JPH0373275B2 - - Google Patents
Info
- Publication number
- JPH0373275B2 JPH0373275B2 JP61156166A JP15616686A JPH0373275B2 JP H0373275 B2 JPH0373275 B2 JP H0373275B2 JP 61156166 A JP61156166 A JP 61156166A JP 15616686 A JP15616686 A JP 15616686A JP H0373275 B2 JPH0373275 B2 JP H0373275B2
- Authority
- JP
- Japan
- Prior art keywords
- medium
- fiber
- culture
- silica
- same
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000835 fiber Substances 0.000 claims description 67
- 239000000463 material Substances 0.000 claims description 46
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 29
- 239000007788 liquid Substances 0.000 claims description 28
- 239000000919 ceramic Substances 0.000 claims description 20
- 238000004161 plant tissue culture Methods 0.000 claims description 13
- 230000002401 inhibitory effect Effects 0.000 claims description 4
- 239000002609 medium Substances 0.000 description 77
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 43
- 241000196324 Embryophyta Species 0.000 description 42
- 230000004083 survival effect Effects 0.000 description 24
- 230000012010 growth Effects 0.000 description 22
- 239000000377 silicon dioxide Substances 0.000 description 21
- 239000001963 growth medium Substances 0.000 description 19
- 229920001817 Agar Polymers 0.000 description 17
- 239000008272 agar Substances 0.000 description 17
- 239000003636 conditioned culture medium Substances 0.000 description 14
- 230000004069 differentiation Effects 0.000 description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 12
- 229910004298 SiO 2 Inorganic materials 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 9
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 8
- MCMNRKCIXSYSNV-UHFFFAOYSA-N ZrO2 Inorganic materials O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 8
- 239000002689 soil Substances 0.000 description 8
- 238000000034 method Methods 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- 229920000742 Cotton Polymers 0.000 description 5
- 206010020649 Hyperkeratosis Diseases 0.000 description 5
- 239000004033 plastic Substances 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 241000234653 Cyperus Species 0.000 description 4
- 239000000654 additive Substances 0.000 description 4
- 238000012258 culturing Methods 0.000 description 4
- 239000003337 fertilizer Substances 0.000 description 4
- 238000003973 irrigation Methods 0.000 description 4
- 230000002262 irrigation Effects 0.000 description 4
- 239000011490 mineral wool Substances 0.000 description 4
- 239000010451 perlite Substances 0.000 description 4
- 235000019362 perlite Nutrition 0.000 description 4
- 239000010455 vermiculite Substances 0.000 description 4
- 229910052902 vermiculite Inorganic materials 0.000 description 4
- 235000019354 vermiculite Nutrition 0.000 description 4
- 238000005406 washing Methods 0.000 description 4
- 238000010828 elution Methods 0.000 description 3
- 239000003365 glass fiber Substances 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 229920000049 Carbon (fiber) Polymers 0.000 description 2
- NWBJYWHLCVSVIJ-UHFFFAOYSA-N N-benzyladenine Chemical compound N=1C=NC=2NC=NC=2C=1NCC1=CC=CC=C1 NWBJYWHLCVSVIJ-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 238000007792 addition Methods 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- -1 aluminum ions Chemical class 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000004917 carbon fiber Substances 0.000 description 2
- 238000012136 culture method Methods 0.000 description 2
- QDOXWKRWXJOMAK-UHFFFAOYSA-N dichromium trioxide Chemical compound O=[Cr]O[Cr]=O QDOXWKRWXJOMAK-UHFFFAOYSA-N 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000012784 inorganic fiber Substances 0.000 description 2
- 238000007726 management method Methods 0.000 description 2
- 230000008635 plant growth Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000035755 proliferation Effects 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 235000016068 Berberis vulgaris Nutrition 0.000 description 1
- 241000335053 Beta vulgaris Species 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- 206010021143 Hypoxia Diseases 0.000 description 1
- 241001453798 Nephrolepis Species 0.000 description 1
- 241001112810 Streptocarpus Species 0.000 description 1
