JPS62175170A - Medium for tissue culture of plant - Google Patents

Medium for tissue culture of plant

Info

Publication number
JPS62175170A
JPS62175170A JP61156166A JP15616686A JPS62175170A JP S62175170 A JPS62175170 A JP S62175170A JP 61156166 A JP61156166 A JP 61156166A JP 15616686 A JP15616686 A JP 15616686A JP S62175170 A JPS62175170 A JP S62175170A
Authority
JP
Japan
Prior art keywords
medium
plant
fiber
tissue culture
silica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61156166A
Other languages
Japanese (ja)
Other versions
JPH0373275B2 (en
Inventor
Toru Oishi
徹 大石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical Co Ltd filed Critical Nippon Steel Chemical Co Ltd
Publication of JPS62175170A publication Critical patent/JPS62175170A/en
Publication of JPH0373275B2 publication Critical patent/JPH0373275B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To promote the taking of a plant in acclimatization and the growth of a young plant, by using ceramic fiber as a medium material to be used in combination with a liquid medium. CONSTITUTION:Ceramic fiber essentially free from dissolution of a component inhibiting tissue culture of a plant is used as a medium material for plant tissue culture to be used in combination with a liquid medium. The ceramic fiber is preferably essentially inert to the liquid medium and preferably hydrophilic. It is preferably silica alumina fiber. Preferably, ceramic fibers are collected at a bulk density of 0.005-0.3g/cm<3> and used as the medium material.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、液体培地と組み合わせて使用する植物組織培
養用の培地材に係り、特にセラミックファイバー製の培
地材であって、また、幼植物用の馴化培地としても使用
し得る植物組織培養用培地材に関覆るものである。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to a medium material for plant tissue culture used in combination with a liquid medium, and in particular to a medium material made of ceramic fiber, The present invention relates to a medium material for plant tissue culture that can also be used as a conditioned medium for plants.

[従来の技術] 植物組織を培養するための培地材としては、従来より寒
天が最も一般的に使用されており、また、特殊な培地材
としてはガラス繊維や脱脂綿を液体培地と組み合わせて
使用することも知られている。
[Conventional technology] Agar has traditionally been the most commonly used medium for culturing plant tissues, and special mediums such as glass fiber and absorbent cotton have been used in combination with a liquid medium. It is also known that

しかしながら、寒天には植物組繊細胞の増殖、分化及び
/又は根の伸長を阻害する未同定の物質が含有されてお
り、特に高度に精製した寒天を使用しても、植物の種類
によっては著しく増殖、分化及び/又は発根が遅れる場
合がおるほか、培地全体がゲル化されているため、培養
組織で生産される老廃物質や有害物質の拡散速度か小さ
く、植物の種類によってはその毒作用によって全く培養
が困難になる場合もあった。
However, agar contains unidentified substances that inhibit the proliferation, differentiation, and/or root elongation of plant tissue cells. In addition to delaying proliferation, differentiation, and/or rooting, since the entire medium is gelled, the diffusion rate of waste substances and harmful substances produced in the cultured tissue is slow, and depending on the type of plant, their toxic effects may occur. In some cases, culturing became completely difficult.

しかも、この寒天等のグル化培地で組織培養されて得ら
れた幼植物は、培養組織から分化して生。
Moreover, the seedlings obtained by tissue culture in a gluing medium such as agar can be differentiated from the cultured tissue and live.

じる根が直根で板数も少なく、いわゆる水中根状であっ
て、直接馴化培地に移植して馴化を行なうと活着率か極
めて悪い。また、この幼植物を馴化する際にその根部に
培地が付着しているとカビ等の汚染により植物体の腐死
を招く。これを防止するために幼植物から培地をより完
全に除去することは植物体の損傷を大きくして、馴化後
の成育を。
The root is a tap root with a small number of plates, so it is a so-called underwater root, and if it is transplanted directly to a conditioned medium and acclimatized, the survival rate is extremely poor. Furthermore, when the seedlings are acclimatized, if a medium is attached to their roots, the plants will rot and die due to contamination with mold and the like. To prevent this, removing the medium from the seedlings more completely will cause more damage to the plants and hinder their growth after acclimatization.

遅くする結果を招く。このために寒天等を使用する従来
の培養方法では、馴化時に特別に殺菌・消毒を行なった
バーライ1〜、バーミキュライ1へ等の馴化培地を調製
し、使用する必要かあるという問題かあった。
This results in a delay. For this purpose, with conventional culture methods that use agar, etc., there is a problem in that it is necessary to prepare and use conditioned media such as Vermiculai 1 to Vermiculai 1 that have been specially sterilized and disinfected during acclimation. .

また、培地材としてガラス繊維を使用した場合には、培
地材として使用中にアルカリ分が溶出し、培地のp +
−を値や化学組成が変動するという問題かある。さら4
JIBJ脂綿を使用した場合には寒天培地よりも悪い成
績しか得られ4【い。
In addition, when glass fiber is used as a medium material, alkaline content is eluted during use as a medium material, and the p +
There is a problem in that the value and chemical composition of - fluctuate. Sara 4
When using JIBJ cotton, worse results were obtained than with agar medium.

[発明が解決しようとする問題点] 本発明の目的(Δ1、液体18地と組合けて使用される
?h川な植物組織培養用の培地+Aを提供することにあ
る。また、本発明の他の目的は、植物組織の増殖、分化
、発根を促進することかでき、また、ツ11化時の活着
率や馴化後の幼植物の生育が良好となるような培地材を
提供することにある1、さらに、本発明の他の目的は、
寒天等のゲル化培地では培養が回動な植物の組織培養を
可能にすることかでさる培地材を提供することにおる。
[Problems to be Solved by the Invention] The purpose of the present invention is to provide a medium + A for plant tissue culture that is used in combination with Δ1 and liquid 18 medium. Another purpose is to provide a culture medium that can promote the proliferation, differentiation, and rooting of plant tissues, and also improve the survival rate during tree formation and the growth of young plants after acclimatization. 1, and another object of the present invention is to
The purpose of the present invention is to provide a medium material that enables tissue culture of plants that requires rotation in gelling media such as agar.

ざらにまた、本発明の他の目的は、組織培養から馴化後
の定植まで連続して使用することが′Cき、馴化作業の
省力化、馴化時の活着率の向上、馴化後の生産速度の向
」−等を達成することができる培地材を提供することに
ある。
In addition, another object of the present invention is to enable continuous use from tissue culture to transplantation after acclimatization, to save labor in acclimatization work, to improve survival rate during acclimatization, and to improve production rate after acclimatization. The purpose of the present invention is to provide a culture medium that can achieve the following objectives.

