JPH05141865A - Separation/recovery method of carbon dioxide gas - Google Patents

Separation/recovery method of carbon dioxide gas

Info

Publication number
JPH05141865A
JPH05141865A JP3332523A JP33252391A JPH05141865A JP H05141865 A JPH05141865 A JP H05141865A JP 3332523 A JP3332523 A JP 3332523A JP 33252391 A JP33252391 A JP 33252391A JP H05141865 A JPH05141865 A JP H05141865A
Authority
JP
Japan
Prior art keywords
carbon dioxide
gas
dioxide gas
temperature
butane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3332523A
Other languages
Japanese (ja)
Inventor
Shoichi Naruse
彰一 成瀬
Hideaki Takano
英明 高野
Osamu Shiozaki
修 塩崎
Takeshi Fujisaki
毅 藤崎
Yasuo Tomiyama
靖夫 冨山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYODO SANSO
KYODO SANSO KK
Original Assignee
KYODO SANSO
KYODO SANSO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYODO SANSO, KYODO SANSO KK filed Critical KYODO SANSO
Priority to JP3332523A priority Critical patent/JPH05141865A/en
Publication of JPH05141865A publication Critical patent/JPH05141865A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/06Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation
    • F25J3/063Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream
    • F25J3/067Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream separation of carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/20Processes or apparatus using other separation and/or other processing means using solidification of components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/66Landfill or fermentation off-gas, e.g. "Bio-gas"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/70Flue or combustion exhaust gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/80Separating impurities from carbon dioxide, e.g. H2O or water-soluble contaminants
    • F25J2220/82Separating low boiling, i.e. more volatile components, e.g. He, H2, CO, Air gases, CH4
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/90External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration
    • F25J2270/904External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration by liquid or gaseous cryogen in an open loop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Abstract

PURPOSE:To inexpensively separate and recover carbon dioxide gas with a high yield and a high purity by directly bubbling stock gas including carbon dioxide gas in a refrigerant of a fluid lower than a boiling paint and lower than solidification temperature of the carbon dioxide gas for heat exchange thereof, and solidifying and recovering the carbon dioxide gas. CONSTITUTION:Feed stock gas is directly bubbled for heat exchange from a stock blow-off nozzle 7 into n-butane 8 as a refrigerant of a fluid lower than a boiling point thereof at temperature lower than solidification temperature of carbon dioxide gas, e. g. at a temperature lower than -78.5C at atmospheric temperature. Hereby, the carbon dioxide in the stock gas is cooled into solid carbon dioxide gas and is precipitated in the fluid n-butane 8 utilizing a specific gravity difference. The n-butane 8 is temperature controlled at a temperature lower than its boiling temperature, and hence is not vaporized and is kept as a liquid refrigerant. The solid carbon dioxide gas precipitated in the n-butane 8 is rendered to solid-liquid separation by degassing, and hereby the solid carbon dioxide gas is recovered.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、高炉ガス、転炉ガス
等の炭酸ガスを含有する燃料ガスまたは燃焼排ガスから
炭酸ガスを分離回収する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for separating and recovering carbon dioxide from fuel gas or combustion exhaust gas containing carbon dioxide such as blast furnace gas and converter gas.

【0002】[0002]

【従来の技術】従来、炭酸ガスの分離回収方法として
は、低温下で炭酸ガスを分離回収する方法の例はほとん
どなく、炭酸ガス攻法によるEnhanced Oil
Recovery用の観点から低温蒸留プロセスがあ
るだけである。EnhancedOil Recove
ry用低温蒸留プロセスの代表的なものとしては、Ry
an/Holmes法、Controilled Fr
eeze Zone法等が提案されている。一方、液化
天然ガス(LPG)、液体窒素等に炭酸ガスをバブリン
グしてドライアイスを製造する方法(特公昭60−42
163号公報)、アルゴン−酸素吹錬法におけるアルゴ
ンの循環再使用方法において、不純成分である炭酸ガス
を深冷処理(炭酸ガスの液化分離)で除去、または−1
00℃程度の寒冷源と熱交換器で熱交換させ、ドライア
イスとして炭酸ガスを除去する方法(特開昭52−28
750号公報)等の提案が行われている。炭酸ガスを含
有する燃料ガスまたは燃焼排ガスから炭酸ガスを分離回
収する方法として吸着分離方法があり、特開平1−17
2204号公報、特開昭61−187932号公報等多
くの提案が行われている。
2. Description of the Related Art Conventionally, as a method for separating and recovering carbon dioxide, there is almost no example of a method for separating and recovering carbon dioxide at a low temperature.
There is only a cryogenic distillation process from the point of view for Recovery. Enhanced Oil Recover
A typical low temperature distillation process for ry is Ry
an / Holmes method, Controlled Fr
The ese zone method and the like have been proposed. On the other hand, a method for producing dry ice by bubbling carbon dioxide gas into liquefied natural gas (LPG), liquid nitrogen or the like (Japanese Patent Publication No. 60-42).
No. 163), in the circulation and reuse method of argon in the argon-oxygen blowing method, carbon dioxide which is an impure component is removed by deep-cooling treatment (liquefaction separation of carbon dioxide), or -1.
A method of removing carbon dioxide gas as dry ice by exchanging heat with a cold source of about 00 ° C. in a heat exchanger (JP-A-52-28)
No. 750) has been proposed. An adsorption separation method is known as a method for separating and recovering carbon dioxide gas from a fuel gas containing carbon dioxide gas or combustion exhaust gas.
Many proposals have been made such as Japanese Patent No. 2204 and Japanese Patent Laid-Open No. 61-187932.

