JPS62175575A - Method of treating chlorine gas - Google Patents

Method of treating chlorine gas

Info

Publication number
JPS62175575A
JPS62175575A JP28235385A JP28235385A JPS62175575A JP S62175575 A JPS62175575 A JP S62175575A JP 28235385 A JP28235385 A JP 28235385A JP 28235385 A JP28235385 A JP 28235385A JP S62175575 A JPS62175575 A JP S62175575A
Authority
JP
Japan
Prior art keywords
chlorine
heat
chlorine gas
storage medium
liquefied
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28235385A
Other languages
Japanese (ja)
Inventor
中村 寿太郎
明 鈴木
孝 川村
俊一 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanto Denka Kogyo Co Ltd
Original Assignee
Kanto Denka Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanto Denka Kogyo Co Ltd filed Critical Kanto Denka Kogyo Co Ltd
Publication of JPS62175575A publication Critical patent/JPS62175575A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation By Low-Temperature Treatments (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は塩素ガスの処理方法に関し、さらに詳しくは塩
素ガスの製造と使用の間にあって、一時的に塩素を貯蔵
する経済的な処理方法に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method for treating chlorine gas, and more particularly to an economical method for temporarily storing chlorine between the production and use of chlorine gas. It is something.

〔従来の技術および問題点〕[Conventional technology and problems]

塩素ガスの製造は、一般的には塩化ナトリウム水溶液、
塩化カリ水溶液の電解により行われるが、製造と使用の
時間的ずれ、或いは量的ずれを生ずることが多く、製造
した塩素ガスの一時的な貯蔵が必要となる。このため、
従来より塩素を溶剤に溶解させて貯蔵する方法、或いは
加圧液化して貯蔵する方法が採られている。しかしこれ
らの方法は次の様な欠点を有している。
Chlorine gas is generally produced using a sodium chloride aqueous solution,
Although it is carried out by electrolysis of an aqueous potassium chloride solution, there is often a lag in time or quantity between production and use, and temporary storage of the produced chlorine gas is required. For this reason,
Conventionally, chlorine has been stored by dissolving it in a solvent, or by liquefying it under pressure and storing it. However, these methods have the following drawbacks.

即ち、溶剤に溶解させる方法は塩素に対して不活性な溶
剤、例えば四塩化炭素等の塩素化炭化水素に塩素ガスを
溶解せしめて一時的に貯蔵する方法であるが、一定量の
溶剤に溶解する塩素量に制限があるため、大量に溶剤を
使用する必要があり、貯槽が大容量のものとなる。さら
に塩素の溶解・放散に際しては大量の熱の除去・付加が
必要となり、貯蔵コストは非常に高いものとなる。また
、塩素ガスの使用目的によっては使用に際して、同伴さ
れる溶剤の除去をしなければならないという欠点もある
In other words, the method of dissolving chlorine gas in a solvent is a method of dissolving chlorine gas in a solvent that is inert to chlorine, such as chlorinated hydrocarbons such as carbon tetrachloride, and temporarily storing it. Since there is a limit to the amount of chlorine that can be used, it is necessary to use a large amount of solvent, which requires a large capacity storage tank. Furthermore, when dissolving and dissipating chlorine, it is necessary to remove and add a large amount of heat, resulting in extremely high storage costs. Furthermore, depending on the intended use of chlorine gas, there is also the drawback that entrained solvent must be removed before use.

以上の様な理由から塩素ガスを加圧冷却し、液化して貯
蔵する方法が一般的に行われている。
For the reasons mentioned above, a method of cooling chlorine gas under pressure, liquefying it, and storing it is generally practiced.

しかし、この方法に於いても多大の経費を必要とする。However, even this method requires a large amount of expense.