U問題点を解決覆るための下段] すなわら、本発明は、液体培地と組合せて使用される′
しので、植物組織培養にβ[1害作用を有する成分を実
質的に溶出しないセラミックファイバー製植物組織培養
用培地月である。
Lower part for solving and overcoming problems] That is, the present invention is used in combination with a liquid culture medium.
This is a plant tissue culture medium made of ceramic fiber that does not substantially elute components that have a harmful effect on plant tissue culture.

本発明で使用り−るレラミックノアイバーは、その化学
組成的には組織培養の操作過程、例えば液体培地を含浸
させて行う滅菌処理等の際における溶出成分が植物組織
の増殖、分化、発根に田舎作用を示さないものであれば
よいか、この培地材と組合せて使用する液体培地と実質
的に反応することがなく、また、この液体培地のl)H
に影響を及さないことが重要である。特に、アルミニウ
ムイオンの溶出は、液体培地中の燐酸イオンと反応し植
物が利用し得ない水に不溶性のvA醋酸アルミニウム類
生成して燐酸分の不足を招くという問題を生じ、また、
アルカリイオンの溶出は、使用する液体培地のpH値を
変化させ、植物組織の増殖、分化、発根に障害を生じる
In terms of its chemical composition, the Reramic Noivar used in the present invention has components eluted during tissue culture operations, such as sterilization treatment performed by impregnating it with a liquid medium. It is acceptable as long as it does not have an effect on the roots, does not substantially react with the liquid medium used in combination with this medium material, and also has a
It is important not to affect the In particular, the elution of aluminum ions causes the problem of reacting with phosphate ions in the liquid medium to produce water-insoluble vA aluminum acetates that cannot be used by plants, resulting in a lack of phosphoric acid.
Elution of alkali ions changes the pH value of the liquid medium used, causing problems in the growth, differentiation, and rooting of plant tissues.

本発明で使用されるセラミックファイバーとしては、例
えば、シリカ・アルミナファイバー(S ! 02  
Au203 > 、シリカ・アルミナ・= 5− ジルロニアファイバー(S ! 02−Af2203−
7rO2)、シリカ・アルミナ・クロミアファイバー(
S i 02− AlI303  Cr 203)等の
シリカとアルミナを主成分とするシリカ・アルミナ系フ
ァイバーや、シリカを主成分とするシリカ系ファイバー
や、アルミナを主成分とするアルミナ系ファイバーや、
カーボンファイバー等を挙げることができ、ノアイバ−
からの溶出成分、液体培地との反応性、安定性、価格等
を考慮するとシリカ・アルミナ系ファイバーが特に好ま
しい。このシリカ・アルミナ系ファイバーは、炉の耐火
、断熱材及び無機繊維紙の原料等として工業的に大量生
産されているが、その製造過程においてlJ1王性能の
向上おるいは輸送性の改善等を目的として滑剤類が添加
されることが多いが、これら添加物の除去温度以−「に
加熱処理されたものが好ましい。
Examples of ceramic fibers used in the present invention include silica-alumina fibers (S!02
Au203>, silica alumina = 5- Zillonia fiber (S! 02-Af2203-
7rO2), silica/alumina/chromia fiber (
Silica/alumina fibers whose main components are silica and alumina such as Si 02-AlI303 Cr 203), silica fibers whose main component is silica, alumina fibers whose main component is alumina,
Examples include carbon fiber, etc.
Silica-alumina fibers are particularly preferable in consideration of components eluted from the fiber, reactivity with the liquid medium, stability, price, etc. This silica/alumina fiber is industrially mass-produced as a fireproofing material for furnaces, a heat insulating material, and a raw material for inorganic fiber paper, but in the manufacturing process, improvements in lJ1 performance and transportability are required. Although lubricants are often added for this purpose, it is preferable that the material be heat-treated to a temperature above the removal temperature of these additives.

本発明で使用するセラミックファイバーの嵩密度は、使
用目的によって異なるが、通常0.005〜0.3g/
cm3、好ましくは0.01〜0゜2’;J/cm3程
度がよい。この嵩密度が0.005− 6 = より小さいとハンドリングしずらくなり、また、0.3
’;l/cm3より大きいと恨の伸長が妨げられる、。
The bulk density of the ceramic fiber used in the present invention varies depending on the purpose of use, but is usually 0.005 to 0.3 g/
cm3, preferably about 0.01 to 0°2'; J/cm3. If this bulk density is smaller than 0.005-6 = it will be difficult to handle;
'; If it is larger than l/cm3, the growth of resentment will be hindered.

本発明のレラミックファイバー製培地材は、それ自体親
水性材料であるが、ざらに親水性を向−トさせるために
非イオン系界面活性剤ヤ)高級アルコール等の植物の生
育に支障のない物質を添加してもよい。
The Reramic fiber culture medium of the present invention is itself a hydrophilic material, but in order to make it more hydrophilic, nonionic surfactants and higher alcohols are used that do not hinder the growth of plants. Substances may also be added.

本発明のセラミックファイバー製培地vJ(以下、本培
地材と称する)の形状としては、未加工品(いわゆるバ
ルク)であってもよいが、一定方向にファイバーを配列
し、必要によりニードリングを施したプランケラ1へ状
の成形品または粒状綿であることが望ましい。また、培
養容器内での増殖、分化、発根のみに主眼を置く場合に
は、ペーパー状、シート状、ブランケット状、粒状等の
培養容器に合わせた形状で使用できる。そして、繊紺の
配列についでは、それが垂直方向に配列したもの、水平
方向に配列したもの、さらには、ランダムになっている
もの等特に制限はないが、液体培地の十−臂、分取操作
、根の伸長等を考慮覆れば垂直方向に配列したものが好
ましい。
The shape of the ceramic fiber culture medium vJ of the present invention (hereinafter referred to as the present culture medium material) may be an unprocessed product (so-called bulk), but the fibers may be arranged in a certain direction and needled if necessary. Preferably, the material is a molded plankera 1 or granulated cotton. In addition, when the main focus is on proliferation, differentiation, and rooting within the culture container, it can be used in a shape suitable for the culture container, such as paper, sheet, blanket, or granular shapes. There are no particular restrictions on the arrangement of the fibers, such as vertically, horizontally, or even randomly. In consideration of handling, root elongation, etc., it is preferable to arrange them vertically.

本培地4・Aは、ムラシゲ・スクーグ、ホワイト、ナド
ソン、リンスマイヤー・スクーグ、ヘンへ、j−l〜1
ノ、ニラチェ・ニラチェ、エリクソン、ガンボーグ・ミ
ラー・オジマ、板本・狩野等の液体培地及びそれらの改
変培地と組み合わせて使用する。これらの液体培地は、
本培地材に含浸させて使用することか望ましいが、点滴
、噴霧等のプ)法で供給することもできる。
This medium 4・A was produced by Murashige-Skoog, White, Knudson, Linsmeyer-Skoog, Henhe, j-l~1
It is used in combination with liquid media such as No, Nirache/Nirache, Erickson, Gunborg/Miller/Ojima, Itamoto/Kano, and their modified media. These liquid media are
It is preferable to use it by impregnating it into the medium, but it can also be supplied by methods such as dripping or spraying.

