JP3237892B2 - Pressurized air separation device - Google Patents

Pressurized air separation device

Info

Publication number
JP3237892B2
JP3237892B2 JP06187692A JP6187692A JP3237892B2 JP 3237892 B2 JP3237892 B2 JP 3237892B2 JP 06187692 A JP06187692 A JP 06187692A JP 6187692 A JP6187692 A JP 6187692A JP 3237892 B2 JP3237892 B2 JP 3237892B2
Authority
JP
Japan
Prior art keywords
cold
air
heat exchanger
tower
nitrogen gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06187692A
Other languages
Japanese (ja)
Other versions
JPH05306885A (en
Inventor
昭夫 山本
正博 山崎
寛 津嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP06187692A priority Critical patent/JP3237892B2/en
Publication of JPH05306885A publication Critical patent/JPH05306885A/en
Application granted granted Critical
Publication of JP3237892B2 publication Critical patent/JP3237892B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/02Preparation of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04163Hot end purification of the feed air
    • F25J3/04169Hot end purification of the feed air by adsorption of the impurities
    • F25J3/04181Regenerating the adsorbents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04309Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
    • F25J3/04315Lowest pressure or impure nitrogen, so-called waste nitrogen expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/42Processes or apparatus involving steps for increasing the pressure of gaseous process streams the fluid being nitrogen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、極低温下の精留による
空気分離装置に係り、特に操作圧力が高い空気分離装
置、例えば石炭ガス化複合発電用の酸素発生装置などに
好適な加圧式空気分離装置である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air separation apparatus using rectification at cryogenic temperatures, and more particularly to a pressurized air separation apparatus having a high operating pressure, such as an oxygen generation apparatus for a combined gasification combined cycle power generation system. It is an air separation device.

【0002】[0002]

【従来の技術】従来の極低温下の精留により酸素や窒素
を製造する空気分離装置は、分離効率や電力原単位の点
で、精留塔下塔の操作圧力が5〜6kg/cm2・Gに設定され
ている。
2. Description of the Related Art A conventional air separation apparatus for producing oxygen and nitrogen by rectification at a very low temperature requires an operating pressure of 5 to 6 kg / cm 2. Set to G.

【0003】図2に示すように、加圧された原料空気が
保冷槽内の精留塔下塔に供給され、精留により酸素、窒
素並びに不純窒素ガス等に分離して、ほぼ大気圧で精留
塔上塔から取り出されるようになっている。
As shown in FIG. 2, pressurized raw material air is supplied to a lower tower of a rectification column in a cold storage tank, and is separated into oxygen, nitrogen, impure nitrogen gas, etc. by rectification and purified at substantially atmospheric pressure. It is designed to be taken out from the upper tower.

【0004】一般に寒冷源は、原料空気の一部をタービ
ンコンプレッサーで8〜9kg/cm2・Gに昇圧後、膨脹ター
ビンでほぼ大気圧まで断熱膨脹させ、精留塔上塔に供給
することにより得ている。なお、この種の装置として関
連するものには例えば特開昭− 号公報が挙
げられる。
In general, a cold source is obtained by raising a part of the raw material air to 8 to 9 kg / cm 2 · G by a turbine compressor, adiabatically expanding it to almost the atmospheric pressure by an expansion turbine, and supplying it to an upper column of a rectification column. It has gained. Incidentally, a device related to this type of device is, for example, Japanese Patent Laid-Open Publication No. Sho.

【0005】[0005]

【発明が解決しようとする課題】極低温下の精留による
空気分離装置は、操作圧力が高くなると酸素とアルゴン
の比揮発度が小さくなるため、分離効率が低下する。こ
のため、従来圧力下での操作に比べ、原料空気量が多量
に必要となる。従って、従来技術に近い酸素回収率を確
保するためには、精留塔上塔に供給していた寒冷源空気
を総て精留塔下塔へ回す必要がある。
In an air separation apparatus using rectification at a very low temperature, the separation efficiency decreases because the relative volatility of oxygen and argon decreases as the operating pressure increases. For this reason, a large amount of raw material air is required as compared with the conventional operation under pressure. Therefore, in order to secure an oxygen recovery rate close to that of the prior art, it is necessary to transfer all the cold source air supplied to the upper tower to the lower tower.