即ち、電解槽から得られる塩素ガスの温度は40〜60
℃であり、液化温度は一30〜0℃であるので、液化温
度まで冷却させるのに塩素1 kg当たり5〜10kc
alの熱量を除く必要がある。又凝縮の潜熱は約69 
kca l / kgであるので、液化には約70〜8
0 kcal / kgの熱量を除去しなければならず
、蒸発に際してはこれに近い量の熱を必要とする。また
、実際には、この他さらに設備の吸熱骨の熱量の除去が
必要である。従って大容量の冷却機が必要であり、設備
は大規模となり、その運転コストも高くなるのである。
That is, the temperature of chlorine gas obtained from the electrolytic cell is 40 to 60℃.
℃, and the liquefaction temperature is -30 to 0℃, so 5 to 10 kc of chlorine per 1 kg of chlorine is required to cool it to the liquefaction temperature.
It is necessary to remove the heat amount of al. Also, the latent heat of condensation is approximately 69
kcal/kg, so for liquefaction it takes about 70-8
0 kcal/kg of heat has to be removed, and evaporation requires a similar amount of heat. In addition, in practice, it is necessary to remove the amount of heat from the endothermic bones of the equipment. Therefore, a large-capacity cooler is required, and the equipment becomes large-scale and its operating cost becomes high.

本発明の目的は塩素ガスの一時的貯蔵法に関し、従来の
欠点を解消し、より経済的な処理方法を提供することに
ある。
An object of the present invention is to overcome the conventional drawbacks of a method for temporarily storing chlorine gas and to provide a more economical method for processing chlorine gas.

〔問題点を解決するための手段〕[Means for solving problems]

即ち、本発明は断熱系において蓄熱媒体として塩化ナト
リウムと水との混合物又は水を使用し、塩素ガスを液化
し貯蔵する際には塩素ガスと該蓄熱媒体とを熱交換する
ことにより該蓄熱媒体を融解させ、液化塩素をガス化す
る際には、その気化熱により該蓄熱媒体を氷結させるこ
とを特徴とする塩素ガスの処理方法に関するものである
That is, the present invention uses a mixture of sodium chloride and water or water as a heat storage medium in an adiabatic system, and when liquefying and storing chlorine gas, heat exchange is performed between the chlorine gas and the heat storage medium. The present invention relates to a method for treating chlorine gas, characterized in that when liquefied chlorine is melted and gasified, the heat storage medium is frozen by the heat of vaporization.

本発明の蓄熱媒体たる塩化すトリウムと水との混合物又
は水は熱容量が大きいことが使用における大いなる利点
となっている。ここで蓄熱媒体として最も好ましいもの
は塩化ナトリウムと水との共融共晶体である。この共融
共晶体は塩化ナトリウム23.31部及び水76.69
部からなり、その凝固点は−21,12℃、凝固(融解
)熱は約65kcal/kgである。即ち、熱容量が大
きい上にその凝固点が塩素の沸点に近いという利点があ
る。従ってそれだけ塩素の加圧エネルギーが少なくて済
むのである。
The heat storage medium of the present invention, a mixture of thorium chloride and water, or water has a large heat capacity, which is a great advantage in use. The most preferred heat storage medium here is a eutectic eutectic of sodium chloride and water. This eutectic contains 23.31 parts of sodium chloride and 76.69 parts of water.
The freezing point is -21.12°C and the heat of solidification (melting) is about 65 kcal/kg. That is, it has the advantage that it has a large heat capacity and its freezing point is close to the boiling point of chlorine. Therefore, the energy required to pressurize chlorine can be reduced accordingly.