本培地側を使用して植物の組織培養を行う方法としては
、例えば、培養容器中に適当な量の本培地材を置き、こ
れに必要な最の液体培地を含浸させた後オー1〜クレー
プ等により滅菌操作を行い、自然冷却後、予め消毒した
植物組織の切片を培養容器内の本培地材上に置床する方
法等により行うことかできる。また、この培益時の管理
方法とし−Cは、寒天を使用した場合と同様であるが、
本培地4オを使用した場合には、無菌条イ41下での操
作において、培養組織の移植操作無しに液体培地の追加
、植物ホルモン剤の添加、液体培地の洗浄及び交換を行
うことができる。
As a method for culturing plant tissue using the main medium side, for example, place an appropriate amount of main medium material in a culture container, impregnate it with the most necessary liquid medium, and then This can be carried out by performing a sterilization operation using, for example, natural cooling, and then placing a pre-sterilized section of the plant tissue on the main culture medium in a culture container. In addition, the management method during cultivation -C is the same as when using agar, but
When using this medium 4, it is possible to add a liquid medium, add a plant hormone, and wash and replace the liquid medium without transplanting the cultured tissue when operating under the sterile tray 41. .

また、本培地材は、必要に応じて市販の液体肥料と組合
ばて幼植物を馴化させるための馴化培地として使用する
ことができる。この目的で液体肥料と組合せて使用する
場合には、例えば、必要な濃度に調整した液体肥料を点
滴、噴霧等の方法あるいは潅水を兼ねた方法等により本
培地材に供給覆る。そして、このようにして調製された
馴化培地を使用して幼植物を馴化するには、例えば、組
織培養によって得られた幼植物からその組織培養に使用
した培地や発根培地を取除き、水洗した後、栽培容器内
に納めた適当な量の馴化培地で幼植物の根を包み込むよ
うにして植え込み、適度に遮光、保湿してハウス内で1
週間から1ケ月間程度馴化を行う。なお、この馴化時の
管理方法については、バーライ1〜やバージキュライ1
〜等を使用する従来の場合と同様であるが、本培地材は
保水性に富むため、通常は飽水等の必要がなく、また、
馴化を終えた幼植物については培地を取除くことなく、
通常の土耕又は溶液栽培等に使用り−ることかできる。
Moreover, this culture medium can be used as a conditioned medium for acclimatizing young plants in combination with a commercially available liquid fertilizer if necessary. When used in combination with a liquid fertilizer for this purpose, for example, the liquid fertilizer adjusted to the required concentration is supplied to the main medium material by dripping, spraying, or a method that also serves as irrigation. To acclimatize seedlings using the conditioned medium prepared in this way, for example, the medium used for tissue culture and rooting medium are removed from the seedlings obtained by tissue culture, and the seedlings are washed with water. After that, the seedlings are planted by wrapping the roots of the seedlings in an appropriate amount of conditioned medium placed in the cultivation container, and then placed in the greenhouse after being properly shaded and moisturized.
Acclimatize for about a week to a month. Regarding the management method during acclimatization,
This is the same as the conventional case of using ~, etc., but since this culture medium has high water retention properties, there is usually no need to saturate it with water, and
For young plants that have completed acclimatization, without removing the medium,
It can be used for normal soil cultivation or solution cultivation.

このように本培地材を使用して馴化を行うと、幼植物の
根に対して常に適度の保水性と通気性とを与えることか
でき、また、空隙率が非常に高いために)「水接でも培
地中になお多くの気相部分が残って根の酸欠を防止でき
るものと考えられる。
By using this culture medium for acclimation, it is possible to always provide adequate water retention and aeration to the roots of young plants, and because it has a very high porosity, It is thought that even if the roots are exposed to the soil, a large amount of gas phase still remains in the medium, which prevents oxygen deficiency in the roots.

以上のように、本培地材が組織培養の増殖、分化、発根
用培地に使用する培地材としてだ【プてなく、この組織
培養で培養した幼植物のN11化に使用覆る馴化培地の
培地材としても使用できるので、植物の増殖、分化、発
根からこれによって得られた幼植物の馴化までをその各
過程で使用した液体培地を水洗除去して次の液体培地を
添加するたけて移植操作無しに一員して行うことかでき
る。そして、このように植物の増殖、分化、発根から馴
化までを移植操作無しに一貫して行うことにより、幼植
物の損傷を著しく軽減できるほか、組織培養法による種
苗生産時の歩留を向上させることができ、また、馴化後
の植物の成育速度を向上させることができる。
As mentioned above, this medium material can be used as a medium for growth, differentiation, and rooting in tissue culture. Since it can also be used as a material, the liquid medium used in each process from plant propagation, differentiation, and rooting to the acclimatization of the resulting seedlings is washed with water, removed, and the next liquid medium is added before transplanting. You can do it as a member without any operations. In this way, by consistently performing the steps from plant propagation, differentiation, rooting to acclimatization without transplanting, it is possible to significantly reduce damage to seedlings, and improve the yield when producing seedlings using the tissue culture method. It is also possible to improve the growth rate of plants after acclimatization.

さらに、馴化を終えた植物体は、本培地材を取り除くこ
となく、通常の土耕、水耕、砂#1、礫が1、ロックウ
ール栽培等に使用することかでき、特に、本培地材と同
様に無機繊維を使用覆るロックウール栽培に適している
Furthermore, the plants that have been acclimatized can be used for normal soil cultivation, hydroponics, sand #1, gravel 1, rock wool cultivation, etc. without removing this medium material. Similar to the use of inorganic fibers, it is suitable for covering rock wool cultivation.

[作用1 本発明では、培地材としてセラミックファイバーを使用
するので、セラミックファイバーの有する化学的安定性
、物理的性状により全体として、組み合わV−で使用す
る液体培地の性能を充分に発揮さけることができる。さ
らに、本培地材は空隙率が非常に高いため、液体培地と
組み合わけた後でもなお多くの気相部分が残り、植物組
織あるいは細胞の増殖、分化、発根を促進し、また、培
養組織のN11化時の成長を促進すると1什定される。
[Effect 1] In the present invention, since ceramic fibers are used as the medium material, the chemical stability and physical properties of the ceramic fibers make it possible to fully demonstrate the performance of the liquid medium used in combination V- as a whole. can. Furthermore, since this medium material has a very high porosity, a large amount of gas phase remains even after it is combined with a liquid medium, which promotes the proliferation, differentiation, and rooting of plant tissues or cells, and also promotes the growth of cultured tissues. If it promotes growth at the time of N11 conversion, it will be 1.