【0006】ところが、従来技術では、寒冷を原料空気
の一部をタービンコンプレッサーで昇圧後、膨脹タービ
ンで大気圧まで断熱膨脹させることにより得ていたが、
操作圧力が高くなると原料空気を総て圧力の高い精留塔
下塔へ供給するため、空気を寒冷源として利用できない
という不具合がある。
However, in the prior art, cold was obtained by increasing the pressure of a part of the raw air by a turbine compressor and then adiabatically expanding it to atmospheric pressure by an expansion turbine.
When the operating pressure is increased, all the raw material air is supplied to the lower column of the rectification column, which has a high pressure, so that the air cannot be used as a cold source.

【0007】本発明の目的は、原料空気を殆ど増加させ
ることなく、寒冷発生源を確保する空気分離装置を提供
することにある。
[0007] It is an object of the present invention to provide an air separation device which ensures a source of cold generation without increasing the amount of raw material air.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、精留塔上塔から得られる不純窒素ガスを一旦タービ
ンコンプレッサーで昇圧し、その後膨脹タービンでほぼ
大気圧まで断熱膨脹させ、空気熱交換器で寒冷回収を行
なうように構成したものである。
In order to achieve the above object, the impurity nitrogen gas obtained from the upper tower of the rectification tower is once pressurized by a turbine compressor, then is adiabatically expanded to almost atmospheric pressure by an expansion turbine, and is heated by air. It is configured to perform cold recovery with an exchanger.

【0009】[0009]

【作用】精留塔上塔から得られる不純窒素ガスは、ドラ
イでかつCO2を含まないものの、従来技術ではほぼ大
気圧であるため、原料空気の前処理用吸着塔の再生や冷
凍水の製造に使用された後、系外の大気中に放棄されて
いた。
The impure nitrogen gas obtained from the upper tower of the rectification column is dry and does not contain CO 2 , but it is almost at atmospheric pressure in the prior art. After being used for production, it was abandoned outside the system.

【0010】ところが、操作圧力が高い場合、この不純
窒素ガスの圧力も高くなる。例えば、操作圧力が、1
2.5kg/cm2・Gの場合、不純窒素ガスの圧力は約3kg/cm
2・Gで取り出せる。更にタービンコンプレッサーで4kg/
cm2・G前後にまで昇圧できるから、これを膨脹タービン
で大気圧まで断熱膨脹させれば空気熱交換器で寒冷を回
収できる。又、この不純窒素ガス量は、製品窒素ガス量
により操作が可能で、寒冷発生に必要な量を確保するこ
とは容易である。
[0010] However, when the operating pressure is high, the pressure of the impure nitrogen gas also increases. For example, if the operating pressure is 1
In the case of 2.5 kg / cm 2 · G, the pressure of impure nitrogen gas is about 3 kg / cm
Taken out at 2 · G. In addition, 4kg /
Since the pressure can be raised to about 2 cm2 · G, if it is adiabatically expanded to atmospheric pressure by an expansion turbine, the cold can be recovered by an air heat exchanger. Further, the amount of the impure nitrogen gas can be controlled by the amount of the product nitrogen gas, and it is easy to secure an amount necessary for generating cold.

【0011】寒冷回収後の不純窒素ガスは、従来技術に
於けるものと性状が全く同じであるから、原料空気の前
処理用吸着塔の再生や冷凍水の製造に利用が可能であ
る。
[0011] The impure nitrogen gas after the cold recovery has exactly the same properties as those in the prior art, and can be used for regeneration of an adsorption tower for pretreatment of raw material air and production of frozen water.

【0012】[0012]

【実施例】以下、本発明の一実施例を図1により説明す
る。
An embodiment of the present invention will be described below with reference to FIG.