次に本発明の詳細を図に基づいて例示的に説明する。図
1において2は多管式の熱交換器を示しており、シェル
側には前述の蓄熱媒体が充填されており、また外部は断
熱材により覆っである。電解槽等で発生させた塩素ガス
は乾燥した後、加圧し、仕込みライン1より熱交換器2
のチューブ内に仕込まれる。熱交換器2内では冷媒とし
て蓄熱媒体の融解熱を利用して塩素ガスを冷却し液化さ
せるが、蓄熱媒体の融解熱で液化しない部分はライン5
を通り補助冷却機6と接触させることにより液化させ、
液化した塩素はチューブ内に一時的に貯蔵をする。尚、
塩素ガス中に水素、炭酸ガス、空気等の不純物が含まれ
ている場合は、排ガスライン3よりこれらのガスを系外
に放出することによって塩素の精製も同時に行うことが
できる。
Next, details of the present invention will be explained by way of example based on the drawings. In FIG. 1, reference numeral 2 indicates a multi-tubular heat exchanger, the shell side of which is filled with the above-mentioned heat storage medium, and the outside covered with a heat insulating material. After drying the chlorine gas generated in the electrolytic tank, etc., it is pressurized and sent from the preparation line 1 to the heat exchanger 2.
It is placed in a tube. In the heat exchanger 2, the heat of fusion of the heat storage medium is used as a refrigerant to cool and liquefy the chlorine gas, but the portion that is not liquefied by the heat of fusion of the heat storage medium is in the line 5.
liquefied by passing through and coming into contact with the auxiliary cooler 6,
The liquefied chlorine is temporarily stored in the tube. still,
When the chlorine gas contains impurities such as hydrogen, carbon dioxide, and air, chlorine can be purified at the same time by discharging these gases from the exhaust gas line 3 to the outside of the system.

塩素を使用する場合はライン4より塩素をガスとして取
り出すが、塩素が気化熱を、蓄熱媒体より奪うことによ
って蓄熱媒体が凝固する。この操作をくりかえすことに
よりわずかの冷却熱を補充することにより効率良く塩素
を貯蔵し、使用することができるのである。
When using chlorine, the chlorine is taken out as a gas through line 4, but the heat storage medium solidifies as the chlorine takes away the heat of vaporization from the heat storage medium. By repeating this operation and replenishing a small amount of cooling heat, chlorine can be efficiently stored and used.

また、別の方法は仕込みライン1より熱交換器2へ塩素
ガスを仕込む以前に塩素ガスを補助冷却機6により冷却
し、不足の冷却熱を予め補う方法であり、図2に例示を
しである。尚、熱交換器形式及び蓄熱媒体と塩素ガスと
の熱交換の形式については例示に限定されるものではな
く種々の形式をとることが可能である。
Another method is to cool the chlorine gas with the auxiliary cooler 6 before charging the chlorine gas from the charging line 1 to the heat exchanger 2 to compensate for the insufficient cooling heat, as shown in FIG. be. Note that the type of heat exchanger and the type of heat exchange between the heat storage medium and chlorine gas are not limited to the examples shown, and various types can be used.

〔実施例〕〔Example〕

以下、図1に示すプロセスによる実施例を示して本発明
を更に説明する。
Hereinafter, the present invention will be further explained by showing an example based on the process shown in FIG.

実施例1 図1において2の多管式の熱交換器は軟m製で、その外
部は断熱材で被覆しである。熱交換器のシェル側には1
200 it、、の塩化ナトリウムと水との共融共晶体
(約1M)を充填しである。
Example 1 The shell-and-tube heat exchanger 2 in FIG. 1 is made of soft mould, and the outside thereof is covered with a heat insulating material. 1 on the shell side of the heat exchanger
It was filled with 200 liters of a eutectic eutectic of sodium chloride and water (approximately 1M).

仕込みラインlより塩素ガス(20〜30℃、2.2a
tm)を1060 kg仕込む。ガスは熱交換器2で共
融共晶体の融解熱によって冷却され、仕込んだ塩素ガス
の内990 kgが液化した。残部の70kgはライン
5を通り補助冷却器6で冷媒と接触し液化した。この残
部の塩素ガスの液化に要した冷却熱は約5150kca
lであり、仕込み全塩素量を液化するに必要な冷却熱量
の約7%であり、液化した塩素の温度は約−15°Cで
あった。この液化した塩素全量をライン4よりガス(1
,3aLm)状でユーザーに送付した。
Chlorine gas (20-30℃, 2.2a
Prepare 1060 kg of tm). The gas was cooled in heat exchanger 2 by the heat of fusion of the eutectic eutectic, and 990 kg of the charged chlorine gas was liquefied. The remaining 70 kg passed through line 5 and was liquefied in contact with the refrigerant in auxiliary cooler 6. The cooling heat required to liquefy this remaining chlorine gas is approximately 5150kca.
1, which was about 7% of the amount of cooling heat required to liquefy the total amount of chlorine charged, and the temperature of the liquefied chlorine was about -15°C. The entire amount of liquefied chlorine is transferred from line 4 to gas (1
, 3aLm) was sent to the user.