【0003】[0003]

【発明が解決しようとする課題】上記Ryan/Hol
mes法、Controilled Freeze Z
one法は、特殊用途向けのためシステムに汎用性がな
く、また、基本分離技術として低温蒸留法を採用してい
るためシステムが複雑であり、単に炭酸ガスを分離回収
するにはコスト的に高くつき経済的に成り立たない。ま
た、特公昭60−42163号公報に開示のドライアイ
ス製造方法は、液化天然ガス等を気化させる熱源として
炭酸ガスを用い、炭酸ガスを液化天然ガス中にバブリン
グすることにより液化天然ガスの蒸発潜熱等を利用し、
液化天然ガスを気化しながらドライアイスを製造するも
のである。この方法では、炭酸ガスを含有する燃料ガス
または燃焼排ガスから炭酸ガス分離回収することはでき
ない。仮に液化天然ガス中に炭酸ガスを含有する燃料ガ
スまたは燃焼排ガスをバブリングすると、炭酸ガスはド
ライアイスとして回収可能であるが、液化天然ガス中に
液化天然ガスより低沸点の多量の窒素等が混入して液化
天然ガスの価値を損なうこととなる。
[Problems to be Solved by the Invention] Ryan / Hol
mes method, Controlled Freeze Z
The one method is not versatile because it is for a special purpose, and because the low temperature distillation method is adopted as the basic separation technology, the system is complicated, and it is costly to simply separate and recover carbon dioxide gas. It is not economically feasible. The method for producing dry ice disclosed in Japanese Patent Publication No. 60-42163 uses carbon dioxide gas as a heat source for vaporizing liquefied natural gas and the like, and bubbling carbon dioxide gas into the liquefied natural gas causes latent heat of vaporization of the liquefied natural gas. Etc.,
Dry ice is produced while vaporizing liquefied natural gas. In this method, carbon dioxide cannot be separated and recovered from the fuel gas containing carbon dioxide or the combustion exhaust gas. If fuel gas or combustion exhaust gas containing carbon dioxide in liquefied natural gas is bubbled, carbon dioxide can be recovered as dry ice, but a large amount of nitrogen, etc., having a lower boiling point than liquefied natural gas is mixed into liquefied natural gas. Then, the value of liquefied natural gas will be impaired.

【0004】また、特開昭52−28750号公報に開
示の炭酸ガスの除去方法は、アルゴンガス中の不純物で
ある炭酸ガスを炭酸ガスの深冷分離で除去する方法であ
るが、炭酸ガスを液化するためには少くとも炭酸ガスの
3重点圧力(5.28kg/cm2abs)以上の圧力
が必要であり、特開昭52−28750号公報に記載さ
れた炭酸ガス濃度を考慮すると、最低でも15kg/c
2abs程度の圧力を必要とし、しかも同時にアルゴ
ンガスも圧縮する必要があり、動力費から見て実用的と
はいい難い。さらに−100℃程度の寒冷源と熱交換器
で熱交換させ、ドライアイスとして炭酸ガスを除去する
方法は、ガスの熱伝達率が悪いことから非常に大きな伝
熱面積を必要とし、また、炭酸ガスがドライアイスとな
って伝熱面に付着するから、熱伝達率が低下して熱効率
の悪い炭酸ガス除去方法にならざるを得ない。また、特
開昭61−157322号公報、特開昭1−17220
4号公報等に開示のPSA法は、炭酸ガス濃度が20%
程度以下の低濃度領域での炭酸ガスの収率が低く、低濃
度になるほど設備も大きくなり、事業として採算に乗ら
ないと言われている(化学装置、1989年8月号、
「吸着(PSA)による廃ガスからのCO2回収」)。
Further, the method of removing carbon dioxide gas disclosed in JP-A-52-28750 is a method of removing carbon dioxide gas, which is an impurity in argon gas, by cryogenic separation of carbon dioxide gas. In order to liquefy, a pressure of at least the triple point pressure of carbon dioxide (5.28 kg / cm 2 abs) or higher is required, and in consideration of the concentration of carbon dioxide described in JP-A-52-28750, the minimum But 15kg / c
A pressure of about m 2 abs is required, and at the same time, it is necessary to compress argon gas as well, which is not practical from the viewpoint of power cost. Furthermore, the method of removing carbon dioxide gas as dry ice by exchanging heat with a cold source of about −100 ° C. requires a very large heat transfer area because the heat transfer coefficient of gas is poor, and Since the gas becomes dry ice and adheres to the heat transfer surface, the heat transfer rate is reduced and the method of removing carbon dioxide gas has poor thermal efficiency. Further, JP-A-61-157322 and JP-A-1-17220.
The PSA method disclosed in Japanese Patent No. 4 etc. has a carbon dioxide concentration of 20%
It is said that the yield of carbon dioxide is low in the low concentration range below a certain level, and the equipment becomes larger as the concentration becomes lower, which makes it unprofitable as a business (Chemical equipment, August 1989 issue,
"CO2 recovery from waste gas by adsorption (PSA)").