【0013】図1は、本発明による空気分離装置のフロ
ー図である。図1において、所定量の原料空気1が圧縮
機2でおよそ12.5kg/cm2・Gに昇圧され、吸着塔3に
供給される。この吸着塔3には、極低温下で固化する水
分とCO2を吸着する吸着剤が充填されており、該2塔
の吸着塔3で交互に吸着と脱着再生を繰り返して、原料
空気1中の水分とCO2を除去するようになっている。
FIG. 1 is a flow chart of an air separation apparatus according to the present invention. In FIG. 1, a predetermined amount of raw material air 1 is pressurized by a compressor 2 to about 12.5 kg / cm 2 · G and supplied to an adsorption tower 3. The adsorption tower 3 is filled with an adsorbent for adsorbing water and CO 2 that solidifies at a very low temperature. The adsorption tower 3 of the two towers alternately repeats adsorption and desorption regeneration to produce raw material air 1. To remove water and CO 2 .

【0014】ドライになった原料空気1は、極低温機器
の入った保冷槽4に供給され、まず、空気熱交換器5で
およそ−160℃に冷却された後、精留塔下塔6に供給
される。そして、ここで窒素と酸素濃度の高い空気に分
離される。
The dried raw material air 1 is supplied to a cold storage tank 4 containing cryogenic equipment, first cooled to about -160 ° C. by an air heat exchanger 5, and then supplied to a lower rectification tower 6. Is done. Then, it is separated into air having a high concentration of nitrogen and oxygen.

【0015】精留塔下塔6の塔底に溜った液体空気7、
塔頂部の液体窒素8そして中間部の液体窒素9はそれぞ
れ抜き出され、精留塔上塔10の中間部、塔頂部そして
上部へ供給される。この際、液窒液空過冷却器11で精
留塔上塔10から産出された製品窒素ガス12及び不純
窒素ガス13と熱交換して冷却される。
Liquid air 7 collected at the bottom of the lower tower 6
Liquid nitrogen 8 at the top and liquid nitrogen 9 at the middle are extracted respectively and supplied to the middle, top and top of the upper column 10 of the rectification column. At this time, the liquid nitrogen liquid supercooler 11 exchanges heat with the product nitrogen gas 12 and the impurity nitrogen gas 13 produced from the upper tower 10 of the rectification tower, and is cooled.

【0016】精留塔上塔10では、精留塔下塔6から供
給された液体空気7が更に精留され、塔底に液体酸素1
4が溜る。この液体酸素14は、リボイラー15で精留
塔下塔6の液体窒素8と熱交換して温められ、この一部
が気化して上昇するようになっている。
In the upper rectification tower 10, the liquid air 7 supplied from the lower rectification tower 6 is further rectified, and liquid oxygen 1
4 accumulate. The liquid oxygen 14 is heated by the heat exchange with the liquid nitrogen 8 in the lower tower 6 in the rectification tower 6 by the reboiler 15, and a part of the liquid oxygen is vaporized and rises.

【0017】製品酸素ガス16は、この塔底の上部から
取り出され、空気熱交換器5を通って寒冷回収され、常
温、約3kg/cm2・Gの状態で保冷槽4から出て来る。
The product oxygen gas 16 is taken out from the upper part of the bottom of the tower, is cooled and recovered through the air heat exchanger 5, and comes out of the cold storage tank 4 at normal temperature and about 3 kg / cm 2 · G.

【0018】一方、精留塔上塔10の上部では窒素分が
濃縮して、上部より不純窒素ガス13、塔頂部より製品
窒素ガス12が取り出され、液窒液空過冷却器11、更
に空気熱交換器5を通って寒冷回収され、常温、約3kg
/cm2・Gの状態で保冷槽4から出て来る。
On the other hand, nitrogen is concentrated at the upper part of the upper column 10 of the rectification column, and the impure nitrogen gas 13 is taken out from the upper part and the product nitrogen gas 12 is taken out from the top part of the tower. Cold recovered through heat exchanger 5, normal temperature, about 3kg
Comes out of the cooling tank 4 in a state of / cm 2 · G.