- JAWMENYCRQKKJY-UHFFFAOYSA-N [3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-ylmethyl)-1-oxa-2,8-diazaspiro[4.5]dec-2-en-8-yl]-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]methanone Chemical compound N1N=NC=2CN(CCC=21)CC1=NOC2(C1)CCN(CC2)C(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F JAWMENYCRQKKJY-UHFFFAOYSA-N 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- ILRRQNADMUWWFW-UHFFFAOYSA-K aluminium phosphate Chemical class O1[Al]2OP1(=O)O2 ILRRQNADMUWWFW-UHFFFAOYSA-K 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000004079 fireproofing Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 239000003501 hydroponics Substances 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000009630 liquid culture Methods 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- 239000003415 peat Substances 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000003375 plant hormone Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 239000012882 rooting medium Substances 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- SUKJFIGYRHOWBL-UHFFFAOYSA-N sodium hypochlorite Chemical compound [Na+].Cl[O-] SUKJFIGYRHOWBL-UHFFFAOYSA-N 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 239000003104 tissue culture media Substances 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 235000013619 trace mineral Nutrition 0.000 description 1
- 239000011573 trace mineral Substances 0.000 description 1
- 238000002054 transplantation Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
Landscapes
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
Description
[産業上の利用分野]
本発明は、液体培地と組み合わせて使用する植
物組織培養用の培地材に係り、特にセラミツクフ
アイバー製の培地材であつて、また、幼植物用の
馴化培地としても使用し得る植物組織培養用培地
材に関するものである。
[従来の技術]
植物組織を培養するための培地材としては、従
来より寒天が最も一般的に使用されており、ま
た、特殊な培地材としてはガラス繊維や脱脂綿を
液体培地と組み合わせて使用することも知られて
いる。
しかしながら、寒天には植物組織細胞の増殖、
分化及び/又は根の伸長を阻害する未同定の物質
が含有されており、特に高度に精製した寒天を使
用しても、植物の種類によつては著しく増殖、分
化及び/又は発根が遅れる場合があるほか、培地
全体がゲル化されているため、培養組織で生産さ
れる老廃物質や有害物質の拡散速度が小さく、植
物の種類によつてはその毒作用によつて全く培養
が困難になる場合もあつた。
しかも、この寒天等のゲル化培地で組織培養さ
れて得られた幼植物は、培養組織から分化して生
じる根が直根で根数も少なく、いわゆる水中根状
であつて、直接馴化培地に移植して馴化を行なう
と活着率が極めて悪い。また、この幼植物を馴化
する際にその根部に培地が付着しているとカビ等
の汚染により植物体の腐死を招く。これを防止す
るために幼植物から培地をより完全に除去するこ
とは植物体の損傷を大きくして、馴化後の成育を
遅くする結果を招く。このために寒天等を使用す
る従来の培養方法では、馴化時に特別に殺菌・消
毒を行なつたパーライト、バーミキユライト等の
馴化培地を調製し、使用する必要があるという問
題があつた。
また、培地材としてガラス繊維を使用した場合
には、培地材として使用中にアルカリ分が溶出
し、培地のPH値や化学組織が変動するという問題
がある。さらに、脱脂綿を使用した場合には寒天
培地よりも悪い成績しか得られない。
[発明が解決しようとする問題点]
本発明の目的は、液体培地と組合せて使用され
る新規な植物組織培養用の培地材を提供すること
にある。また、本発明の他の目的は、植物組織の
増植、分化、発根を促進することができ、また、
馴化時の活着率や馴化後の幼植物の生育が良好と
なるような培地材を提供することにある。さら
に、本発明の他の目的は、寒天等のゲル化培地で
は培養が困難な植物の組織培養を可能にすること
ができる培地材を提供することにある。さらにま
た、本発明の他の目的は、組織培養から馴化後の
定植まで連続して使用することができ、馴化作業
の省力化、馴化時の活着率の向上、馴化後の生産
速度の向上等を達成することができる培地材を提
供することにある。
[問題点を解決するための手段]
すなわち、本発明は、液体培地と組合せて使用
されるもので、植物組織培養に阻害作用を有する
成分を実質的に溶出しないセラミツクフアイバー
製植物組織培養用培地材である。
本発明で使用するセラミツクフアイバーは、そ
の化学組成的には組織培養の操作過程、例えば液
体培地を含浸させて行う滅菌処理等の際における
溶出成分が植物組織の増殖、分化、発根に阻害作
用を示さないものであればよいが、この培地材と
組合せて使用する液体培地と実質的に反応するこ
とがなく、また、この液体培地のPHに影響を及さ
ないことが重要である。特に、アルミニウムイオ
ンの溶出は、液体培地中の燐酸イオンと反応し植
物が利用し得ない水に不溶性の燐酸アルミニウム
類を生成して燐酸分の不足を招くという問題を生
じ、また、アルカリイオンの溶出は、使用する液
体培地のPH値を変化させ、植物組織の増殖、分
化、発根に障害を生じる。
本発明で使用されるセラミツクフアイバーとし
ては、例えば、シリカ・アルミナフアイバー
(SiO2−Al2O3)、シリカ・アルミナ・ジルコニア
フアイバー(SiO2−Al2O3−ZrO2)、シリカ・ア
ルミナ・クロミアフアイバー(SiO2−Al2O3−
Cr2O3)等のシリカとアルミナを主成分とするシ
リカ・アルミナ系フアイバーや、シリカを主成分
とするシリカ系フアイバーや、アルミナを主成分
とするアルミナ系フアイバーや、カーボンフアイ
バー等を挙げることができ、フアイバーからの溶
出成分、液体培地との反応性、安定性、価格等を
考慮するとシリカ・アルミナ系フアイバーが特に
好ましい。このシリカ・アルミナ系フアイバー
は、炉の耐火、断熱材及び無機繊維紙の原料等と
して工業的に大量生産されているが、その製造過
程において加工性能の向上あるいは輸送性の改善
等を目的として滑剤類が添加されることが多い
が、これら添加物の除去温度以上に加熱処理され
たものが好ましい。
本発明で使用するセラミツクフアイバーの嵩密
度は、使用目的によつて異なるが、通常0.005〜
0.3g/cm3、好ましくは0.01〜0.2g/cm3程度がよ
い。この嵩密度が0.005より小さいとハンドリン
グしずらくなり、また、0.3g/cm3より大きいと
根の伸長が妨げられる。
本発明のセラミツクフアイバー製培地材は、そ
れ自体親水性材料であるが、さらに親水性を向上
させるために非イオン系界面活性剤や高級アルコ
ール等の植物の生育に支障のない物質を添加して
もよい。
本発明のセラミツクフアイバー製培地材(以
下、本培地材と称する)の形状としては、未加工
品(いわゆるバルク)であつてもよいが、一定方
向にフアイバーを配列し、必要によりニードリン
グを施したブランケツト状の成形品または粒状綿
であることが望ましい。また、培養容器内での増
殖、分化、発根のみに主眼を置く場合には、ペー
パー状、シート状、ブランケツト状、粒状等の培
養容器に合わせた形状で使用できる。そして、繊
維の配列については、それが垂直方向に配列した
もの、水平方向に配列したもの、さらには、ラン
ダムになつているもの等特に制限はないが、液体
培地の上昇、分取操作、根の伸長等を考慮すれば
垂直方向に配列したものが好ましい。
本培地材は、ムラシゲ・スクーグ、ホワイト、
ナドソン、リンスマイヤー・スクーグ、ヘラヘ、
ゴートレ、ニツチエ・ニツチエ、エリクソン、ガ
ンボーグ・ミラー・オジマ、塚本・狩野等の液体