【0005】この発明の目的は、炭酸ガスを含む燃料ガ
スまたは燃焼排ガスを原料ガスとし、炭酸ガスを高収率
で安価に回収できる炭酸ガスの分離回収方法を提供する
ことにある。
An object of the present invention is to provide a method for separating and recovering carbon dioxide gas, which uses carbon dioxide-containing fuel gas or combustion exhaust gas as a raw material gas and can recover carbon dioxide gas in high yield at low cost.

【0006】[0006]

【課題を解決するための手段】本発明者らは上記目的を
達成すべく種々試験研究を行った。その結果、沸点未満
に冷却した液体の炭化水素等の冷媒中に原料ガスを吹込
んでバブリングさせ、直接熱交換させることによって炭
酸ガスを固化し、液体の炭化水素を気化させることなし
に分離できることを見い出し、この発明に到達した。
Means for Solving the Problems The present inventors have conducted various test studies in order to achieve the above object. As a result, the raw material gas is blown into a refrigerant such as a liquid hydrocarbon cooled to a temperature below the boiling point to cause bubbling, and the carbon dioxide gas is solidified by directly exchanging heat, and the liquid hydrocarbon can be separated without being vaporized. Found and arrived at this invention.

【0007】すなわちこの発明は、炭酸ガスを含む燃料
ガスまたは燃焼排ガス等からなる原料ガスを、炭酸ガス
の固化温度以下で、かつ沸点未満の液体の冷媒中に直接
バブリングして熱交換させ、液体の冷媒を気化すること
なく、炭酸ガスを冷却固化したのち、回収するのであ
る。
That is, according to the present invention, a raw material gas consisting of a fuel gas containing carbon dioxide gas or a combustion exhaust gas is directly bubbled into a liquid refrigerant having a solidification temperature of carbon dioxide gas or lower and a boiling point to cause heat exchange, The carbon dioxide gas is cooled and solidified without being vaporized, and then recovered.

【0008】[0008]

【作用】この発明においては、炭酸ガスの固化温度以
下、例えば大気圧で−78.5℃以下で、沸点未満の液
体の冷媒中に炭酸ガスを含む原料ガスを直接バブリング
して熱交換させるから、原料ガス中の炭酸ガスは冷却さ
れて固体炭酸ガスとなり、比重差によって液体の冷媒中
に沈殿する。冷媒は、沸点未満で温度調節されるので気
化することなく、液体の冷媒として維持される。冷媒中
に沈殿した固体炭酸ガスは、抜出して固液分離すること
によって固体炭酸ガスを回収することができる。回収し
た固体炭酸ガスの収率は、液体の冷媒の温度に依存し、
温度が低くなるほど収率が上昇する。この理由は、液体
の冷媒中からリークする炭酸ガスは、液体の冷媒の温度
での飽和蒸気圧(昇華圧)分だけリークすることによ
る。炭酸ガス収率の例を挙げると、原料ガス中の炭酸ガ
ス濃度20%、冷媒の温度−110℃の場合、炭酸ガス
の収率は約77%であり、同一温度条件でも炭酸ガス濃
度が40%の場合は、炭酸ガス収率は約89%程度とな
る。分離された固体炭酸ガスは、大気圧で−78.5℃
以上に加熱することによりガス体の炭酸ガスを製造する
ことができる。また、3重点圧力(5.28kg/cm
2abs)以上の圧力下で加熱融解させることによっ
て、液体炭酸ガスを製造することができる。
In the present invention, since the raw material gas containing carbon dioxide is bubbling directly into the liquid refrigerant having a boiling point lower than the solidification temperature of carbon dioxide, for example, -78.5 ° C or less at atmospheric pressure for heat exchange. The carbon dioxide gas in the raw material gas is cooled to become solid carbon dioxide gas, and is precipitated in the liquid refrigerant due to the difference in specific gravity. Since the temperature of the refrigerant is adjusted below the boiling point, it is maintained as a liquid refrigerant without vaporization. The solid carbon dioxide gas precipitated in the refrigerant can be extracted and solid-liquid separated to recover the solid carbon dioxide gas. The yield of the recovered solid carbon dioxide depends on the temperature of the liquid refrigerant,
The lower the temperature, the higher the yield. The reason for this is that the carbon dioxide gas leaking from the liquid refrigerant leaks only by the saturated vapor pressure (sublimation pressure) at the temperature of the liquid refrigerant. As an example of the carbon dioxide gas yield, when the carbon dioxide gas concentration in the raw material gas is 20% and the temperature of the refrigerant is −110 ° C., the carbon dioxide gas yield is about 77%, and the carbon dioxide gas concentration is 40% even under the same temperature condition. %, The carbon dioxide gas yield is about 89%. The separated solid carbon dioxide gas has an atmospheric pressure of −78.5 ° C.
By heating above, carbon dioxide gas in a gas form can be produced. In addition, three key pressures (5.28 kg / cm
Liquid carbon dioxide can be produced by heating and melting under a pressure of 2 abs) or more.