また、本培地材中では、組み合わけた液体培地が毛管水
、イ」着水としてセラミックファイバー繊維間に存在す
るため、培養組織による液体培地の吸収、N11化時に
おける液体培地の除去が容易にできるものと推定される
In addition, in this culture medium material, the combined liquid medium exists between the ceramic fiber fibers as capillary water, water that lands on the ceramic fibers, making it easy to absorb the liquid medium by the cultured tissue and remove the liquid medium during N11 conversion. It is estimated that

[実施例] 以下、実施例に基いて、本発明を具体的に説明する1゜ 実施例1 セラミックファイバーとしく、試料1gに0.5N−H
Cf2150m1を添加し、30’Cで1時間反応さけ
た時のへp出最が2290D山であり、8倍量のp l
−I 7試験水に室温上密閉状態で6[1間浸漬した後
のpl−1が6.5て゛あるシリカ・アルミツノアイバ
ー(Sin2:約53千畢%、へp203:約47重早
%)を使用し、このファイバーを一定方向に配列した層
状綿に有機系滑剤を添加後、ニードリングを施し、得ら
れた成形品をさらに約700°Cで約20分間加熱処理
して添加物を分解除去し、実施例1のブランケット状の
シリカ・アルミナファイバー製培地材(嵩密度:0.1
39/cm3)を製造した。
[Examples] Hereinafter, the present invention will be specifically explained based on Examples.
When Cf2150ml was added and the reaction was allowed to proceed at 30'C for 1 hour, the peak of the helium peak was 2290D, which was 8 times the amount of pl.
-I 7 Silica-aluminum horn iver with PL-1 of 6.5 after being immersed in sealed water at room temperature for 1 hour (Sin2: approx. 53,000%, Hep203: approx. 47%) ), and after adding an organic lubricant to layered cotton in which the fibers are arranged in a certain direction, needling is performed, and the resulting molded product is further heat-treated at approximately 700°C for approximately 20 minutes to remove the additives. After decomposition and removal, the blanket-like silica/alumina fiber medium material of Example 1 (bulk density: 0.1
39/cm3) was produced.

このシリカ・アルミノ−7ァイバー製培地材から一辺2
cmの■1方体を切出し、その1.○Uを2゜5 Cm
φX12cmの管ビンの底部に繊組一方向が垂直となる
ように設置し、この管ビン中に液体培地としてムラシゲ
・スクーグ培地(但し、ナフタレン酢酸0.1mg/1
2、ベンジルアゾ゛ニン0.1my/p、及び1ノツカ
ーロース309/uを含む>8dを分注し、アルミ舘で
キャップをして120’Cで15分間オー1〜クレープ
滅菌を行った後、自然冷却した。
2 per side from this silica-alumino-7 fiber medium material
Cut out a square cube of cm and its 1. ○U2゜5cm
Place the fibers in one direction vertically at the bottom of a φX12 cm tube bottle, and add Murashige-Skoog medium (naphthalene acetic acid 0.1 mg/1) as a liquid medium in the tube bottle.
2. Dispense >8d containing 0.1 my/p of benzyl azonin and 309/u of 1-ton carose, cap with an aluminum container, sterilize with O-1 to crepe at 120'C for 15 minutes, and then Cooled.

次に、クリーンベンチ内で上記管ビン内に、予めアンチ
ホルミンを用いて)重重したシペラス・プルケラ(品種
名:ナナス)の茎基部を約2mm角に切断した切片を置
床し、温度25°C1明期12時間、昭11J112時
間及び照度3.○OOルックスの培養条件で3週間培養
し、この時の生存率、シュー1〜長、シュートの総成艮
最、シュー1〜長及び発根率を調べた。結果を第1表に
示す。
Next, in the above-mentioned tube bottle in a clean bench, cut sections of the stem base of Cyperus pulchella (cultivar name: Nanasu), which had been weighed down in advance (using antiformin) and cut into approximately 2 mm squares, were placed at a temperature of 25°C. 12 hours of light period, 112 hours of light period and 3. The seeds were cultured for 3 weeks under the culture conditions of ○OO Lux, and the survival rate, shoe length from 1 to 1, maximum total shoot growth, shoot from 1 to length, and rooting rate were examined. The results are shown in Table 1.

実施例2 実施例1と同様の方法で測定した試料1gの希塩酸に対
するlの溶出量が77.7ppmであり、8倍量のD 
H7試験水に対する試験後のp l−1が6゜5で゛あ
るシリカ・アルミナ・ジルコニアファイバ−(Si02
:約50重量%、△J2203:約35重量%、Zr’
02 :約15重量%)を使用し、実施例1と同様の手
順でプランケラ1〜状のシワ力・アルミナ・ジルコニア
ノ地イバー製培地祠(嵩密度:0.13 g/cm3)
を製造した。
Example 2 The amount of l eluted with respect to 1 g of sample diluted hydrochloric acid measured in the same manner as in Example 1 was 77.7 ppm, and 8 times the amount of D
Silica-alumina-zirconia fiber (Si02
: Approximately 50% by weight, △J2203: Approximately 35% by weight, Zr'
02: about 15% by weight) and the same procedure as in Example 1 was used to prepare a wrinkle strength, alumina, and zirconia substrate made of ivar medium (bulk density: 0.13 g/cm3).
was manufactured.

このシリカ・アルミナ・ジル」ニアファイバー製培地月
を使用し、実施例1と同じ条件で同じ植物組織を培養し
、実施例1と同じ項目について調べた。結果を第1表に
示す。
Using this silica-alumina-silica near fiber medium, the same plant tissues were cultured under the same conditions as in Example 1, and the same items as in Example 1 were investigated. The results are shown in Table 1.

実施例3 実施例1と同様の方法で測定した8倍量のpH7試験水
に対する試験後のpHが6.5であるシリカ・アルミナ
・クロミアファイバー(S i 02  :約55重量
%、へρ203:約42重量%、Cr2O3:約3手量
%)を使用し、実施例1と同様の手順でブランケット状
のシリカ・アルミJ・クロミアファイバー製培地材(嵩
密度:0.13g/cm3>を製造した。
Example 3 Silica-alumina-chromia fiber (S i 02: about 55% by weight, ρ203: A blanket-shaped silica/aluminum J/chromia fiber culture medium (bulk density: 0.13 g/cm3) was produced in the same manner as in Example 1 using 42% by weight, Cr2O3: about 3% by weight). did.

このシリカ・アルミナ・クロミアファイバー製培地材を
使用し、実施例1と同じ条件で同じ植物組織を培養し、
実施例1と同じ項目について調べた。結果を第1表に示
づ。
Using this silica-alumina-chromia fiber medium material, the same plant tissues were cultured under the same conditions as in Example 1,
The same items as in Example 1 were investigated. The results are shown in Table 1.