【0019】製品酸素ガス16と製品窒素ガス12は次
セクションへ送られるが、不純窒素ガス13は全量ター
ビンコンプレッサー17のコンプレッサー側に供給さ
れ、約4kg/cm2・Gに昇圧されて再び保冷槽4内の空気熱
交換器5を通り、ここで約−90℃に冷却され、タービ
ンコンプレッサー17のタービン側に供給される。そし
て、ここで断熱膨脹により約−160℃、大気圧状態と
なって空気熱交換器5に供給され、常温にまで寒冷回収
が行なわれて保冷槽4から出て来る。保冷槽4から出た
後は、原料空気1の前処理用吸着塔3の再生や冷凍水の
製造に利用される。
The product oxygen gas 16 and the product nitrogen gas 12 are sent to the next section, but the total amount of the impure nitrogen gas 13 is supplied to the compressor side of the turbine compressor 17, where the pressure is increased to about 4 kg / cm 2 · G and the refrigerating tank is returned again. The air passes through an air heat exchanger 5 in 4, where it is cooled to about −90 ° C. and supplied to the turbine side of a turbine compressor 17. Then, the air is heated to about -160 ° C. and the atmospheric pressure by adiabatic expansion, supplied to the air heat exchanger 5, cooled down to room temperature, and comes out of the cold storage tank 4. After leaving the cold storage tank 4, it is used for regeneration of the pretreatment adsorption tower 3 for the raw air 1 and for production of frozen water.

【0020】尚、この寒冷源は、保冷槽4の熱損失や空
気熱交換器5の温端損失を補填するものである。
The cold source compensates for the heat loss of the cold storage tank 4 and the hot end loss of the air heat exchanger 5.

【0021】本プロセスは分離効率が悪いので、従来技
術ベースの酸素回収率を確保するためには、原料空気1
の一部を断熱膨脹させて寒冷源を得ることが出来ない。
そこで、加圧状態(約3kg/cm2・G)で得られる不純窒素ガ
ス13を利用して、これを昇圧した後、断熱膨脹させる
ことより、従来技術ベースの酸素回収率を確保しながら
寒冷源を得ることが出来るようにしたものである。又、
圧力が高くなった為、配管などの径をダウンさせること
が出来るなど経済性の面からも効果が期待出来るもので
ある。
Since the separation efficiency of the present process is poor, the feed air 1
Can not obtain a cold source by adiabatic expansion of a part of it.
Therefore, by using the impure nitrogen gas 13 obtained in a pressurized state (about 3 kg / cm 2 · G), the pressure is increased, and then adiabatic expansion is performed. The source was obtained. or,
Since the pressure has been increased, the diameter of piping and the like can be reduced.

【0022】[0022]

【発明の効果】本発明によれば、精留により得られる加
圧された不純窒素ガスを昇圧した後、断熱膨脹させるこ
とより寒冷源を得ることが出来るので、加圧下の状態で
も、従来技術ベースの酸素回収率を確保できる極低温下
の精留による空気分離装置を供給することが出来る。
According to the present invention, a pressurized impurity nitrogen gas obtained by rectification can be pressurized and then adiabatically expanded to obtain a cold source. It is possible to supply an air separation device by rectification at cryogenic temperature that can ensure the oxygen recovery rate of the base.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例の空気分離装置のフローシー
ト図である。
FIG. 1 is a flow sheet diagram of an air separation device according to one embodiment of the present invention.

【図2】従来技術による空気分離装置のフローシート図
である。
FIG. 2 is a flow sheet diagram of a conventional air separation device.