【0009】この発明で使用する冷媒としては、冷媒の
沸点未満の温度で炭酸ガスを固化できることが必要であ
り、また、固体炭酸ガスが容易に沈殿できるように固体
炭酸ガスより液密度が小さいことが必要である。この条
件に適合する冷媒としては、メタン、エタン、プロパ
ン、ブタン等の炭化水素のほか、液化天然ガス等を使用
することができるが、望ましくは沸点と融点の差が大き
いものの方が取扱い易く、n−ブタン(沸点−0.5
℃、融点−135℃)、i−ブタン(沸点−11.7
℃、融点−159.6℃)等が適している。液体窒素
は、使用可能であるが、沸点未満にすることが難しく、
本冷媒としては適していない。
The refrigerant used in the present invention is required to be capable of solidifying carbon dioxide at a temperature lower than the boiling point of the refrigerant, and has a liquid density smaller than that of solid carbon dioxide so that solid carbon dioxide can be easily precipitated. is necessary. As the refrigerant suitable for this condition, in addition to hydrocarbons such as methane, ethane, propane and butane, liquefied natural gas and the like can be used, but it is desirable to use one having a large difference in boiling point and melting point, n-butane (boiling point -0.5
° C, melting point -135 ° C, i-butane (boiling point -11.7)
(° C, melting point-159.6 ° C) and the like are suitable. Liquid nitrogen can be used, but it is difficult to bring it below the boiling point,
Not suitable as this refrigerant.

【0010】この発明で使用する炭酸ガスを含む原料ガ
スとしては、炭酸ガスを含む高炉ガス、転炉ガス等の燃
料ガスまたは燃焼排ガス等を挙げることができる。これ
らの排ガス以外には、炭酸ガスを含み、他のガス成分の
沸点または融点が炭酸ガスより低い排ガスすべてを原料
ガスとすることができる。原料ガスとして燃料ガスを使
用した場合は、燃料ガス中の炭酸ガスが除去されて発熱
量が上昇するので、もとのラインに戻して燃焼せしめ
る。また、原料ガスとして燃焼排ガスを使用した場合
は、炭酸ガスを回収後、オフガスは大気中に放散する。
Examples of the raw material gas containing carbon dioxide gas used in the present invention include fuel gas such as blast furnace gas containing carbon dioxide gas, converter gas, and combustion exhaust gas. In addition to these exhaust gases, all exhaust gases containing carbon dioxide and having a boiling point or melting point of other gas components lower than that of carbon dioxide can be used as the raw material gas. When the fuel gas is used as the raw material gas, the carbon dioxide gas in the fuel gas is removed and the calorific value rises. Therefore, the fuel gas is returned to the original line and burned. When combustion exhaust gas is used as the raw material gas, the off gas is released into the atmosphere after the carbon dioxide gas is recovered.