比較例1 十−記名実施例1〜3−C使用したと同じムラシゲ・ス
クーグ培地に市販のJ8養用精製寒人8g/f2を添加
して寒天培地を調製し、この寒天培地8mρを上記各実
施例で使用したと同じ管ビン(培池月として管ビン1本
当り0.06=’1gの寒天を使用〉中に分注し、実施
例1と同じ条件で同じ植物組織を培養し、実施例1と同
じ項目について調べた。
Comparative Example 1 An agar medium was prepared by adding 8 g/f2 of commercially available J8 purified agar to the same Murashige-Skoog medium as used in Examples 1 to 3-C, and 8 mρ of this agar medium was added to each of the above. The same plant tissue was cultured under the same conditions as Example 1 by dispensing it into the same tube bottle as used in the example (using 0.06 = '1 g of agar per tube bottle as a culture pond), The same items as in Example 1 were investigated.

結果を第1表に示す。The results are shown in Table 1.

比較例2 培地祠として市販の柄物栽培用ロックウール製培地’r
jJ (S i 02  : I’J 46 mm、%
、/1203:約13重量%、CaO:約18重量%、
MgO:約12重量%、Fe2O3:約8重量%)の粒
状綿(親水性タイプ)を使用し、上記実施例1と同じ条
例で同じ植物組織を培養し、実施例1と同じ項目につい
て調べた。結果を第1表に示す。
Comparative Example 2 Rock wool culture medium for patterned cultivation commercially available as a culture medium 'r
jJ (S i 02: I'J 46 mm, %
, /1203: about 13% by weight, CaO: about 18% by weight,
Using granular cotton (hydrophilic type) containing MgO: about 12% by weight, Fe2O3: about 8% by weight, the same plant tissues were cultured under the same regulations as in Example 1, and the same items as in Example 1 were investigated. . The results are shown in Table 1.

比較例3 培地何として市販のガラス繊維(SiO:l/1U59
重早%、Aρ2o3:約4小吊%、Cab:約16if
f%、MgO:約5不最%、B2O2:約3小最%、N
a2o:約11重量%)のバルクを使用し、上記実施例
1と同じ条件で同じ植物組織を培養し、実施例1と同じ
項目について調べた。
Comparative Example 3 Commercially available glass fiber (SiO:l/1U59
Heaviness%, Aρ2o3: approx. 4%, Cab: approx. 16if
f%, MgO: about 5%, B2O2: about 3%, N
a2o: about 11% by weight), the same plant tissues were cultured under the same conditions as in Example 1, and the same items as in Example 1 were investigated.

結果を第1表に示す。The results are shown in Table 1.

なa−3、第1表の結果を示す各値は、比較例1で測定
されlこ測定値の平均値を100として表した(但し、
発根率のみ(j、実測値で示した。)。
a-3, each value showing the results in Table 1 was measured in Comparative Example 1, and the average value of the measured values was expressed as 100 (however,
Rooting rate only (j, shown as actual measured value).

この第1表の結果から明らかなように、3種類のセラミ
ックファイバー製」8地材を使用した各実施例1〜3の
結果は、各比較例1〜3の場合に比べて、その生存率、
シュー1〜の成長、発根率が著しく促進されている。
As is clear from the results in Table 1, the results of Examples 1 to 3 using three types of ceramic fiber 8 substrates have a higher survival rate than those of Comparative Examples 1 to 3. ,
The growth and rooting rate of Shoe 1~ are significantly promoted.

第1表 実施例4 実施例1と同じシリカ・アルミナファイバーを使用し、
実施例1と同様に加工して嵩密度0. 1g/cm3の
プランケラ1〜状のシリカ・アルミナファイバー製培地
材を製造した。
Table 1 Example 4 Using the same silica/alumina fiber as Example 1,
Processed in the same manner as in Example 1 to obtain a bulk density of 0. A silica/alumina fiber medium material having a weight of 1 g/cm3 and having the shape of Planchera 1 was produced.

このシリカ・アルミナファイバー製培地材から一辺2c
mの立方体を切出し、その0.1を2゜−17= 5 cmφX12cmの管ビンの底部に繊維り向が垂直
となるように設置し、実施例1と同じムラシゲ・スクー
グ培地8威を使用し、実施例1と同様にしてシペラス・
1ルケラ(品種名:ナナス)の茎基部を約2mm角に切
断した切片を置床し、実施例1と同じ条件で3洞門培養
を行い、その時の生存率、シュー1へ数、シュ−1〜長
及σ発根率を調べた。結果を第2表に示ゴ。なお、この
実施例4の結果の各値についても、上記実施例1〜3の
場合と同様に、対照として比較例1に従って培養を行い
、その結果の測定値の平均値を100としで表した。
2cm per side from this silica/alumina fiber medium material
A 0.1 m cube was cut out, and the 0.1 cube was placed at the bottom of a 2°-17=5 cmφ x 12 cm tube bottle with the fiber direction perpendicular, and the same Murashige-Skoog medium as in Example 1 was used. , Cyperus in the same manner as in Example 1.
A section of the stem base of 1 Ruchera (cultivar name: Nanas) cut into approximately 2 mm squares was placed on the bed, and cultured in 3 cavities under the same conditions as in Example 1. The long and σ rooting rates were investigated. The results are shown in Table 2. In addition, each value of the result of this Example 4 was also expressed as 100 by culturing as a control according to Comparative Example 1, as in the case of Examples 1 to 3 above. .

第2表 第2表の結果から明らかなように、シリカ・アルミナフ
ァイバー製培地材の使用によりシュートの成長が著しく
促進されることか判明した。
As is clear from the results shown in Table 2, it was found that the use of the silica/alumina fiber culture medium significantly promoted shoot growth.

次に、この実施例4で1qられだシペラスの幼植物を、
シリカ・アルミナファイバー製培地材ごと管ビン中より
取り出してこれを流水中で水洗し、この幼植物を培地材
ごとプラスチック容器中に設置し、75%の遮光下のハ
ウス内で10日間馴化処理を実施し、馴化時の活着率を
調べた。
Next, in this Example 4, 1 q of seedlings of Cyperus were grown,
The silica/alumina fiber culture medium was taken out from the tube bottle and washed under running water.The seedlings were placed together with the culture medium in a plastic container and acclimatized for 10 days in a greenhouse with 75% light shielding. The survival rate during acclimatization was investigated.