次いでライン1より前記と同一条件で塩素ガスを仕込み
液化したが、補助冷却器6で未凝縮の塩素ガスを液化す
るのに要した冷却熱は前回と同様に約5150kcal
であった。
Next, chlorine gas was charged and liquefied from line 1 under the same conditions as above, but the cooling heat required to liquefy the uncondensed chlorine gas in auxiliary cooler 6 was about 5150 kcal, the same as before.
Met.

次に、この液化した塩素の内350 kgをガス(1,
3atm)状でとり出し、次いで再び仕込みライン1よ
り同量の塩素ガスを仕込み、不凝縮骨を補助冷却器6で
液化する操作をくりかえし行った。この操作で使用した
補助冷却熱量は仕込み全塩素量を液化するに必要な冷却
熱量の約7%であった。
Next, 350 kg of this liquefied chlorine was transferred to gas (1,
3 atm), then the same amount of chlorine gas was charged again from the charging line 1, and the operation of liquefying the non-condensable bones in the auxiliary cooler 6 was repeated. The amount of auxiliary cooling heat used in this operation was about 7% of the amount of cooling heat required to liquefy the total amount of chlorine charged.

実施例2 実施例1の共融共晶体にかえて980 kgの氷が熱交
換器のシェル側に充填しである。
Example 2 Instead of the eutectic eutectic of Example 1, 980 kg of ice was packed into the shell side of the heat exchanger.

仕込みライン1より塩素ガス(40〜50°C,3,2
a Lm)を実施例1と同様に1060 kg仕込む。
Chlorine gas (40-50°C, 3,2
a Lm) in an amount of 1060 kg in the same manner as in Example 1.

液化された塩素は900 kgであり、残部の160k
gは補助冷却器6で冷媒と接触し液化した。この残部の
塩素ガスの液化に要した冷却熱量は全塩素を液化するに
必要な冷却熱量の約7%であり、液化した塩素の温度は
約2°Cであった。この液化した塩素全量をライン4よ
りガス状でユーザーに送付した。
The liquefied chlorine was 900 kg, and the remaining 160 kg
g came into contact with the refrigerant in the auxiliary cooler 6 and liquefied. The amount of cooling heat required to liquefy the remaining chlorine gas was about 7% of the amount of cooling heat required to liquefy all the chlorine, and the temperature of the liquefied chlorine was about 2°C. The entire amount of liquefied chlorine was sent to the user in gas form through line 4.

次いでラインlより前記と同一条件で塩素ガスを仕込み
液化したが、補助冷却器6で未凝縮の塩素ガスを液化す
るのに要した冷却熱は約5200kcalであり、全塩
素量を液化するのに必要な冷却熱量の約7%であり、以
後この操作をくりかえし同様の結果を得た。
Next, chlorine gas was charged and liquefied from line 1 under the same conditions as above, but the cooling heat required to liquefy the uncondensed chlorine gas in the auxiliary cooler 6 was approximately 5,200 kcal, and it was necessary to liquefy the total amount of chlorine. This was about 7% of the required amount of cooling heat, and this operation was repeated thereafter to obtain similar results.