【0011】液体の冷媒と固体炭酸ガスの分離は、濾
過、遠心分離等の通常の固液分離法が適用できる。この
ようにして分離された固体炭酸ガスは、通常多少の液体
の冷媒を含んでおり、液体の冷媒との分離は固体炭酸ガ
スと液体の冷媒の気化温度の高低により異なり、固体炭
酸ガスの気化温度が液体の冷媒の気化温度より低い場合
は、固体炭酸ガスを気化させる。また、固体炭酸ガスの
気化温度が液体の冷媒の気化温度より高い場合は、液体
の冷媒を気化させたのち、固体炭酸ガスを気化し分離回
収する。
For separating the liquid refrigerant and the solid carbon dioxide gas, a usual solid-liquid separation method such as filtration or centrifugal separation can be applied. The solid carbon dioxide gas thus separated usually contains some liquid refrigerant, and the separation from the liquid refrigerant differs depending on the vaporization temperature of the solid carbon dioxide gas and the liquid refrigerant. When the temperature is lower than the vaporization temperature of the liquid refrigerant, the solid carbon dioxide gas is vaporized. When the vaporization temperature of the solid carbon dioxide is higher than the vaporization temperature of the liquid refrigerant, the liquid refrigerant is vaporized, and then the solid carbon dioxide is vaporized and separated and recovered.

【0012】炭酸ガスを固体炭酸ガスとして回収するに
当たって使用した冷熱は、固体炭酸ガス分離後の排ガス
を原料ガスと熱交換させ、原料ガスの冷却用に使用する
ことによって大部分が回収できる。また、固体炭酸ガス
を気化させるとき発生する冷熱は、冷凍サイクルを組む
ことによって、固体炭酸ガス分離用の冷熱として使用可
能であり、安価に炭酸ガスを分離回収することができ
る。
Most of the cold heat used in recovering carbon dioxide gas as solid carbon dioxide gas can be recovered by exchanging heat of the exhaust gas after solid carbon dioxide gas separation with the raw material gas and using it for cooling the raw material gas. Further, the cold heat generated when the solid carbon dioxide gas is vaporized can be used as the cold heat for solid carbon dioxide gas separation by forming a refrigeration cycle, and the carbon dioxide gas can be separated and recovered at low cost.

【0013】[0013]

【実施例】図1は実施例で使用したテスト装置の縦断面
図、図2は図1の気泡塔の説明図である。図1に示すと
おり、保冷槽1の内部に上部を液化窒素ガス容器2で密
閉し、上下を連通させて中央部に分離板3を設け、上昇
槽4と下降槽5に分割した気泡槽6を設け、該気泡槽6
の上昇槽4の下部に原料吹込みノズル7として孔径1m
m、孔数22個の原料吹込み孔を穿孔した外径12.7
mm、肉厚1.59mmのテフロンパイプ7を配設する
と共に、液体の冷媒として温度−102〜−107℃の
n−ブタン8を原料吹込みノズル7上面までの液深が2
00mmとなるよう仕込んだ。そして炭酸ガス20Vo
l%、窒素ガス80Vol%からなる混合ガス9を、温
度−65〜−75℃で原料吹込みノズル7から30Nl
/minの割合で吹込んだ。
EXAMPLE FIG. 1 is a vertical cross-sectional view of a test apparatus used in Examples, and FIG. 2 is an explanatory view of the bubble column of FIG. As shown in FIG. 1, the upper part of the cold storage tank 1 is sealed with a liquefied nitrogen gas container 2, the upper and lower parts are communicated with each other, and a separating plate 3 is provided in the central portion, and a bubble tank 6 is divided into an ascending tank 4 and a descending tank 5. And the bubble tank 6
1m hole diameter as raw material injection nozzle 7 in the lower part of the rising tank 4
m, outer diameter 12.7 obtained by punching raw material injection holes with 22 holes
mm, thickness 1.59 mm Teflon pipe 7 is provided, and n-butane 8 having a temperature of −102 to −107 ° C. as a liquid refrigerant has a liquid depth of 2 to the upper surface of the raw material injection nozzle 7.
It was prepared to be 00 mm. And carbon dioxide gas 20Vo
1% and nitrogen gas 80 vol% mixed gas 9 at a temperature of −65 to −75 ° C. from the material injection nozzle 7 to 30 Nl.
Blows in at a rate of / min.