また、実施例4で使用したものと同型のプラスチック製
の容器中にピー 1〜モス2重量部、バーライ1へ1重
量部及びバーミキュライト0.5重量部を混合した馴化
用培寸を2 cm厚に入れ、これに実施例4の対照で1
昇られたシペラスの幼植物(管ビン中より取出して根に
付着している寒天を流水中で除去し水洗して得られたも
の)を移植し、同じ条件下で馴化処理を実施し、馴化時
の活着率を調べlこ。
In addition, in a plastic container of the same type as that used in Example 4, a medium for acclimatization was prepared by mixing 1 to 2 parts by weight of Pea, 1 part by weight of Barley 1, and 0.5 part by weight of vermiculite to a thickness of 2 cm. 1 in the control of Example 4.
The raised Cyperus seedlings (obtained by removing the agar attached to the roots from the tube bottle and washing with water) were transplanted and acclimatized under the same conditions. Check the survival rate at that time.

上記対照の場合における活着率を100とした時実施例
4の場合の活着率は143であり、シリカ・アルミナフ
ァイバー製培地材を使用することにより馴化時の活着率
が向上することが判明した。
When the survival rate in the case of the above control was set as 100, the survival rate in the case of Example 4 was 143, and it was found that the survival rate during acclimatization was improved by using the silica/alumina fiber culture medium.

実施例5 実施例4と同じシリカ・アルミナファイバー製培地材を
使用し、実施例4と同様にしてネフロレピス・マーシャ
リ−のランナーの先端部を5#に切断した切片を置床し
、実施例1と同じ条件で8週間J?l養を行い、その時
の生存率、シーt−1〜数、シュー1〜長及び発根率を
調べL O結果を第3表に示V。
Example 5 Using the same silica/alumina fiber culture medium as in Example 4, a section of the runner tip of Nephrolepis marshallii cut into 5# in the same manner as in Example 4 was placed on the bed. J for 8 weeks under the same conditions? The survival rate, number of sheets, length of shoes, and rooting rate were investigated, and the results are shown in Table 3.

実施例6 セラミックファイバーとして実施例2と同じシリカ・ア
ルミノ・ジル」ニアファイバーを使用して嵩密度0.1
’;j/cm3のブランク−ツ1〜状のシリカ・アルミ
ノ・シルコニ)7フフ・イバーアノ地材を製)青し、こ
のシワ力・アルミノ・ジルニ1ニアファイバー製培地材
を使用した以外は上記実施例5と同様にして同じ植物組
織を培養し、同様の項目について調l\た。結果を第3
表に示す。
Example 6 The same silica-alumino-silica fiber as in Example 2 was used as the ceramic fiber, and the bulk density was 0.1.
';J/cm3 blanks 1~ made of silica, alumino, silconi) 7 fufu, Ibarano base material) blued, and the above except that this wrinkle strength, alumino, ziruni 1 nia fiber medium material was used. The same plant tissues were cultured in the same manner as in Example 5, and the same items were examined. 3rd result
Shown in the table.

上記実施例5及び6の結果の各個についても、上記実施
例1〜3の場合と同様に、対照として比較例1に従って
培養を行い、その$、!1果の測定値の平均伯を”10
0として表した。
For each of the results of Examples 5 and 6 above, cultivation was performed as a control according to Comparative Example 1 in the same manner as in Examples 1 to 3 above, and the $,! The average number of measurements for one fruit is "10"
Expressed as 0.

この第3表の結果から明らかなように、2種のセラミッ
クファイバー製培地材を使用した実施例5及び6の場合
は、対照の場合に比べてそのシュ−1−の成長、発根が
著しく促進されることが判明した。
As is clear from the results in Table 3, in the cases of Examples 5 and 6 in which two types of ceramic fiber culture medium were used, the growth and rooting of the Shoe-1- were significantly greater than in the control case. It was found that it was promoted.

第3表 実施例7 実施例4と同じ嵩密度0.1’j/cm3のプランケラ
1〜状のシリカ・アルミナファイバー製培地材を使用し
、このシリカ・アルミナファイバー製培地材から、−辺
1.8cmの立方体を切出して管ビン1本当り約0.6
yを使用し、また、実施例1と同じムラシゲ・スクーグ
培地6彪を使用し、実施例1と同様にしてセントポーリ
ア・イオナータ(交配種A)の葉を約2mm角に切断し
た切片を置床し、実施例1と同様な条件で4’0日間培
養を行い、その時の生存率、カルス径、シュート数、シ
ュー1〜長及び発根率を調べた。上記比較例1と同様な
寒天18地による培養を行った対照の測定値の平均値を
100として表した結果は、生存率が14、 /lで”
、カルス径が269で′、シュー1〜数が260で、シ
ュート長か388で、発根率が135であった。
Table 3 Example 7 Using a silica/alumina fiber culture medium having the same bulk density of 0.1'j/cm3 as in Example 4 and having the shape of Planchera 1, -side 1 .8cm cubes are cut out and each tube bottle is approximately 0.6cm.
In addition, using the same Murashige-Skoog medium 6 Biao as in Example 1, cut the leaves of Centpaulia ionata (hybrid A) into approximately 2 mm squares in the same manner as in Example 1. Culture was carried out for 4'0 days under the same conditions as in Example 1, and the survival rate, callus diameter, number of shoots, shoot length, and rooting rate were examined. The average value of the measured values of the control cultured on agar 18 medium as in Comparative Example 1 above was expressed as 100, and the survival rate was 14./l.
The callus diameter was 269', the number of shoots was 1 to 260, the shoot length was 388, and the rooting rate was 135.

この結果から明らかなよう(こ、この実施例7のシリカ
・アルミブアノ地イバー製培地祠の使用により、カルス
の成長、シュートの分化、成長が著しく促進されること
が判明した。
As is clear from the results, it was found that the use of the silica/aluminium-based Ivar culture medium of Example 7 significantly promoted callus growth, shoot differentiation, and growth.

実施例8 実施例1と同じシリカ・アルミナファイバーを使用し、
実施例1と同様に加工して嵩密度0.07’j/cm3
のブランケット状のシリカ・アルミノファイバー製培地
材を製造した。
Example 8 Using the same silica/alumina fiber as in Example 1,
Processed in the same manner as in Example 1 to give a bulk density of 0.07'j/cm3
A blanket-shaped silica/alumino fiber culture medium was manufactured.