【図面の簡単な説明】[Brief explanation of drawings]

図1及び2は本発明の実施例を示すフローシートである
。 I:塩素ガス仕込みライン 2:熱交換器3:排ガスラ
イン 4,5:塩素ガスライン6:補助冷却器
1 and 2 are flow sheets illustrating an embodiment of the present invention. I: Chlorine gas preparation line 2: Heat exchanger 3: Exhaust gas line 4, 5: Chlorine gas line 6: Auxiliary cooler

Claims (1)

【特許請求の範囲】 1 断熱系において蓄熱媒体として塩化ナトリウムと水
との混合物又は水を使用し、塩素ガスを液化し貯蔵する
際には塩素ガスと該蓄熱媒体とを熱交換することにより
該蓄熱媒体を融解させ、液化塩素をガス化する際には、
その気化熱により該蓄熱媒体を氷結させることを特徴と
する塩素ガスの処理方法。 2 不足する冷却熱量を補助冷却器によって供給する特
許請求の範囲第1項記載の処理方法。 3 蓄熱媒体が塩化ナトリウムと水との共融共晶体であ
る特許請求の範囲第1項又は第2項記載の処理方法。
[Scope of Claims] 1. A mixture of sodium chloride and water or water is used as a heat storage medium in an adiabatic system, and when chlorine gas is liquefied and stored, chlorine gas and the heat storage medium are heat exchanged. When melting the heat storage medium and gasifying liquefied chlorine,
A method for treating chlorine gas, which comprises freezing the heat storage medium using the heat of vaporization. 2. The treatment method according to claim 1, wherein the insufficient amount of cooling heat is supplied by an auxiliary cooler. 3. The treatment method according to claim 1 or 2, wherein the heat storage medium is a eutectic eutectic of sodium chloride and water.
JP28235385A 1985-10-14 1985-12-16 Method of treating chlorine gas Pending JPS62175575A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP22827685 1985-10-14
JP60-228276 1985-10-14

Publications (1)

Publication Number Publication Date
JPS62175575A true JPS62175575A (en) 1987-08-01

Family

ID=16873940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28235385A Pending JPS62175575A (en) 1985-10-14 1985-12-16 Method of treating chlorine gas

Country Status (1)

Country Link
JP (1) JPS62175575A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013521210A (en) * 2010-03-06 2013-06-10 ノラム インターナショナル リミテッド Method and apparatus for vaporizing liquid chlorine containing nitrogen trichloride
JP2013521211A (en) * 2010-03-06 2013-06-10 ノラム インターナショナル リミテッド Method for treating liquid chlorine containing nitrogen trichloride

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013521210A (en) * 2010-03-06 2013-06-10 ノラム インターナショナル リミテッド Method and apparatus for vaporizing liquid chlorine containing nitrogen trichloride
JP2013521211A (en) * 2010-03-06 2013-06-10 ノラム インターナショナル リミテッド Method for treating liquid chlorine containing nitrogen trichloride

Similar Documents

Publication Publication Date Title
US1989190A (en) Apparatus for separating low boiling gas mixtures
JPS62232489A (en) Separation and recovery of c3+hydrocarbon
US4167101A (en) Absorption process for heat conversion
JP3784966B2 (en) Combustion exhaust gas treatment method and apparatus
JPS62175575A (en) Method of treating chlorine gas
JPH0545524B2 (en)
US4046867A (en) Method for making sulfur dioxide-containing gas stream
JPH04131688A (en) Co2 liquefying device
JPS62502800A (en) Method and apparatus for cooling coke
US3410099A (en) Chlorine liquefaction
US3169845A (en) Method of and apparatus for producing high purity inert gases
JP3237892B2 (en) Pressurized air separation device
JPS58208104A (en) Method for purifying chlorine
JPH05141865A (en) Separation/recovery method of carbon dioxide gas
JPS6138124B2 (en)
JP4326281B2 (en) Method and system for dehumidifying exhaust gas
JPS59116106A (en) Method for recovering heat energy in equipment for manufacturing sulfuric acid
US2960835A (en) Separation of gaseous mixtures
JPS59215577A (en) Method of recovering co gas from converter gas
JPH0532719Y2 (en)
JPH0317490A (en) Production method of liquefied co2
JPH11228114A (en) Purifying method of sulfur dioxide and device therefor
JPS58150786A (en) Method of utilizing external cold heat source in air separator
JPH0725530B2 (en) CO2 recovery device
JPS5935013A (en) Preparation of dry ice