培地及びそれらの改変培地と組み合わせて使用す
る。これらの液体培地は、本培地材に含浸させて
使用することが望ましいが、点滴、噴霧等の方法
で供給することもできる。
本培地材を使用して植物の組織培養を行う方法
としては、例えば、培養容器中に適当な量の本培
地材を置き、これに必要な量の液体培地を含浸さ
せた後オートクレーブ等により滅菌操作を行い、
自然冷却後、予め消毒した植物組織の切片を培養
容器内の本培地材上に置床する方法等により行う
ことができる。また、この培養時の管理方法とし
ては、寒天を使用した場合と同様であるが、本培
地材を使用した場合には、無菌条件下での操作に
おいて、培養組織の移植操作無しに液体培地の追
加、植物ホルモン剤の添加、液体培地の洗浄及び
交換を行うことができる。
また、本培地材は、必要に応じて市敗の液体肥
料と組合せて幼植物を馴化させるための馴化培地
として使用することができる。この目的で液体肥
料と組合せて使用する場合には、例えば、必要な
濃度に調整した液体肥料を点滴、噴霧等の方法あ
るいは潅水を兼ねた方法等により本培地材に供給
する。そして、このようにして調製された馴化培
地を使用して幼植物を馴化するには、例えば、組
織培養によつて得られた幼植物からその組織培養
に使用した培地や発根培地を取除き、水洗した
後、栽培容器内に納めた適当な量の馴化培地で幼
植物の根を包み込むようにして植え込み、適度に
遮光、保湿してハウス内で1周間から1ケ月間程
度馴化を行う。なお、この馴化化時の管理方法に
ついては、パーライトやバーミキユライト等を使
用する従来の場合と同様であるが、本培地材は保
水性に富むため、通常は腰水等の必要がなく、ま
た、馴化を終えた幼植物については培地を取除く
ことなく、通常の土耕又は溶液栽培等に使用する
ことができる。このように本培地材を使用して馴
化を行うと、幼植物の根に対して常に適度の保水
性と通気性とを与えることができ、また、空隙率
が非常に高いために潅水後でも培地中になお多く
の気相部分が残つて根の酸欠を防止できるものと
考えられる。
以上のように、本培地材が組織培養の増殖、分
化、発根用培地に使用する培地材としてだけでな
く、この組織培養で培養した幼植物の馴化に使用
する馴化培地の培地材としても使用できるので、
植物の増殖、分化、発根からこれによつて得られ
た幼植物の馴化までをその各過程で使用した液体
培地を水洗除去して次の液体培地を添加するだけ
で移植操作無しに一貫して行うことができる。そ
して、このように植物の増植、分化、発根から馴
化までを移植操作無しに一貫して行うことによ
り、幼植物の損傷を著しく軽減できるほか、組織
培養法による種苗生産時の歩留を向上させること
ができ、また、馴化後の植物の成育速度を向上さ
せることができる。
さらに、馴化を終えた植物体は、本培地材を取
り除くことなく、通常の土耕、水耕、砂耕、礫
耕、ロツクウール栽培等に使用することができ、
特に、本培地材と同様に無機繊維を使用するロツ
クウール栽培に適している。
[作用]
本発明では、培地材としてセラミツクフアイバ
ーを使用するので、セラミツクフアイバーの有す
る化学的安定性、物理的性状により全体として、
組み合わせて使用する液体培地の性能を充分に発
揮させることができる。さらに、本培地材は空隙
率が非常に高いため、液体培地と組み合わせた後
でもなお多くの気相部分が残り、植物組織あるい
は細胞の増殖、分化、発根を促進し、また、培養
組織の馴化時の成長を促進すると推定される。ま
た、本培地材中では、組み合わせた液体培地が毛
管水、付着水としてセラミツクフアイバー繊維間
に存在するため、培養組織による液体培地の吸
収、馴化時における液体培地の除去が容易にでき
るものと推定される。
[実施例]
以下、実施例に基いて、本発明を具体的に説明
する。
実施例 1
セラミツクフアイバーとして、試料1gに
0.5N−HCl150mlを添加し、30℃で1時間反応さ
せた時のAl出量が229ppmであり、8倍量のPH7
試験水に室温下密閉状態で6日間浸漬した後のPH
が6.5であるシリカ・アルミナフアイバー
(SiO2:約53重量%、Al2O3:約47重量%)を使
用し、このフアイバーを一定方向に配列した層状
綿に有機系滑剤を添加後、ニードリングを施し、
得られた成形品をさらに約700℃で約20分間加熱
処理して添加物を分解除去し、実施例1のブラン
ケツト状のシリカ・アルミナフアイバー製培地材
(嵩密度:0.13g/cm3)を製造した。
このシリカ・アルミナフアイバー製培地材から
一辺2cmの立方体を切出し、その1.0gを2.5cmφ
×12cmの管ビンの底部に繊維方向が垂直となるよ
うに設置し、この管ビン中に液体培地としてムラ
シゲ・スクーグ培地(但し、ナフタレン酢酸0.1
mg/、ベンジルアデニン0.1mg/、及びサツ
カーロース30g/を含む)8mlを分注し、アル
ミ箔でキヤツプをして120℃で15分間オートクレ
ーブ滅菌を行つた後、自然冷却した。
次に、クリーンベンチ内で上記管ビン内に、予
めアンチホルミンを用いて消毒したシペラス・プ
ルケラ(品種名:ナナス)の茎基部を約2mm角に
切断した切片を置床し、温度25℃、明期12時間、
暗期12時間及び照度3000ルツクスの培養条件で3
週間培養し、この時の生存率、シユート長、シユ
ートの総成長量、シユート数及び発根率を調べ
た。結果を第1表に示す。
実施例 2
実施例1と同様の方法で測定した試料1gの希
塩酸に対するAlの溶出量が77.7ppmであり、8倍
量のPH7試験水に対する試験後のPHが6.5である
シリカ・アルミナ・ジルコニアフアイバ−
(SiO2:約50重量%、Al2O3:約35重量%、
ZrO2:約15重量%)を使用し、実施例1と同様
の手順でブランケツト状のシリカ・アルミナ・ジ
ルコニアフアイバー製培地材(嵩密度:0.13g/
cm3)を製造した。
このシリカ・アルミナ・ジルコニアフアイバー
製培地材を使用し、実施例1と同じ条件で同じ植
物を培養し、実施例1と同じ項目について調べ
た。結果を第1表に示す。
実施例 3
実施例1と同様の方法で測定した8倍量のPH7
試験水に対する試験後のPHが6.5であるシリカ・
アルミナ・クロミアフアイバー(SiO2:約55重
量%、Al2O3:約42重量%、Cr2O3:約3重量%)
を使用し、実施例1と同様の手順でブランケツト
状のシリカ・アルミナ・クロミアフアイバー製培
地材(嵩密度:0.13g/cm3)を製造した。
このシリカ・アルミナ・クロミアフアイバー製
培地材を使用し、実施例1と同じ条件で同じ植物
組織を培養し、実施例1と同じ項目について調べ
た。結果を第1表に示す。
比較例 1
上記各実施例1〜3で使用したと同じムラシ
ゲ・スクーグ培地に市販の培養用精製寒天8g/
を添加して寒天培地を調製し、この寒天培地8
mlを上記各実施例で使用したと同じ管ビン(培地
材として管ビン1本当り0.064gの寒天を使用)
中に分注し、実施例1と同じ条件で同じ植物組織
を培養し、実施例1と同じ項目について調べた。
結果を第1表に示す。
比較例 2
培地材として市販の植物栽培用ロツクウール製
培地材(SiO2:約46重量%、Al2O3:約13重量
%、CaO:約18重量%、MgO:約12重量%、
Fe2O3:約8重量%)の粒状綿(親水性タイプ)
を使用し、上記実施例1と同じ条件で同じ植物組
織を培養し、実施例1と同じ項目について調べ
た。結果を第1表に示す。
比較例 3
培地材として市販のガラス繊維(SiO2:約59
重量%、Al2O3:約4重量%、CaO:約16重量
%、MgO:約5重量%、B2O3:約3重量%、
Na2O:約11重量%)のバルクを使用し、上記実
施例1と同じ条件で同じ植物組織を培養し、実施
例1と同じ項目について調べた。結果を第1表に
示す。
なお、第1表の結果を示す各値は、比較例1で
測定された測定値の平均値を100として表した
(但し、発根率のみ実測値で示した。)。
この第1表の結果から明らかなように、3種類
のセラミツクフアイバー製培地材を使用した各実
施例1〜3の結果は、各比較例1〜3の場合に比
べて、その生存率、シユートの成長、発根率が著
しく促進されている。
[Industrial Application Field] The present invention relates to a medium material for plant tissue culture used in combination with a liquid medium, and in particular a medium material made of ceramic fiber, which can also be used as a conditioned medium for young plants. The present invention relates to a medium material for plant tissue culture that can be used for culturing plant tissues. [Conventional technology] Agar has traditionally been the most commonly used medium for culturing plant tissues, and special mediums such as glass fiber and absorbent cotton have been used in combination with a liquid medium. It is also known that However, agar does not support growth of plant tissue cells.
Contains an unidentified substance that inhibits differentiation and/or root elongation, and even if highly purified agar is used, growth, differentiation, and/or rooting may be significantly delayed depending on the plant type. In addition, because the entire medium is gelatinized, the diffusion rate of waste substances and harmful substances produced in the cultured tissue is slow, and depending on the type of plant, its toxic effects make culturing completely difficult. There were cases where it happened. Moreover, seedlings obtained by tissue culture on gelatinized media such as agar have roots that are differentiated from the cultured tissue and have a tap root and a small number of roots. When transplanted and acclimatized, the survival rate is extremely low. Furthermore, when the seedlings are acclimatized, if a medium is attached to their roots, the plants will rot and die due to contamination with mold and the like. To prevent this, removing the medium from the seedlings more completely will result in greater damage to the plants and slower growth after acclimatization. For this reason, conventional culture methods using agar or the like have had a problem in that it is necessary to prepare and use a conditioned medium of perlite, vermiculite, etc. that has been specially sterilized and disinfected during acclimatization. Furthermore, when glass fiber is used as a medium material, there is a problem that alkaline content is eluted during use as a medium material, causing fluctuations in the pH value and chemical structure of the medium. Furthermore, using cotton wool gives worse results than agar media. [Problems to be Solved by the Invention] An object of the present invention is to provide a novel medium material for plant tissue culture that is used in combination with a liquid medium. In addition, another object of the present invention is to be able to promote the expansion, differentiation, and rooting of plant tissues;
It is an object of the present invention to provide a culture medium that improves the survival rate during acclimatization and the growth of young plants after acclimatization. Furthermore, another object of the present invention is to provide a medium material that can enable tissue culture of plants that are difficult to culture in gelatinized media such as agar. Furthermore, another object of the present invention is that it can be used continuously from tissue culture to transplantation after acclimatization, saving labor in acclimatization work, improving survival rate during acclimatization, and increasing production rate after acclimatization. The objective is to provide a culture medium that can achieve the following. [Means for Solving the Problems] That is, the present invention provides a ceramic fiber plant tissue culture medium that is used in combination with a liquid medium and does not substantially elute components that have an inhibitory effect on plant tissue culture. It is a material. The chemical composition of the ceramic fiber used in the present invention is that components eluted during tissue culture operations, such as sterilization treatment performed by impregnating a liquid medium, have an inhibitory effect on the growth, differentiation, and rooting of plant tissues. However, it is important that it does not substantially react with the liquid medium used in combination with this medium material, and that it does not affect the pH of this liquid medium. In particular, the elution of aluminum ions causes the problem of reacting with phosphate ions in the liquid medium to produce water-insoluble aluminum phosphates that cannot be used by plants, resulting in a lack of phosphoric acid. Elution changes the pH value of the liquid medium used, causing problems in the growth, differentiation, and rooting of plant tissues. Ceramic fibers used in the present invention include, for example, silica-alumina fiber (SiO 2 -Al 2 O 3 ), silica-alumina-zirconia fiber (SiO 2 -Al 2 O 3 -ZrO 2 ), silica-alumina fiber (SiO 2 -Al 2 O 3 -ZrO 2 ), Chromia fiber (SiO 2 −Al 2 O 3 −
Examples include silica/alumina fibers whose main components are silica and alumina such as Cr 2 O 3 ), silica fibers whose main component is silica, alumina fibers whose main component is alumina, carbon fibers, etc. In consideration of components eluted from the fiber, reactivity with the liquid medium, stability, cost, etc., silica-alumina fibers are particularly preferred. This silica/alumina fiber is industrially mass-produced as a fireproofing material for furnaces, a heat insulating material, and a raw material for inorganic fiber paper. These additives are often added, but it is preferable to heat-treat the additives to a temperature higher than the removal temperature of these additives. The bulk density of the ceramic fiber used in the present invention varies depending on the purpose of use, but is usually 0.005~
The amount is preferably about 0.3 g/cm 3 , preferably about 0.01 to 0.2 g/cm 3 . If the bulk density is less than 0.005, it will be difficult to handle, and if it is more than 0.3 g/cm 3 , root elongation will be hindered. The ceramic fiber culture medium material of the present invention is itself a hydrophilic material, but in order to further improve its hydrophilicity, substances that do not hinder plant growth, such as nonionic surfactants and higher alcohols, are added. Good too. The shape of the ceramic fiber medium material of the present invention (hereinafter referred to as the present medium material) may be an unprocessed product (so-called bulk), but the fibers may be arranged in a certain direction and needled if necessary. Preferably, it is a blanket-like molded product or granulated cotton. In addition, when the main focus is solely on proliferation, differentiation, and rooting within the culture container, it can be used in a shape suitable for the culture container, such as paper, sheet, blanket, or granular shapes. There are no particular restrictions on the arrangement of the fibers, such as vertically, horizontally, or even randomly; In consideration of expansion, etc., it is preferable to arrange them in the vertical direction. This medium material is Murashige Skoog, White,
Knudson, Linsmeyer-Skoog, Herahe;
It is used in combination with liquid media such as Gautre, Nitsuchie Nitsuchie, Erickson, Gamborg Miller Ojima, Tsukamoto Kano, etc., and their modified media. It is desirable to use these liquid media by impregnating the main medium material, but they can also be supplied by dripping, spraying, or other methods. To culture plant tissue using this medium, for example, place an appropriate amount of this medium in a culture container, impregnate it with the required amount of liquid medium, and then sterilize it in an autoclave, etc. perform the operation,
After natural cooling, this can be carried out by placing a pre-sterilized section of the plant tissue on the main culture medium in a culture container. In addition, the management method during this culture is the same as when using agar, but when using this culture medium, the liquid medium can be grown under aseptic conditions without transplanting the cultured tissue. Additions, addition of plant hormones, washing and replacement of the liquid medium can be carried out. Moreover, this culture medium can be used as a conditioned medium for acclimatizing young plants in combination with a commercially available liquid fertilizer, if necessary. When used in combination with a liquid fertilizer for this purpose, for example, the liquid fertilizer adjusted to the required concentration is supplied to the culture medium by a method such as dripping, spraying, or a method that also serves as irrigation. To acclimatize seedlings using the conditioned medium prepared in this way, for example, the medium used for tissue culture and the rooting medium are removed from the seedlings obtained by tissue culture. After washing with water, plant the seedlings by wrapping the roots with an appropriate amount of conditioned medium placed in a cultivation container, and acclimatize them in the greenhouse for about one week to one month with appropriate shade and humidity. . The management method during acclimatization is the same as in the conventional case of using perlite, vermiculite, etc., but since this culture medium has high water retention properties, there is usually no need for watering. Furthermore, the young plants that have been acclimatized can be used for normal soil cultivation or solution cultivation without removing the medium. By using this medium for acclimation, it is possible to always provide adequate water retention and air permeability to the roots of young plants, and because it has a very high porosity, even after irrigation. It is thought that a large amount of gas phase still remains in the medium, which prevents oxygen deficiency in the roots. As mentioned above, this medium material can be used not only as a medium for propagation, differentiation, and rooting in tissue culture, but also as a medium material for conditioned medium used for acclimating seedlings cultured in this tissue culture. Because it can be used
The process from plant propagation, differentiation, and rooting to the acclimatization of the resulting seedlings can be done consistently without transplanting by simply washing off the liquid medium used in each process and adding the next liquid medium. It can be done by In this way, by consistently performing plant expansion, differentiation, rooting, and acclimatization without transplanting, it is possible to significantly reduce damage to seedlings, and to improve the yield when producing seedlings using the tissue culture method. It is also possible to improve the growth rate of plants after acclimatization. Furthermore, the plants that have been acclimatized can be used for regular soil cultivation, hydroponics, sand cultivation, gravel cultivation, rock wool cultivation, etc. without removing the medium material.
It is especially suitable for rock wool cultivation that uses inorganic fibers like this culture medium. [Function] In the present invention, since ceramic fiber is used as the medium material, overall, due to the chemical stability and physical properties of the ceramic fiber,
The performance of the liquid culture medium used in combination can be fully demonstrated. Furthermore, since this medium material has a very high porosity, a large amount of gas phase remains even after it is combined with a liquid medium, which promotes the proliferation, differentiation, and rooting of plant tissues or cells, and also promotes the growth of cultured tissues. It is presumed to promote growth during acclimatization. In addition, in this medium material, the combined liquid medium exists between the ceramic fiber fibers as capillary water and attached water, so it is assumed that the cultured tissue can easily absorb the liquid medium and remove the liquid medium during acclimatization. be done. [Examples] Hereinafter, the present invention will be specifically explained based on Examples. Example 1 As a ceramic fiber, 1 g of sample
When 150ml of 0.5N-HCl was added and reacted at 30℃ for 1 hour, the amount of Al released was 229ppm, which was 8 times the amount at pH 7.
PH after being immersed in test water for 6 days in a sealed state at room temperature
Using silica-alumina fibers (SiO 2 : approx. 53% by weight, Al 2 O 3 : approx. 47% by weight) with a carbon fiber ratio of 6.5, an organic lubricant is added to layered cotton in which these fibers are arranged in a certain direction, and then the needles are put a ring on it,
The obtained molded product was further heat-treated at about 700°C for about 20 minutes to decompose and remove the additives, and the blanket-shaped silica/alumina fiber medium material of Example 1 (bulk density: 0.13 g/cm 3 ) was prepared. Manufactured. Cut out a cube of 2 cm on each side from this silica/alumina fiber medium material, and add 1.0 g of it to 2.5 cmφ.
Place the fibers in the bottom of a 12 cm x 12 cm tube bottle so that the fiber direction is perpendicular.
8 ml of the solution (containing 0.1 mg of benzyladenine, 0.1 mg of benzyladenine, and 30 g of sugar loin) was dispensed, capped with aluminum foil, sterilized in an autoclave at 120°C for 15 minutes, and then cooled naturally. Next, in a clean bench, a section of the stem base of Cyperus pulchella (cultivar name: Nanasu), which had been sterilized in advance using antiformin and cut into approximately 2 mm squares, was placed in the above-mentioned tube bottle, and placed at a temperature of 25°C in the light. period 12 hours,
3 under culture conditions of 12 hours dark period and 3000 lux
After culturing for a week, the survival rate, shoot length, total growth amount of shoots, number of shoots, and rooting rate were examined. The results are shown in Table 1. Example 2 A silica-alumina-zirconia fiber whose elution amount of Al was 77.7 ppm with respect to 1 g of sample diluted hydrochloric acid measured in the same manner as in Example 1, and whose pH after testing against 8 times the amount of PH7 test water was 6.5. −
(SiO 2 : approx. 50% by weight, Al 2 O 3 : approx. 35% by weight,
Using the same procedure as in Example 1, using ZrO 2 (approximately 15% by weight), a blanket-shaped silica-alumina-zirconia fiber culture medium (bulk density: 0.13 g/
cm 3 ) was produced. Using this silica-alumina-zirconia fiber medium material, the same plants were cultured under the same conditions as in Example 1, and the same items as in Example 1 were investigated. The results are shown in Table 1. Example 3 Eight times the amount of PH7 measured in the same manner as in Example 1
Silica with a pH of 6.5 after testing against test water.
Alumina/chromia fiber (SiO 2 : approx. 55% by weight, Al 2 O 3 : approx. 42% by weight, Cr 2 O 3 : approx. 3% by weight)
A blanket-shaped silica-alumina-chromia fiber medium material (bulk density: 0.13 g/cm 3 ) was produced using the same procedure as in Example 1. Using this silica-alumina-chromia fiber medium material, the same plant tissues were cultured under the same conditions as in Example 1, and the same items as in Example 1 were investigated. The results are shown in Table 1. Comparative Example 1 8 g of commercially available purified agar for culture was added to the same Murashige-Skoog medium as used in Examples 1 to 3 above.
Prepare an agar medium by adding 8
ml in the same tube bottles used in each of the above examples (0.064 g of agar was used per tube bottle as the medium material)
The same plant tissues were cultured under the same conditions as in Example 1, and the same items as in Example 1 were examined.
The results are shown in Table 1. Comparative Example 2 Commercially available rock wool culture medium for plant cultivation (SiO 2 : approx. 46% by weight, Al 2 O 3 : approx. 13% by weight, CaO: approx. 18% by weight, MgO: approx. 12% by weight,
Fe 2 O 3 (approximately 8% by weight) granular cotton (hydrophilic type)
The same plant tissue was cultured under the same conditions as in Example 1 above, and the same items as in Example 1 were investigated. The results are shown in Table 1. Comparative Example 3 Commercially available glass fiber (SiO 2 : approx. 59
Weight%, Al2O3 : about 4% by weight, CaO: about 16% by weight, MgO : about 5% by weight, B2O3 : about 3% by weight,
The same plant tissues were cultured under the same conditions as in Example 1 above using a bulk of Na 2 O (approximately 11% by weight), and the same items as in Example 1 were investigated. The results are shown in Table 1. In addition, each value showing the results in Table 1 is expressed with the average value of the measured values measured in Comparative Example 1 as 100 (however, only the rooting rate is shown as an actual measured value). As is clear from the results in Table 1, the results of Examples 1 to 3 using the three types of ceramic fiber medium materials are higher than those of Comparative Examples 1 to 3 in terms of survival rate and shoot. Growth and rooting rate are significantly promoted.
【表】
実施例 4
実施例1と同じシリカ・アルミナフアイバーを
使用し、実施例1と同様に加工して嵩密度0.1
g/cm3のブランケツト状のシリカ・アルミナフア
イバー製培地材を製造した。
このシリカ・アルミナフアイバー製培地材から
一辺2cmの立方体を切出し、その0.8gを2.5cmφ
×12cmの管ビンの底部に繊維方向が垂直となるよ
うに設置し、実施例1と同じムラシゲ・スクーグ
培地8mlを使用し、実施例1と同様にしてシペラ
ス・プルケラ(品種名:ナナス)の茎基部を約2
mm角に切断した切片を置床し、実施例1と同じ条
件で3週間培養を行い、その時の生存率、シユー
ト数、シユート長及び発根率を調べた。結果を第
2表に示す。なお、この実施例4の結果の各値に
ついても、上記実施例1〜3の場合と同様に、対
照として比較的1に従つて培養を行い、その結果
の測定値の平均値を100として表した。[Table] Example 4 The same silica/alumina fiber as in Example 1 was used, processed in the same manner as in Example 1, and the bulk density was 0.1.
A blanket-shaped silica/alumina fiber medium material of g/cm 3 was produced. Cut out a cube of 2 cm on each side from this silica/alumina fiber medium material, and add 0.8 g of it to 2.5 cmφ.
Place the fibers in the bottom of a 12 cm x 12 cm tube bottle vertically, use 8 ml of the same Murashige-Skoog medium as in Example 1, and grow Cyperus pulchella (variety name: Nanasu) in the same manner as in Example 1. Approximately 2 stems from the base
Sections cut into mm squares were placed on a bed and cultured for 3 weeks under the same conditions as in Example 1, and the survival rate, number of shoots, shoot length, and rooting rate were examined. The results are shown in Table 2. In addition, for each value of the results of this Example 4, as in the case of Examples 1 to 3 above, culture was performed according to Comparative 1 as a control, and the average value of the measured values of the results was expressed as 100. did.
【表】
第2表の結果から明らかなように、シリカ・ア
ルミナフアイバー製培地材の使用によりシユート
の成長が著しく促進されることが判明した。
次に、この実施例4で得られたシペラスの幼植
物を、シリカ・アルミナフアイバー製培地材ごと
管ビン中より取り出してこれを流水中で水洗し、
この幼植物を培地材ごとプラスチツク容器中に設
置し、75%の遮光下のハウス内で10日間馴化処理
を実施し、馴化時の活着率を調べた。
また、実施例4で使用したものと同型のプラス
チツク製の容器中にビートモス2重量部、パーラ
イト1重量部及びバーミキユライト0.5重量部を
混合した馴化用培土を2cm厚に入れ、これに実施
例4の対照で得られたシペラスの幼植物(管ビン
中より取出して根に付着している寒天を流水中で
除去し水洗して得られたもの)を移動し、同じ条
件下で馴化処理を実施し、馴化時の活着率を調べ
た。
上記対照の場合における活着率を100とした時
実施例4の場合の活着率は143であり、シリカ・
アルミナフアイバー製培地材を使用することによ
り馴化時の活着率が向上することが判明した。
実施例 5
実施例4と同じシリカ・アルミナフアイバー製
培地材を使用し、実施例4と同様にしてネフロレ
ピス・マーシヤリーのランナーの先端部を5mmに
切断した切片を置床し、実施例1と同じ条件で8
週間培養を行い、その時の生存率、シユート数、
シユート長及び発根率を調べた。結果を第3表に
示す。
実施例 6
セラミツクフアイバーとして実施例2と同じシ
リカ・アルミナ・ジルコニアナフアイバーを使用
して嵩密度0.1g/cm3のブランケツト状のシリ
カ・アルミナ・ジルコニアフアイバー製培地材を
製造し、このシリカ・アルミ・ジルコニアフアイ
バー製培地材を使用した以外は上記実施例5と同
様にして同じ植物組織を培養し、同様の項目につ
いて調べた。結果を第3表に示す。
上記実施例5及び6の結果の各値についても、
上記実施例1〜3の場合と同様に、対照として比
較例1に従つて培養を行い、その結果の測定値の
平均値を100として表した。
この第3表の結果から明らかなように、2種の
セラミツクフアイバー製培地材を使用した実施例
5及び6の場合は、対照の場合に比べてそのシユ
−トの成長、発根が著しく促進されることが判明
した。[Table] As is clear from the results in Table 2, it was found that the growth of shoots was significantly promoted by using the silica/alumina fiber culture medium. Next, the cyperus seedlings obtained in Example 4 were taken out of the tube together with the silica/alumina fiber medium material, and washed under running water.
The seedlings were placed in a plastic container together with the culture medium, and acclimatized for 10 days in a greenhouse with 75% light shielding, and the survival rate during acclimatization was examined. In addition, in a plastic container of the same type as that used in Example 4, a 2 cm thick acclimatization soil mixed with 2 parts by weight of beet moss, 1 part by weight of perlite, and 0.5 parts by weight of vermiculite was placed, and this was poured into a plastic container of the same type as that used in Example 4. The seedlings of Cyperus obtained in the control in step 4 (obtained by removing the agar attached to the roots from the tube bottle and washing with water) were moved and subjected to acclimation treatment under the same conditions. The survival rate during acclimatization was investigated. When the survival rate in the case of the control mentioned above is taken as 100, the survival rate in the case of Example 4 is 143, and the silica
It was found that the use of alumina fiber medium material improved the survival rate during acclimatization. Example 5 Using the same silica/alumina fiber culture medium as in Example 4, a 5 mm cut section of the runner tip of Nephrolepis merciarii was placed on the bed in the same manner as in Example 4, and under the same conditions as in Example 1. At 8
Culture was carried out for weeks, and the survival rate, number of shoots,
Shoot length and rooting rate were examined. The results are shown in Table 3. Example 6 Using the same silica-alumina-zirconia fiber as in Example 2 as the ceramic fiber, a blanket-shaped silica-alumina-zirconia fiber culture medium with a bulk density of 0.1 g/cm 3 was produced. - The same plant tissue was cultured in the same manner as in Example 5 above, except that a zirconia fiber culture medium was used, and the same items were investigated. The results are shown in Table 3. Regarding each value of the results of Examples 5 and 6 above,
As in Examples 1 to 3 above, culture was performed as a control according to Comparative Example 1, and the average value of the resulting measured values was expressed as 100. As is clear from the results in Table 3, in the cases of Examples 5 and 6, in which two types of ceramic fiber medium materials were used, the growth and rooting of the shoots were significantly promoted compared to the control case. It turned out that it was.
【表】
実施例 7
実施例4と同じ嵩密度0.1g/cm3のブランケツ
ト状のシリカ・アルミナフアイバー製培地材を使
用し、このシリカ・アルミナフアイバー製培地材
から、一辺1.8cmの立方体を切出して管ビン1本
当り約0.6gを使用し、また、実施例1と同じム
ラシゲ・スクーグ培地6mlを使用し、実施例1と
同様にしてセントポーリア・イオナータ(交配種
A)の葉を約2mm角に切断した切片を置床し、実
施例1と同様な条件で40日間培養を行い、その時
の生存率、カルス径、シユート数、シユート長及
び発根率を調べた。上記比較例1と同様な寒天培
地による培養を行つた対照の測定値の平均値を
100として表した結果は、生存率が144で、カルス
径が269で、シユート数が260で、シユート長が
388で、発根率が135であつた。
この結果から明らかなように、この実施例7の
シリカ・アルミナフアイバー製培地材の使用によ
り、カルスの成長、シユートの分化、成長が著し
く促進されることが判明した。
実施例 8
実施例1と同じシリカ・アルミナフアイバーを
使用し、実施例1と同様に加工して嵩密度0.07
g/cm3のブランケツト状のシリカ・アルミナフア
イバー製培地材を製造した。
このシリカ・アルミナフアイバー製培地材から
一辺2cmの立方体を切出し、その0.56gを2.5mm
φ×12cmの管ビンの底部に繊維方向が垂直となる
ように設置し、実施例1と同様にしてセントポー
リア・イオナータ(交配種B)の葉を約2mm角に
切断した切片を置床し、実施例1と同様な条件で
13週間培養を行い、その時の生存率、カルス形成
率、シユート数、シユート長及び発根率を調べ
た。上記比較例1と同様な寒天培地による培養を
行つた対照の測定値の平均値を100として表した
結果は、生存率が100で、カルス形成率が100で、
シユート数が105で、シユート長が276で、発根率
が100であつた。この結果から明らかなように、
この実施例8のシリカ・アルミナフアイバー製培
地材の使用により、シユートの成長が著しく促進
されることが判明した。
実施例 9
実施例1で製造したブランケツト状のシリカ・
アルミナフアイバー製培地材から一辺2cmの立方
体を切出し、その中央部に切込みを入れて馴化培
地を調製した。
培養で得られた幼植物のシペラス・プルケラ
(品種名:ナナス)の組織培養苗(ムラシゲ・ス
クーグ寒天培地使用、20日間培養)を管ビン中よ
り取出し、根に付着している寒天を流水中で取除
き水洗し、その根を上記馴化培地の切込みの中に
挟み込むようにしてこの幼植物を植え付けた。
このようにして馴化培地に植え付けた幼植物を
そのままプラスチツク製の栽培容器内に置き、75
%の遮光下のハウス内に10日間馴化処理を実施
し、この時の活着率を検討した。なお、潅水は1
日1回行い、培地が完全に水で飽和するまで行
い、余分の水については栽培容器内から排出させ
た。
この実施例9の対照として、馴化培地としてピ
ートモス2重量部、パーライト1重量部及びバー
ミキユライト0.5重量部を混合して得られた培土
を使用し、この培土を上記実施例4で使用したと
同じプラスチツク製の栽培容器内に2cmの厚さに
入れ、上記実施例4で使用したと同じ幼植物をこ
の栽培容器内の馴化培地に植え付け、実施例9と
同じ条件下で馴化処理を行つた。この対照の活着
率を100とした時の上記実施例4の活着率は143で
あつた。
実施例 10
幼植物としてアローカシア・マクロリーザの管
ビン内発芽苗(ムラシグ・スクーグ寒天培地使
用、60日間培養)を使用し、馴化培地の大きさを
一辺3cmの立方体とした以外は、実施例9と同様
にして植え付け、同様な条件下で馴化処理を行
い、この時の活着率を検討した。
この実施例10の対照としては、培土の厚さを3
cmとした以下は上記実施例9の場合と同様の馴化
培地を使用し、この実施例10と同様の条件下で馴
化処理を行つた。この対照の活着率を100とした
時の上記実施例10の活着率は125であつた。
次に、この実施例10及びその対照で馴化処理し
た植物を定植し、馴化後の生育量を検討した。す
なわち、縦7cm、横7cm及び高さ6cmの植物栽培
用ロツクウール・キユーブの中央部に3cmφ×深
さ3cmの穴を形成し、この穴の中に実施例10で馴
化処理した植物をその馴化培地材ごと押込んで定
植し、このキユーブを45%遮光下のハウス内に置
き、1日1回液体肥料としてハイポネツクス原液
(村上物産(株)製:5(N)−10(P)−5(K)、微量
要
素入り)の2000倍溶液を潅水代りに与え、30日間
栽培した。
対照として、この実施例10の対照で馴化処理し
た植物を使用し、その根の回りの培土をできるだ
け落さないようして栽培容器から取出し、この実
施例10と同様に、植物栽培用ロツクウール・キユ
ーブの中央部の穴の中に馴化処理に使用した培土
を使用して定植し、ハウス内で栽培した。
上記実施例10とその対照の植物の生長量をその
葉の数で比較したところ、対照の生長量を100と
した時の実施例10の生長量は150であつた。
[発明の効果]
この発明は、植物組織培養に阻害作用を有する
成分を実質的に溶出しないセラミツクフアイバー
製の培地材に関するもので、液体培地と組合せて
使用され、植物培養組織の増殖、分化、発根の促
進、馴化時の活着率や馴化後の幼植物の生育性の
向上、広範な種類の植物への適用、組織培養から
馴化後の定値までの連続使用、馴化作業の省力
化、馴化時の活着率の向上、馴化後の生産性の向
上等を達成することができる。[Table] Example 7 Using a blanket-shaped silica/alumina fiber culture medium with the same bulk density of 0.1 g/cm 3 as in Example 4, a cube with a side of 1.8 cm was cut out from this silica/alumina fiber culture medium. Using approximately 0.6 g per tube bottle, and using 6 ml of the same Murashige-Skoog medium as in Example 1, leaves of Saintpaulia ionata (hybrid A) were cut into approximately 2 mm square leaves in the same manner as in Example 1. The cut sections were placed on a bed and cultured for 40 days under the same conditions as in Example 1, and the survival rate, callus diameter, number of shoots, shoot length, and rooting rate were examined. The average value of the measured values of the control cultured on the same agar medium as in Comparative Example 1 above.
The results expressed as 100 are: survival rate is 144, callus diameter is 269, shoot number is 260, shoot length is
388, and the rooting rate was 135. As is clear from the results, it was found that the use of the silica/alumina fiber medium material of Example 7 significantly promoted callus growth, shoot differentiation, and growth. Example 8 The same silica-alumina fiber as in Example 1 was used, processed in the same manner as in Example 1, and the bulk density was 0.07.
A blanket-shaped silica/alumina fiber medium material of g/cm 3 was produced. Cut out a cube of 2 cm on each side from this silica/alumina fiber medium material, and add 0.56 g of it to 2.5 mm.
The fibers were placed at the bottom of a φ x 12 cm tube bottle so that the fiber direction was perpendicular, and the leaves of Centpaulia ionata (hybrid B) were cut into approximately 2 mm square pieces in the same manner as in Example 1. Under the same conditions as Example 1
Culture was carried out for 13 weeks, and the survival rate, callus formation rate, number of shoots, shoot length, and rooting rate were examined. The average value of the measured values of the control cultured on the same agar medium as in Comparative Example 1 above is expressed as 100, and the survival rate is 100, the callus formation rate is 100,
The number of shoots was 105, the shoot length was 276, and the rooting rate was 100. As is clear from this result,
It was found that the use of the silica-alumina fiber medium material of Example 8 significantly promoted the growth of shoots. Example 9 Blanket-shaped silica produced in Example 1
A conditioned medium was prepared by cutting out a cube of 2 cm on each side from the alumina fiber medium material and making a notch in the center. The tissue-cultured seedlings of Ciperus pulchella (cultivar name: Nanasu) obtained by culture (using Murashige-Skoog agar medium, cultured for 20 days) were taken out of the tube bottle, and the agar attached to the roots was washed under running water. The seedlings were removed and washed with water, and the seedlings were planted by inserting the roots into the notches of the conditioned medium. The seedlings planted in the conditioned medium in this way were placed in a plastic cultivation container for 75 minutes.
Acclimation treatment was carried out for 10 days in a greenhouse under light-shielding conditions of 1.5%, and the survival rate at this time was examined. In addition, irrigation is 1
The cultivation was carried out once a day until the medium was completely saturated with water, and excess water was drained from the cultivation container. As a control for this Example 9, a soil obtained by mixing 2 parts by weight of peat moss, 1 part by weight of perlite, and 0.5 parts by weight of vermiculite was used as a conditioned medium, and this soil was used in Example 4 above. The same seedlings used in Example 4 were placed in the same plastic cultivation container with a thickness of 2 cm, and the same seedlings were planted in the conditioned medium in this cultivation container, and the acclimatization treatment was performed under the same conditions as in Example 9. . The survival rate of Example 4 was 143 when the survival rate of this control was set as 100. Example 10 Same as Example 9, except that seedlings of Araucasia macrorhiza sprouted in a tube (Murasig-Skoog agar medium, cultured for 60 days) were used as seedlings, and the size of the conditioned medium was a cube of 3 cm on each side. They were planted in the same manner as above, and acclimatized under the same conditions, and the survival rate at this time was examined. As a control for this Example 10, the thickness of the soil was 3.
cm. The same conditioned medium as in Example 9 above was used, and the conditioning treatment was performed under the same conditions as in Example 10. The survival rate of Example 10 was 125 when the survival rate of this control was set as 100. Next, the plants acclimatized in Example 10 and its control were planted, and the amount of growth after acclimatization was examined. That is, a hole of 3 cm diameter x 3 cm depth was formed in the center of a rock wool cube for plant cultivation measuring 7 cm in length, 7 cm in width, and 6 cm in height, and the plants acclimatized in Example 10 were placed in the hole in the conditioned medium. Push the entire wood into the plant, place the cube in a greenhouse with 45% light shielding, and apply Hyponex undiluted solution (manufactured by Murakami Bussan Co., Ltd.: 5(N)-10(P)-5(K) once a day as a liquid fertilizer. ), containing trace elements) was given as an alternative to irrigation, and cultivation was continued for 30 days. As a control, a plant that had been acclimatized in the control of this Example 10 was taken out of the cultivation container without dropping the soil around its roots as much as possible, and similarly to this Example 10, a plant that had been acclimated was treated with Rotsukwool for plant cultivation. The seeds were planted in a hole in the center of the cuvette using the soil used for acclimatization and cultivated in a greenhouse. When the growth amount of the plants of Example 10 and the control plant was compared in terms of the number of leaves, the growth amount of Example 10 was 150 when the growth amount of the control was 100. [Effects of the Invention] The present invention relates to a medium material made of ceramic fiber that does not substantially elute components that have an inhibitory effect on plant tissue culture, and is used in combination with a liquid medium to promote the growth, differentiation, and growth of cultured plant tissue. Promotion of rooting, improvement of survival rate during acclimatization and growth of seedlings after acclimatization, application to a wide variety of plants, continuous use from tissue culture to a fixed value after acclimatization, labor saving in acclimatization work, acclimatization It is possible to achieve an improvement in the survival rate during cultivation and an improvement in productivity after acclimatization.
Claims (1)
的に溶出しないセラミツクフアイバーからなり、
液体培地と組合せて使用される植物組織培養用培
地材。 2 セラミツクフアイバーが液体培地と実質的に
反応しないものである特許請求の範囲第1項記載
の植物組織培養用培地材。 3 セラミツクフアイバーが親水性である特許請
求の範囲第1項記載の植物組織培養用培地材。 4 セラミツクフアイバーがシリカ・アルミナ系
フアイバーである特許請求の範囲第1項記載の植
物組織培養用培地材。 5 セラミツクフアイバーはその繊維の方向が垂
直方向に配列している特許請求の範囲第1項記載
の植物組織培養用培地材。 6 嵩密度が0.005〜0.3g/cm3である特許請求の
範囲第1項記載の植物組織培養用培地材。[Claims] 1. Comprised of a ceramic fiber that does not substantially elute components that have an inhibitory effect on plant tissue culture,
A medium material for plant tissue culture used in combination with a liquid medium. 2. The medium material for plant tissue culture according to claim 1, wherein the ceramic fiber does not substantially react with the liquid medium. 3. The medium material for plant tissue culture according to claim 1, wherein the ceramic fiber is hydrophilic. 4. The medium material for plant tissue culture according to claim 1, wherein the ceramic fiber is a silica-alumina fiber. 5. The medium material for plant tissue culture according to claim 1, wherein the ceramic fibers are arranged in a vertical direction. 6. The medium material for plant tissue culture according to claim 1, which has a bulk density of 0.005 to 0.3 g/cm 3 .
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15841085 | 1985-07-19 | ||
JP60-158410 | 1985-07-19 | ||
JP60-227763 | 1985-10-15 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62175170A JPS62175170A (en) | 1987-07-31 |
JPH0373275B2 true JPH0373275B2 (en) | 1991-11-21 |
Family
ID=15671144
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61156166A Granted JPS62175170A (en) | 1985-07-19 | 1986-07-04 | Medium for tissue culture of plant |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62175170A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63291580A (en) * | 1987-05-22 | 1988-11-29 | Nok Corp | Culture of plant tissue and bioreactor using therefor |
FR2814395B1 (en) | 2000-09-26 | 2003-03-28 | Imaje Sa | METHOD AND DEVICE FOR CLEANING NOZZLES FOR INK-JET PRINTERS, AND PRINT HEAD AND PRINTER INCORPORATING SUCH A DEVICE |
-
1986
- 1986-07-04 JP JP61156166A patent/JPS62175170A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS62175170A (en) | 1987-07-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Stone | Factors affecting the growth of carnation plants from shoot apices | |
Horgan et al. | Reliable plantlet formation from embryos and seedling shoot tips of radiata pine | |
KR880000940B1 (en) | A method for cultivating lilies | |
CN113100060B (en) | Tissue culture propagation method for alpine rhododendron | |
EP0231387B1 (en) | Culture medium supports for plant tissue culture | |
EP1070450A1 (en) | Method for plant tissue culture | |
KR20080104633A (en) | Induction method of protocorm like body from phalaenopsis adult plant | |
CN102232359B (en) | In-vitro rapid propagation method of double-petal Jasminum sambac | |
Jeon et al. | Culture method and growing medium affect growth and flower quality of several Gerbera cultivars | |
JPH0373275B2 (en) | ||
CN107242138B (en) | Tissue culture rapid propagation and cultivation method of paphiopedilum chianus | |
CN107494270B (en) | The tissue culture and rapid propagation method of gold leaf common bluebeard | |
KR100334629B1 (en) | Method for manufacturing high quality young seedling of phalaenopsis in bioreactor by using tissue of flower stalk before blooming | |
JPS61242522A (en) | Method for converting plant tissue to seedling | |
AU2021105531A4 (en) | Culture medium for plant tissue culture and application thereof | |
Roberts et al. | Stage III techniques for improving water relations and autotrophy in micropropagated plants | |
Rodríguez Pérez | Propagation by leaf bud cuttings of Leucadendron ‘Safari Sunset’, Leucospermum cordifolium, Leucospermum patersonii and Protea obtusifolia | |
JP2000197423A (en) | Culture and proliferation of solanaceous plant | |
KR100715248B1 (en) | Producing method of Echinosophora koreensis by bud culture | |
CN107494268B (en) | Tissue culture and rapid propagation method of polychlorinated starjasmine | |
CN1313027A (en) | Method for breeding wolfberry autotetraploid | |
De Fossard | Tissue culture propagation: state of the art | |
JPH02255026A (en) | Medium material for culturing plant tissue | |
CN118648536A (en) | Method for quick breeding and seedling raising of pteris fraxinifolia tissue culture | |
CN118844338A (en) | Rooting medium and tissue culture method for radix tinosporae |