このシリカ・アルミナファイバー製培地材から一辺2c
mの立方体を切出し、その0.56!IFを2゜5 c
mφ×12cmの管ビンの底部に繊維方向が垂直となる
ように設置し、実施例1と同様にしてセントポーリア・
イオナータ(交配種B)の葉を約2mm角に切断した切
片を置床し、実施例1と同様な条イ1で13週間培養を
行い、その時の生存率、カルス形成率、シュー1〜数、
シコート長及び発根率を調べた。上記比較例1と同様な
寒天培地による培養を行った対照の測定値の平均値を1
00として表した結果は、生存率が100で、カルス形
成率か100で、シュー1〜数か105で、シコーート
長が276で、発根率が100であった。この結果から
明らかなように、この実施例8のシリカ・アルミナファ
イバー製培地材の使用により、シコーートの成長が著し
く促進されることが判明した。
2cm per side from this silica/alumina fiber medium material
Cut out a cube of m and its 0.56! IF 2゜5c
It was placed at the bottom of a tube bottle of mφ x 12 cm so that the fiber direction was perpendicular, and Centpaulia was grown in the same manner as in Example 1.
Ionata (hybrid B) leaves cut into approximately 2 mm squares were placed on a bed, and cultured for 13 weeks in the same row 1 as in Example 1. At that time, survival rate, callus formation rate, number of shoes,
Thickote length and rooting rate were examined. The average value of the measured values of the control cultured on the same agar medium as in Comparative Example 1 above was calculated as 1
The results expressed as 00 were: survival rate was 100, callus formation rate was 100, shoe number 1 to number was 105, shoot length was 276, and rooting rate was 100. As is clear from the results, it was found that the use of the silica-alumina fiber culture medium of Example 8 significantly promoted the growth of seacoat.

実施例9 実施例1で製造したプランケット状のシリカ・アルミノ
−7ァイバー製培地材から一辺2cmの立方体を切出し
、ぞの中央部に切込みを入れて馴化培地を調製した。
Example 9 A cube of 2 cm on each side was cut out from the plumket-shaped silica-alumino-7 fiber culture medium produced in Example 1, and a notch was made in the center of the cube to prepare a conditioned medium.

培養で得られた幼植物のシベラス・プルケラ(品種名二
ナノ−ス)の組織培養?111(ムラシゲ・スクーグ寒
天培地使用、20日間培養〉を管ビン中より取出し、根
に付層している寒天を流水中で取除き水洗し、ぞの根を
上記馴化培地の切込みの中に挟み込むようにしてこの幼
植物を植え付けた。
Tissue culture of seedlings of Scibellas pulchella (cultivar name: Ninanose) obtained through culture? 111 (Using Murashige-Skoog agar medium, cultured for 20 days) is taken out of the tube bottle, the agar layered on the roots is removed under running water, washed with water, and the roots are inserted into the notches of the conditioned medium. This young plant was then planted.

このようにして馴化培地に植え付けた幼植物をそのまま
プラスブック製の栽培容器内に置き、75%の遮光下の
ハウス内で10口間馴化処理を実施し、この時の活着率
を検討した。なお、潅水は1日1回行い、培地が完全に
水で飽和1るまで行い、余分の水については栽培容器内
から排出させlこ 。
The seedlings thus planted in the conditioned medium were placed in a Plus Book cultivation container as they were, and acclimatized for 10 times in a greenhouse with 75% light shielding, and the survival rate at this time was examined. Irrigation should be performed once a day until the medium is completely saturated with water, and excess water should be drained from the cultivation container.

この実施例9の対照として、馴化培地としてピー1ヘモ
ス2重量部、バーライ1〜1重量部及びバージ1191
1〜0.5重量部を混合して得られた培土を使用し、こ
の培土を上記実施例4で使用したと同じプラスチック製
の栽培容器内に2cmの厚さに入れ、上記実施例4で使
用したと同じ幼植物をこの栽培容器内の馴化培地に植え
付け、実施例9と同じ条M下で馴化処理を行った。この
対照の活着率を100とした時の上記実施例4の活着率
は143て゛あった。
As a control for this Example 9, the conditioned medium was 2 parts by weight of Pea 1 Hemos, 1 to 1 part by weight of Burai, and Barge 1191.
Using a potting soil obtained by mixing 1 to 0.5 parts by weight, this potting soil was placed in the same plastic cultivation container as used in Example 4 above to a thickness of 2 cm. The same seedlings as used were planted on the conditioned medium in this cultivation container, and acclimatized under the same row M as in Example 9. When the survival rate of this control was taken as 100, the survival rate of Example 4 was 143.

実施例10 幼植物として70−カシア・マクロリーザの管ビン内発
芽苗(ムラシゲ・スクーグ寒天培地使用、60日間培養
)を使用し、馴化培地の大きさを一辺3cmの立方体と
した以外は、実施例9と同様にして植え付け、同様な条
件下で馴化処理を行い、この時の活着率を検討した。
Example 10 The same procedure was carried out except that seedlings of 70-Cassia macrorhiza germinated in tube bottles (Murashige-Skoog agar medium, cultured for 60 days) were used as seedlings, and the size of the conditioned medium was a cube of 3 cm on each side. Planting was carried out in the same manner as in Example 9, acclimation treatment was carried out under the same conditions, and the survival rate at this time was examined.

この実施例10の対照としでは、培土の厚さを3 cm
とした以外は上記実施例9の場合と同様の馴化培地を使
用し、この実施例10と同様の条件下で馴化処理を行っ
た。この対照の活着率を100とじた時の−1−記実施
例10の活着率は125であつ Iこ。
As a control for this Example 10, the thickness of the soil was 3 cm.
Except for the above, the same conditioned medium as in Example 9 was used, and the conditioning treatment was carried out under the same conditions as in Example 10. When the survival rate of this control is subtracted by 100, the survival rate of Example 10 described in -1- is 125.

次に、この実施例10及びその対照で馴化処理した植物
を定植し、馴化後の生育量を検討した。
Next, the plants acclimatized in Example 10 and its control were planted, and the amount of growth after acclimatization was examined.

すなわち、縦7 cm、横7cm及び高さ6cmの植物
栽培用ロックウール・キューブの中央部に3cmφX深
さ3 cmの穴を形成し、この穴の中に実施例10で馴
化処理した植物をその馴化培地材ごと押込んで定植し、
このキ]−−ブを45%遮光下のハウス内に置き、1日
1回液体肥料としてハイポネック−25= ス原液(村上物産(l木製: 5 (NL 10 (P
)−5(K)、微硲要素入り)の2,000倍溶液を)
#水代りに与え、30日間栽培した。
That is, a hole of 3 cm in diameter and 3 cm in depth was formed in the center of a rock wool cube for plant cultivation measuring 7 cm in length, 7 cm in width, and 6 cm in height, and the plants acclimatized in Example 10 were placed in this hole. Push the conditioned medium together and plant it.
This plant was placed in a greenhouse with 45% light shielding, and used as a liquid fertilizer once a day with Hyponec-25 = Su stock solution (Murakami & Co., Ltd. (l Wooden: 5 (NL 10 (P)).
)-5(K), a 2,000-fold solution of
# It was given as a substitute for water and cultivated for 30 days.