【0014】上記上昇槽4の液化n−ブタン8中に吹込
まれた混合ガス9は、上昇槽4内を上昇する間に液化n
−ブタン8との直接熱交換により冷却される。これによ
って混合ガス中の炭酸ガスが固化し、オフガスは気泡槽
6の上部からそのまま放散させた。上昇槽4で固化した
固体炭酸ガスは、上昇槽4を上昇して分離板3の上部で
反転し、下降槽5内を下降して気泡槽6の底部角錐部分
に堆積した。この場合の炭酸ガス収率の平均は、65.
2%であった。また、積算炭酸ガス吹込み量と炭酸ガス
収率、積算炭酸ガス吹込み量と上昇槽4の上部A、下部
Bおよび下降槽5の中間部Cにおけるn−ブタン8の液
温、積算炭酸ガス吹込み量と原料吹込みノズル7の差圧
を測定した。その結果を図3ないし図5に示す。なお、
炭酸ガス実測収率は、吹込み混合ガスおよびオフガス中
のガスクロマトグラフィによる炭酸ガス分析結果から算
出した。
The mixed gas 9 blown into the liquefied n-butane 8 in the rising tank 4 is liquefied while rising in the rising tank 4.
Cooled by direct heat exchange with butane 8. As a result, the carbon dioxide gas in the mixed gas was solidified, and the off gas was diffused from the upper part of the bubble tank 6 as it was. The solid carbon dioxide gas solidified in the rising tank 4 went up in the rising tank 4, was inverted at the upper part of the separation plate 3, and went down in the falling tank 5 to be deposited on the bottom pyramid portion of the bubble tank 6. The average carbon dioxide yield in this case is 65.
It was 2%. Further, the cumulative amount of carbon dioxide gas blown and the carbon dioxide gas yield, the cumulative amount of carbon dioxide gas blown, and the liquid temperature of n-butane 8 in the upper portion A and the lower portion B of the ascending tank 4 and the intermediate portion C of the descending tank 5 and the cumulative carbon dioxide gas amount The blowing amount and the differential pressure of the raw material blowing nozzle 7 were measured. The results are shown in FIGS. In addition,
The actual yield of carbon dioxide was calculated from the results of carbon dioxide analysis by gas chromatography in the blown mixed gas and off gas.

【0015】図3に理論収率と実績収率の比較を示す。
理論収率は、液体の冷媒中で十分に炭酸ガスが熱交換す
れば、液体の冷媒中からリークする炭酸ガスは液体の冷
媒の温度での飽和蒸気圧(昇華圧)分だけリークすると
仮定して求めた値である。図3に示すとおり、実線で示
す理論収率と破線で示す実測収率とはよくマッチングし
ている。このことは、200mm程度の液深でも十分に
熱交換が行われていることを示すもので、液体にバブリ
ングして熱交換を行う方法が非常に熱交換効率の良いこ
とを示している。図5に示すとおり、原料吹込みノズル
7の差圧は、0.55〜0.6kg/cm2で推移して
おり、問題にならない程度の差圧で、原料ガス供給圧力
が低くてもよいことがわかる。また、図4に示すとお
り、また、気泡槽6中の液体の冷媒であるn−ブタン8
の液温度は、上昇槽4の実線で示す上部A、一点鎖線で
示す下部B(上部Aと重複)および破線でしめす下降槽
5の中段部C共に、ほぼ−105℃近辺で安定してい
た。なお、気泡槽6の底部角錐部に堆積した固体炭酸ガ
スは、試験終了時抜出したところ、約50%のスラリー
状であった。これを固液分離したのち、炭酸ガスをを気
化させて分離回収したところ、純度98.8%、回収量
3166gで、計算による炭酸ガス吹込み量4871g
に対する収率は、65.0%であった。
FIG. 3 shows a comparison between the theoretical yield and the actual yield.
The theoretical yield is based on the assumption that if the carbon dioxide gas exchanges heat sufficiently in the liquid refrigerant, the carbon dioxide gas leaking from the liquid refrigerant leaks by the saturated vapor pressure (sublimation pressure) at the temperature of the liquid refrigerant. It is the value obtained by As shown in FIG. 3, the theoretical yield indicated by the solid line and the measured yield indicated by the broken line are in good agreement. This indicates that the heat exchange is sufficiently performed even at a liquid depth of about 200 mm, and that the method of bubbling the liquid to perform the heat exchange has a very high heat exchange efficiency. As shown in FIG. 5, the differential pressure of the raw material injection nozzle 7 changes from 0.55 to 0.6 kg / cm 2 , and the raw material gas supply pressure may be low at such a differential pressure that does not pose a problem. I understand. Further, as shown in FIG. 4, n-butane 8 which is a liquid refrigerant in the bubble tank 6 is also used.
The liquid temperature of the liquid was stable at around -105 ° C in both the upper part A shown by the solid line of the ascending tank 4, the lower part B shown by the alternate long and short dash line (overlap with the upper part A) and the middle part C of the descending tank 5 shown by the broken line. .. The solid carbon dioxide gas deposited on the pyramid at the bottom of the bubble tank 6 was about 50% slurry when extracted at the end of the test. After this was subjected to solid-liquid separation, carbon dioxide was vaporized to be separated and recovered, and the purity was 98.8%, the recovered amount was 3166 g, and the calculated carbon dioxide blowing amount was 4871 g.
The yield was 65.0%.

【0016】実施例2 実施例1と同じ方法で液体の冷媒n−ブタンの温度を−
110℃とし、同様の実験を実施したところ、炭酸ガス
の収率は約77%であった。
Example 2 In the same manner as in Example 1, the temperature of the liquid refrigerant n-butane was changed to −
When the same experiment was carried out at 110 ° C., the yield of carbon dioxide gas was about 77%.

【0017】実施例3 実施例2と同じ方法で、原料ガス中の炭酸ガス濃度を4
0%に上げて同様の実験を実施したところ、炭酸ガスの
収率は約89%であった。
Example 3 Carbon dioxide concentration in the raw material gas was adjusted to 4 by the same method as in Example 2.
When the same experiment was carried out by increasing it to 0%, the yield of carbon dioxide gas was about 89%.

【0018】[0018]

【発明の効果】以上述べたとおり、この発明方法によれ
ば、炭酸ガスを含有する原料ガスから、炭酸ガスを高収
率、高純度で安価に分離回収することができる。また、
低温で取扱うため、ガスボリウムを小さくでき、設備を
小型化できるため設備費が安価になる。また、原料ガス
として炭酸ガスを含む燃料ガスを使用した場合には、燃
料ガス中の炭酸ガスが除去されるので、燃料ガスの発熱
量が増加する等の利点がある。
As described above, according to the method of the present invention, carbon dioxide can be separated and recovered from the raw material gas containing carbon dioxide at a high yield and a high purity at a low cost. Also,
Since it is handled at a low temperature, the gas volume can be reduced, and the equipment can be downsized, so the equipment cost can be reduced. Further, when a fuel gas containing carbon dioxide gas is used as the source gas, carbon dioxide gas in the fuel gas is removed, so that there is an advantage that the calorific value of the fuel gas increases.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例で使用したテスト装置の縦断
面図である。
FIG. 1 is a vertical sectional view of a test apparatus used in an embodiment of the present invention.

【図2】図1中の気泡塔の説明図である。FIG. 2 is an explanatory view of a bubble column in FIG.

【図3】実施例における積算炭酸ガス吹込み量と炭酸ガ
ス収率との関係を示すグラフである。
FIG. 3 is a graph showing the relationship between the cumulative amount of carbon dioxide gas blown and the carbon dioxide gas yield in the example.

【図4】同じく実施例における積算炭酸ガス吹込み量と
上昇槽上部および下降槽中段のn−ブタンの液温との関
係を示すグラフである。
FIG. 4 is a graph showing the relationship between the cumulative carbon dioxide gas injection amount and the liquid temperature of n-butane in the upper part of the ascending tank and the middle part of the descending tank in the same example.

【図5】同じく実施例における積算炭酸ガス吹込み量と
原料吹込みノズル差圧との関係を示すグラフである。
FIG. 5 is a graph showing the relationship between the cumulative carbon dioxide gas blowing amount and the raw material blowing nozzle differential pressure in the same example.

【符号の説明】[Explanation of symbols]

1 保冷槽 2 液化窒素ガス容器 3 分離板 4 上昇槽 5 下降槽 6 気泡槽 7 原料吹込みノズル 8 n−ブタン 9 原料ガス 1 Cold Storage Tank 2 Liquefied Nitrogen Gas Container 3 Separation Plate 4 Rising Tank 5 Falling Tank 6 Bubble Tank 7 Raw Material Injection Nozzle 8 n-Butane 9 Raw Material Gas

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤崎 毅 和歌山県和歌山市湊1850番地 共同酸素株 式会社和歌山工場内 (72)発明者 冨山 靖夫 和歌山県和歌山市湊1850番地 共同酸素株 式会社和歌山工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takeshi Fujisaki 1850 Minato, Wakayama, Wakayama Joint oxygen company Wakayama factory (72) Inventor Yasuo Tomiyama 1850, Minato, Wakayama, Wakayama Joint oxygen company Wakayama factory Within

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 炭酸ガスを含む燃料ガスまたは燃焼排ガ
ス等からなる原料ガスを、温度が炭酸ガスの固化温度以
下で、かつ沸点未満の液体の冷媒中に直接バブリングし
て熱交換させ、液体の冷媒を気化することなく、炭酸ガ
スを固化したのち、回収することを特徴とする炭酸ガス
の分離回収方法。
1. A raw material gas composed of a fuel gas containing carbon dioxide gas or a combustion exhaust gas is directly bubbled into a liquid refrigerant whose temperature is equal to or lower than the solidification temperature of carbon dioxide gas and lower than the boiling point to cause heat exchange, and A method for separating and recovering carbon dioxide gas, which comprises recovering after solidifying carbon dioxide gas without vaporizing the refrigerant.
JP3332523A 1991-11-20 1991-11-20 Separation/recovery method of carbon dioxide gas Pending JPH05141865A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3332523A JPH05141865A (en) 1991-11-20 1991-11-20 Separation/recovery method of carbon dioxide gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3332523A JPH05141865A (en) 1991-11-20 1991-11-20 Separation/recovery method of carbon dioxide gas

