)

Publication Number Publication Date
JPS58133449A JPS58133449A (en) 1983-08-09
JPS6217646B2 true JPS6217646B2 (en) 1987-04-18

Family

ID=11871645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57014819A Granted JPS58133449A (en) 1981-11-12 1982-02-03 Hydrogen gas engine

Country Status (2)

Country Link
JP (1) JPS58133449A (en)
KR (1) KR880001683B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997048892A1 (en) * 1996-06-21 1997-12-24 World Fusion Limited Internal combustion engine using water decomposition gas

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0799122B2 (en) * 1986-11-13 1995-10-25 ヤマハ発動機株式会社 Output control device for gas fuel engine
GR1004226B (en) * 2002-02-05 2003-05-05 Γεωργιος Ιωαννου Πολυζωης Environmentally friendly internal combustion engine.
GB0426933D0 (en) * 2004-12-08 2005-01-12 Phillips Malcolm An engine which operates on water
US7739985B2 (en) 2006-03-23 2010-06-22 Lonox Engine Company, Inc. Internal combustion water injection engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997048892A1 (en) * 1996-06-21 1997-12-24 World Fusion Limited Internal combustion engine using water decomposition gas

Also Published As

Publication number Publication date
KR880001683B1 (en) 1988-09-06
KR840002070A (en) 1984-06-11
JPS58133449A (en) 1983-08-09

Similar Documents

Publication Publication Date Title
EP0079736B1 (en) Internal combustion engine for hydrogen gas
US5718194A (en) In-cylinder water injection engine
JP7030822B2 (en) Internal combustion steam engine
CN109469564B (en) Internal combustion engine using water-based mixture as fuel and method of operating the same
US4722303A (en) Method for operating an internal combustion engine
US20070022977A1 (en) Method and apparatus for operating an internal combustion engine
WO2013007863A2 (en) A two-stroke internal combustion engine, method operating a two-stroke internal combustion engine and method of converting a two-stroke engine
WO2011125976A1 (en) Heat engine and power generation system using the heat engine
JPS623119A (en) Compression ignition engine
US2937634A (en) Prime mover and a fuel-power function of operation thereof
US5899188A (en) Air fuel vapor stratifier
US4913098A (en) Waste heat steam supercharger
JPS6217646B2 (en)
US2376479A (en) Internal-combustion engine and combustion mixture therefor
US5899195A (en) Stratifier apparatus for engines
US8266884B1 (en) Asynchronous combustion system
AU725076B2 (en) Internal combustion engine having an extended operating cycle
US1928754A (en) Method of and apparatus for preparing and using fuel in internal combustion engines
CN113339128B (en) Power self-adaptive control device of multi-airspace hydrogen-oxygen rotor engine
JPH0341649B2 (en)
JPH08135515A (en) Engine
JPH07189848A (en) Combustion method for internal combustion engine
JP2002213304A (en) Engine using steam explosion
TWI252275B (en) Arrangement of the fuel injection device of scooters
JPS5882005A (en) Hydrogen gas engine