対照として、この実施例10の対照で馴化処理した植物
を使用し、ぞの根の回りの培土をできるだけ落さないよ
うにして栽培容器から取出し、この実施例10と同様に
、植物栽培用ロックウール・キューブの中央部の穴の中
に馴化処理に使用した培土を使用して定植し、ハウス内
で栽培した。
As a control, we used a plant that had been acclimatized in accordance with the control of this Example 10, took it out of the cultivation container without dropping the soil around the roots as much as possible, and placed it in a lock for plant cultivation in the same manner as in this Example 10. They were planted in the hole in the center of the wool cube using the soil used for acclimatization and cultivated in a greenhouse.

上記実施例10とその対照の植物の生長量をぞの葉の数
で比較したところ、対照の生長量を100とした時の実
施例10の生長量は150であった。
When the growth amount of the plant of Example 10 and its control plant was compared in terms of the number of leaves, the growth amount of Example 10 was 150 when the growth amount of the control plant was 100.

[発明の効果] この発明は、植物組織培養にμ■害作用を有する成分を
実質的に溶出しないセラミックファイバー製の培地材に
関するもので、液体培地と相合せて使用され、植物培養
組織の増殖、分化、発根の促進、N11化時の活着率や
馴化後の幼植物の生育性の向上、広範な種類の植物への
適用、組織培養から馴化後の定植までの連続使用、馴化
作業の省力化、馴化時の活着率の向上、馴化後の生産性
の向上等を達成づることかできる。
[Effect of the invention] The present invention relates to a culture medium material made of ceramic fibers that does not substantially elute components that have a harmful effect on plant tissue culture, and which is used in combination with a liquid medium to improve the growth of cultured plant tissues. , promotion of differentiation and rooting, improvement of survival rate during N11ization and growth of seedlings after acclimatization, application to a wide variety of plants, continuous use from tissue culture to planting after acclimatization, and improvement of acclimation work. It is possible to save labor, improve the survival rate during acclimatization, and improve productivity after acclimatization.

Claims (6)

【特許請求の範囲】[Claims] (1)植物組織培養に阻害作用を有する成分を実質的に
溶出しないセラミックファイバーからなり、液体培地と
組合せて使用される植物組織培養用培地材。
(1) A medium material for plant tissue culture, which is made of ceramic fibers that do not substantially elute components that have an inhibitory effect on plant tissue culture, and is used in combination with a liquid medium.
(2)セラミックファイバーが液体培地と実質的に反応
しないものである特許請求の範囲第1項記載の植物組織
培養用培地材。
(2) The medium material for plant tissue culture according to claim 1, wherein the ceramic fiber does not substantially react with the liquid medium.
(3)セラミックファイバーが親水性である特許請求の
範囲第1項記載の植物組織培養用培地材。
(3) The medium material for plant tissue culture according to claim 1, wherein the ceramic fiber is hydrophilic.
(4)セラミックファイバーがシリカ・アルミナ系ファ
イバーである特許請求の範囲第1項記載の植物組織培養
用培地材。
(4) The medium material for plant tissue culture according to claim 1, wherein the ceramic fiber is a silica-alumina fiber.
(5)セラミックファイバーはその繊維の方向が垂直方
向に配列している特許請求の範囲第1項記載の植物組織
培養用培地材。
(5) The medium material for plant tissue culture according to claim 1, wherein the ceramic fibers are arranged in a vertical direction.
(6)嵩密度が0.005〜0.3g/cm^3である
特許請求の範囲第1項記載の植物組織培養用培地材。
(6) The medium material for plant tissue culture according to claim 1, which has a bulk density of 0.005 to 0.3 g/cm^3.
JP61156166A 1985-07-19 1986-07-04 Medium for tissue culture of plant Granted JPS62175170A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP15841085 1985-07-19
JP60-158410 1985-07-19
JP60-227763 1985-10-15

Publications (2)

Publication Number Publication Date
JPS62175170A true JPS62175170A (en) 1987-07-31
JPH0373275B2 JPH0373275B2 (en) 1991-11-21

Family

ID=15671144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61156166A Granted JPS62175170A (en) 1985-07-19 1986-07-04 Medium for tissue culture of plant

Country Status (1)

Country Link
JP (1) JPS62175170A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63291580A (en) * 1987-05-22 1988-11-29 Nok Corp Culture of plant tissue and bioreactor using therefor
US6550889B2 (en) 2000-09-26 2003-04-22 Imaje S.A. Process and device for cleaning the nozzles of inkjet printers, and print head and printer incorporating such a device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63291580A (en) * 1987-05-22 1988-11-29 Nok Corp Culture of plant tissue and bioreactor using therefor
US6550889B2 (en) 2000-09-26 2003-04-22 Imaje S.A. Process and device for cleaning the nozzles of inkjet printers, and print head and printer incorporating such a device

Also Published As

Publication number Publication date
JPH0373275B2 (en) 1991-11-21

Similar Documents

Publication Publication Date Title
WO2021258738A1 (en) Tissue culture and rapid propagation method for high-quality hippeastrum vittatum seedlings
CN109452154A (en) Cuttage and seedling culture method in hemp room
CN104663358A (en) Method for increasing transplanting survival rates of seedlings
CN103444304B (en) A kind of method impelled miracle fruit seed germination and improve survival rate of seedling
CN105594573B (en) A kind of method for shortening camellia commodity potted flower juvenile phase
KR880000940B1 (en) A method for cultivating lilies
CN105494100A (en) Tissue culture and rapid propagation method of oriental cherries
US5476523A (en) Moss seedling and method of producing dense moss mat therefrom
CN106417026A (en) Tissue culture and rapid propagation of succulent plants
CN108513910A (en) A kind of screening method in vitro of black fruit fructus lycii salt-tolerant mutant
CN101578960A (en) Method for reducing aerial root of tissue culture seedling of hydrangea
CN100374011C (en) Method for tissue culture of lily flowers
CN102415263B (en) Cuttage propagation method for juniperus procumbens &#39;Nana&#39;
EP0231387B1 (en) Culture medium supports for plant tissue culture
Wędzony Protocol for anther culture in hexaploid triticale (x Triticosecale Wittm.)
CN103798139B (en) A kind of is the method that outer implant sets up Bulbus Lilii embryo callus subculture regenerating system with petal
JPS62175170A (en) Medium for tissue culture of plant
CN102232359A (en) In-vitro rapid propagation method of double-petal Jasminum sambac
CN102845304A (en) Germination method for Carpinus putoensis Cheng seed
CN107242138B (en) Tissue culture rapid propagation and cultivation method of paphiopedilum chianus
JPH02222627A (en) Production of banana seedling by culture of plant tissue
JPS6015286B2 (en) Mass propagation method for lily seedlings
KR20210087175A (en) Production method having high improved productivity for tissue cultured seedlings of Larix kaempferi
CN109548655A (en) The method for tissue culture of bitter Lang Shu
CN112400584A (en) Asexual rapid propagation method for dicotyledons