Publications (1)

Publication Number Publication Date
JPH05141865A true JPH05141865A (en) 1993-06-08

Family

ID=18255879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3332523A Pending JPH05141865A (en) 1991-11-20 1991-11-20 Separation/recovery method of carbon dioxide gas

Country Status (1)

Country Link
JP (1) JPH05141865A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005279640A (en) * 2004-03-02 2005-10-13 Chugoku Electric Power Co Inc:The Method and system for treating exhaust gas
JP2005283094A (en) * 2004-03-02 2005-10-13 Chugoku Electric Power Co Inc:The Method and system for treating exhaust gas
FR2940412A1 (en) * 2008-12-19 2010-06-25 Air Liquide PROCESS FOR CAPTURING CARBON DIOXIDE BY CRYO-CONDENSATION
JP2010168229A (en) * 2009-01-20 2010-08-05 Taiyo Nippon Sanso Corp Mixture of carbon dioxide, producing method of the same, storing method of carbon dioxide, conveying method of carbon dioxide and transporting method of carbon dioxide
CN109078447A (en) * 2018-10-18 2018-12-25 中国华能集团清洁能源技术研究院有限公司 A kind of device and method of off-gas recovery dry ice

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005279640A (en) * 2004-03-02 2005-10-13 Chugoku Electric Power Co Inc:The Method and system for treating exhaust gas
JP2005283094A (en) * 2004-03-02 2005-10-13 Chugoku Electric Power Co Inc:The Method and system for treating exhaust gas
FR2940412A1 (en) * 2008-12-19 2010-06-25 Air Liquide PROCESS FOR CAPTURING CARBON DIOXIDE BY CRYO-CONDENSATION
WO2010076464A1 (en) * 2008-12-19 2010-07-08 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method for trapping carbon dioxide by cryocondensation
CN102257341A (en) * 2008-12-19 2011-11-23 乔治洛德方法研究和开发液化空气有限公司 Method for trapping carbon dioxide by cryocondensation
JP2010168229A (en) * 2009-01-20 2010-08-05 Taiyo Nippon Sanso Corp Mixture of carbon dioxide, producing method of the same, storing method of carbon dioxide, conveying method of carbon dioxide and transporting method of carbon dioxide
CN109078447A (en) * 2018-10-18 2018-12-25 中国华能集团清洁能源技术研究院有限公司 A kind of device and method of off-gas recovery dry ice

Similar Documents

Publication Publication Date Title
US6442969B1 (en) Process and device for separation of at least one acid gas that is contained in a gas mixture
US5819555A (en) Removal of carbon dioxide from a feed stream by carbon dioxide solids separation
US3254496A (en) Natural gas liquefaction process
JP4971356B2 (en) Method and system for collecting carbon dioxide from combustion gases
JPS6410090A (en) Method of supercooling gaseous hydrocarbon mixture under normal condition
US4314891A (en) Process for reconcentrating moist glycol
CA1166145A (en) Process to remove nitrogen from natural gas
ES300603A1 (en) Freezing out contaminant methane in the recovery of hydrogen from industrial gases
CA2121057A1 (en) Method and apparatus for the separation of c4 hydrocarbons from gaseous mixtures containing the same
EP1524019A4 (en) Method for removing water contained in solid using liquid material
US4528002A (en) Process for separation of CO2 from CO2 -containing gases
US4167101A (en) Absorption process for heat conversion
US2729291A (en) Separating co2-petroleum mixtures
US4384876A (en) Process for producing krypton and Xenon
US5685169A (en) Method and apparatus for preparing high purity hydrogen bromide
MY119591A (en) Process for the production of carbon monoxide
KR960041990A (en) How to remove nitrogen from LNG
ES8605565A1 (en) Process and installation for recovering the heavier hydrocarbons from a gaseous mixture.
US4529413A (en) Recovering dessicant-antifreeze from admixture with water and hydrogen sulfide
JPH05141865A (en) Separation/recovery method of carbon dioxide gas
JPH11142055A (en) Method for separating air through low temperature distillation, method for converting flow containing hydrocarbon through partial oxidation and plant therefor
US5626023A (en) Cryogenic rectification system for fluorine compound recovery using additive liquid
US3493339A (en) Production of carbon dioxide and argon
KR930000281B1 (en) Process and apparatus for preparing ultra high purity oxygen from a liquid feed
US3512368A (en) Helium and nitrogen containing fuel product recovery

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020710