【符号の説明】[Explanation of symbols]

1…原料空気、2…圧縮機、3…吸着塔、4…保冷槽、
5…空気熱交換器、6…精留塔下塔、7…液体空気、
8,9…液体窒素、10…精留塔上塔、11…液窒液空
過冷却器、12…製品窒素ガス、13…不純窒素ガス、
14…液体酸素、15…リボイラー、16…製品酸素ガ
ス、17…タービンコンプレッサー。
1: Raw material air, 2: Compressor, 3: Adsorption tower, 4: Cold storage tank,
5 ... air heat exchanger, 6 ... rectification tower lower tower, 7 ... liquid air,
8, 9: liquid nitrogen, 10: upper tower of rectification column, 11: liquid nitrogen liquid subcooler, 12: product nitrogen gas, 13: impure nitrogen gas,
14 ... liquid oxygen, 15 ... reboiler, 16 ... product oxygen gas, 17 ... turbine compressor.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 津嶋 寛 山口県下松市大字東豊井794番地 日立 テクノエンジニアリング株式会社笠戸事 業所内 (56)参考文献 特開 昭61−252474(JP,A) 特開 昭63−220080(JP,A) (58)調査した分野(Int.Cl.7,DB名) F25J 3/04 ──────────────────────────────────────────────────続 き Continuation of front page (72) Inventor Hiroshi Tsushima 794, Higashi-Toyoi, Katsumatsu-shi, Yamaguchi Prefecture Inside the Hitachi Techno Engineering Co., Ltd. Kasado Office (56) References JP-A-61-252474 (JP, A) Kaisho 63-220080 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) F25J 3/04

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】原料空気を10kg/cm2・G 以上の操作圧
力に加圧する加圧手段と、上塔および下塔から構成さ
れ、加圧された原料空気から極低温下の精留により酸素
を分離精製する精留手段と、上記上塔下部に生ずる加圧
された不純窒素ガスを、保冷槽内の空気熱交換器で寒冷
回収後、保冷槽外で一旦昇圧して、再び該熱交換器で所
定の温度に冷却し、更に膨脹タービンで大気圧付近まで
断熱膨脹させて寒冷を発生させ、該熱交換器でその寒冷
を再び回収して、寒冷源を得る寒冷発生手段とからなる
ことを特徴とする空気分離装置。
1. A pressurizing means for pressurizing raw air to an operating pressure of 10 kg / cm 2 · G or more, and an upper tower and a lower tower. And a pressurized impurity nitrogen gas generated in the lower part of the upper tower is cooled and recovered by an air heat exchanger in a cold storage tank. Cooling means to cool to a predetermined temperature with a heat exchanger, further adiabatically expand to near atmospheric pressure with an expansion turbine to generate cold, recover the cold again with the heat exchanger, and obtain a cold source. An air separation device characterized by the above-mentioned.
【請求項2】請求項1記載の空気分離装置において、寒
冷回収後の不純窒素ガスを、膨脹タービンのブレーキ側
で昇圧することを特徴とする空気分離装置。
2. The air separation apparatus according to claim 1, wherein the pressure of the impure nitrogen gas after the cold recovery is increased on the brake side of the expansion turbine.
【請求項3】原料空気を10kg/cm2・G 以上の操作圧
力に加圧するステップと、上塔および下塔から構成され
る精留塔により、加圧された原料空気から極低温下の精
留により酸素を分離精製するステップと、上記上塔下部
に生ずる加圧された不純窒素ガスを、保冷槽内の空気熱
交換器で寒冷回収後、保冷槽外で一旦昇圧して、再び該
熱交換器で所定の温度に冷却し、更に膨脹タービンで大
気圧付近まで断熱膨脹させて寒冷を発生させ、該熱交換
器でその寒冷を再び回収して、寒冷源を得るステップと
からなることを特徴とする空気分離方法。
3. A step of pressurizing the raw material air to an operating pressure of 10 kg / cm 2 · G or more, and a rectifying tower comprising an upper tower and a lower tower, from which the pressurized raw material air is purified at extremely low temperature. a scan Te' flop for separation and purification of oxygen by distillation, the impure nitrogen gas pressurized occurring lower the upper column, after cold recovery in the air heat exchanger in cold tank, once pressurized by cold bath outside, again Cooling to a predetermined temperature with the heat exchanger, further adiabatically expanding to near atmospheric pressure with an expansion turbine to generate cold, and recovering the cold again with the heat exchanger to obtain a cold source. An air separation method, characterized in that:
JP06187692A 1992-03-18 1992-03-18 Pressurized air separation device Expired - Fee Related JP3237892B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06187692A JP3237892B2 (en) 1992-03-18 1992-03-18 Pressurized air separation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06187692A JP3237892B2 (en) 1992-03-18 1992-03-18 Pressurized air separation device

Publications (2)

Publication Number Publication Date
JPH05306885A JPH05306885A (en) 1993-11-19
JP3237892B2 true JP3237892B2 (en) 2001-12-10

Family

ID=13183776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06187692A Expired - Fee Related JP3237892B2 (en) 1992-03-18 1992-03-18 Pressurized air separation device

Country Status (1)

Country Link
JP (1) JP3237892B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010286216A (en) * 2009-06-15 2010-12-24 Taiyo Nippon Sanso Corp Air separation method and device
CN110608583A (en) * 2019-09-12 2019-12-24 北京首钢股份有限公司 Pressure control method and device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5584711B2 (en) * 2012-01-11 2014-09-03 神鋼エア・ウォーター・クライオプラント株式会社 Air separation device
JP6092804B2 (en) * 2014-03-24 2017-03-08 大陽日酸株式会社 Air liquefaction separation method and apparatus
CN113606866A (en) * 2021-08-06 2021-11-05 苏州市兴鲁空分设备科技发展有限公司 Device and method for preparing nitrogen by air separation

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010286216A (en) * 2009-06-15 2010-12-24 Taiyo Nippon Sanso Corp Air separation method and device
CN110608583A (en) * 2019-09-12 2019-12-24 北京首钢股份有限公司 Pressure control method and device
CN110608583B (en) * 2019-09-12 2021-07-23 北京首钢股份有限公司 Pressure control method and device

Also Published As

Publication number Publication date
JPH05306885A (en) 1993-11-19

Similar Documents

Publication Publication Date Title
CA1174587A (en) Nitrogen generator cycle
JP3782128B2 (en) Method and apparatus for separating gaseous mixtures
JP2989516B2 (en) Cryogenic rectification method and apparatus for producing pressurized nitrogen
GB2283562B (en) Method of and apparatus for manufacturing various kinds of gases to be supplied to semiconductor manufacturing factories
JPH0731003B2 (en) Method and apparatus for producing nitrogen under high pressure
JPH03170784A (en) Generation of coolness, cooling cycle and air rectification and its apparatus by use of the above system
EP0593703B1 (en) Ultra-high purity nitrogen and oxygen generator and process
US4964901A (en) Low-temperature separation of air using high and low pressure air feedstreams
JPH0412392B2 (en)
JPH0875349A (en) Air separation method for obtaining gaseous oxygen product at supply pressure
JP3204452B2 (en) Method for producing nitrogen products with oxygen products by multiple columns
US6508053B1 (en) Integrated power generation system
US6173585B1 (en) Process for the production of carbon monoxide
JP3237892B2 (en) Pressurized air separation device
JP3190016B2 (en) Low-temperature distillation method for feed air producing high-pressure nitrogen
JP2865281B2 (en) Low temperature distillation method of air raw material
JPH04227460A (en) Low-temperature nitrogen generator with bottom reboiler and nitrogen expander
US5404725A (en) Process and installation for producing nitrogen and oxygen
JPS54115691A (en) Liquefied carbon dioxide producing equipment
US3073093A (en) Process and apparatus for purifying gases
JP3181546B2 (en) Method and apparatus for producing nitrogen and argon from air
JP3203181B2 (en) Oxygen production method associated with nitrogen production equipment
JP2001133143A (en) Air separating facility
JP2755953B2 (en) Nitrogen gas production method
JP3474180B2 (en) Air separation apparatus for gas products and method of utilizing cold energy

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081005

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees