JPS62174542A - Electronic control type fuel injector - Google Patents

Electronic control type fuel injector

Info

Publication number
JPS62174542A
JPS62174542A JP1451286A JP1451286A JPS62174542A JP S62174542 A JPS62174542 A JP S62174542A JP 1451286 A JP1451286 A JP 1451286A JP 1451286 A JP1451286 A JP 1451286A JP S62174542 A JPS62174542 A JP S62174542A
Authority
JP
Japan
Prior art keywords
map
opening
egr
intake pressure
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1451286A
Other languages
Japanese (ja)
Inventor
Masahiro Kataoka
片岡 昌宏
Masakazu Ninomiya
正和 二宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP1451286A priority Critical patent/JPS62174542A/en
Publication of JPS62174542A publication Critical patent/JPS62174542A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To obtain a proper air fuel ratio even in the operation of an EGR by setting the map for the operation of EGR more finely in comparison with the map for the nonoperation of EGR, in the maps for determining the fundamental injection time. CONSTITUTION:The fundamental injection time is determined according to the intake pressure detected by an intake pressure sensor 2 and the number of revolution which is detected by a revolution sensor 7 from the maps previously memorization-set in a control circuit 8. Said maps are provided for the operation and nonoperation of an EGR, and selected according to the ON/OFF of a solenoid valve 15. Further, though the map is represented in two dimensions of the intake pressure and the number of revolution, the map for the operation of EGR is set finer on the intake pressure side than in the map for the nonoperation of EGR. Therefore, the fundamental fuel injection time for the operation of EGR in which the variation of the demanded fuel quantity for the intake pressure can not be made uniform can be properly set without increasing the memory capacity of the map.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は排気ガスを吸気管に還流させる排気ガス循環装
置を有する内燃機関に対して設けられた電子制御式燃料
噴射装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an electronically controlled fuel injection device provided for an internal combustion engine having an exhaust gas circulation device for recirculating exhaust gas to an intake pipe.

〔従来の技術〕[Conventional technology]

従来より、車両用内燃機関等においては排気ガスの有害
成分、特にNOXの低減のために排気ガスの一部を吸気
管に還流させる排気ガス循環装置(以下、EGRと言う
)を取り付けたものが多数有る。
Traditionally, internal combustion engines for vehicles have been equipped with an exhaust gas recirculation system (hereinafter referred to as EGR) that recirculates a portion of the exhaust gas to the intake pipe in order to reduce harmful components in the exhaust gas, especially NOx. There are many.

ところで、ごのようなEGRを備えた内燃機関であって
、吸気圧と回転数とにより燃料噴射弁からの燃料量を決
めて機関制御を実行するものにおいては、排気ガスが還
流されると実際の吸入空気量に相当する吸気圧よりも排
気ガスの還流量分だけ高い吸気圧が検出されるようにな
るため、EGRの作動時においては適正な燃料制御が得
られないという問題があった。
By the way, in internal combustion engines equipped with EGR, such as those that execute engine control by determining the amount of fuel from the fuel injection valve based on the intake pressure and rotation speed, when the exhaust gas is recirculated, the actual Since the intake pressure is detected to be higher than the intake pressure corresponding to the intake air amount by the amount of exhaust gas recirculation, there is a problem that proper fuel control cannot be obtained when EGR is activated.

そしてこのような問題に対し、例えば特開昭60−81
449号公報においては、EGRを作動させていない時
は吸気圧と回転数とによって決められたマツプから基本
噴射時間を求めて燃料制御を行ない、EGRを作動させ
ている時はこのマツプから求められた基本噴射時間をス
ロットル弁開度と回転数とによって決められたマツプか
ら求められる補正率によって補正して燃料制御を行なっ
ている。
For such problems, for example, Japanese Patent Application Laid-Open No. 60-81
In Publication No. 449, when EGR is not operating, fuel control is performed by determining the basic injection time from a map determined by intake pressure and rotational speed, and when EGR is operating, fuel control is performed by determining the basic injection time from this map. Fuel control is performed by correcting the basic injection time based on a correction factor determined from a map determined by the throttle valve opening and rotational speed.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、上記公報に示されるようにEGRの作動
時と非作動時とに応じて各々設定された、2個のマツプ
の構成が同じ、つまり各パラメータに対する格子点の数
が同数に設定されていると、EGRの作動時の排気ガス
の還流量と実際の吸入空気量と比率が回転数変化に対し
て大きく変化するために、格子点の数がEGRの非作動
時に合わせて設定されている場合は、EGRの作動時の
格子点の数が不充分となって、E 、G Rの作動時に
おける機関が要求する燃料量と、算出されて供給される
燃料量との間に大きな差が生じ、空燃比が大きく乱れる
という問題点があり、またEGRの作動時の制御性が充
分良好になるよう格子点の数をEGRの作動時に合わせ
て設定した場合は、各マツプの格子点の数が多くなり、
これらのマツプの内容を記憶しておくために記憶装置(
ROM)の容量を多くする必要があるという問題点が生
じる。
However, as shown in the above publication, the configurations of the two maps, which are set respectively depending on when EGR is activated and when it is not activated, are the same, that is, the number of grid points for each parameter is set to be the same. In the case where the number of grid points is set to match when EGR is not operating, because the amount of exhaust gas recirculation and the actual intake air amount and ratio change greatly with changes in rotation speed when EGR is operating. When EGR is activated, the number of lattice points is insufficient, resulting in a large difference between the amount of fuel required by the engine when EGR is activated and the amount of fuel that is calculated and supplied. , there is a problem that the air-fuel ratio is greatly disturbed, and if the number of grid points is set to match the EGR operation so that the controllability during EGR operation is sufficiently good, the number of grid points in each map is become more,
A storage device (
A problem arises in that it is necessary to increase the capacity of the ROM.

従って、本発明の目的はEGRの作動時であっても適正
な空燃比が得られ、しかも上記マツプ内容を記憶する記
憶装置の容量をむやみに多くすることのない電子制御式
燃料噴射装置を提供することである。
Therefore, an object of the present invention is to provide an electronically controlled fuel injection device that can obtain a proper air-fuel ratio even when EGR is in operation, and that does not unnecessarily increase the capacity of a storage device that stores the map contents. It is to be.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点を解決するために、第1発明においては第8
図に示すように、 EGRを有する内燃機関の吸気圧を検出する吸気圧検出
手段と、 該機関の回転数を検出する回転数検出手段と、該機関に
燃料を供給する燃料噴射弁と、予め記憶設定されたマツ
プより上記吸気圧と回転数とに応じて基本噴射時間を決
定し、この基本噴射時間に基づいて燃料噴射弁の開弁時
間を算出する開弁時間算出手段と を備える電子制御式燃料噴射装置であって、上記マツプ
がEGRの作動時、非作動時に応じて夫々備えられてお
り、しかもEGR作動時用マツプはEGR非作動時用マ
ツプに比べて細かく設定されていることとしており、 また第2発明においては第9図に示すように、EGRを
有する内燃機関の吸気圧を検出する吸気圧検出手段と、 該機関の回転数を検出する回転数検出手段と、該機関に
燃料を供給する燃料噴射弁と、予め記憶設定されたマツ
プより上記吸気圧と回転数とに応じて基本噴射時間を決
定し、この基本噴射時間に基づいて燃料噴射弁の開弁時
間を算出する開弁時間算出手段と を備える電子制御式燃料噴射装置であって、上記マツプ
がEGRの非作動時に応じて設定されたものであると共
に、このEGR非作動時用マツプをEGRの作動時に対
応するよう補正する補正マツプが設けられており、しか
もこの補正マツプが上記EGR非作動時マツプよりも細
かく設定されていることとしている。
In order to solve the above problems, in the first invention, the eighth
As shown in the figure, an intake pressure detection means for detecting the intake pressure of an internal combustion engine having EGR, a rotation speed detection means for detecting the rotation speed of the engine, a fuel injection valve for supplying fuel to the engine, and An electronic control device comprising a valve opening time calculation means that determines a basic injection time according to the intake pressure and rotational speed from a map stored in memory and calculates a valve opening time of the fuel injection valve based on this basic injection time. The above-mentioned map is provided for when EGR is activated and when it is not activated, and the map for when EGR is activated is set more precisely than the map for when EGR is not activated. In addition, in the second invention, as shown in FIG. 9, an intake pressure detection means for detecting the intake pressure of an internal combustion engine having EGR, a rotation speed detection means for detecting the rotation speed of the engine, and a rotation speed detection means for detecting the rotation speed of the engine. The basic injection time is determined according to the fuel injection valve that supplies fuel and the above-mentioned intake pressure and rotational speed from a map stored in advance, and the opening time of the fuel injection valve is calculated based on this basic injection time. An electronically controlled fuel injection device comprising a valve opening time calculation means, wherein the map is set according to when EGR is not operating, and the map for when EGR is not operating is set corresponding to when EGR is operating. A correction map for correcting this is provided, and this correction map is set more finely than the EGR non-operation map.

〔実施例〕〔Example〕

以下、本発明の一実施例を図面に基づいて説明する。 Hereinafter, one embodiment of the present invention will be described based on the drawings.

第1図は本発明の一実施例が適用される内燃機関とその
制御系統の概略構成図を示す。
FIG. 1 shows a schematic configuration diagram of an internal combustion engine and its control system to which an embodiment of the present invention is applied.

1は6気筒内燃機関のシリンダ、2はシリンダ1に接続
されるインテークマニホールド3内の吸入空気圧力を検
出する吸気圧センサであって、半導体形圧力センサによ
り構成される。4はインテークマニホールド3の各シリ
ンダ吸気ボート付近に設けられた電磁作動式の燃料噴射
弁、6はディストリビュータである。このディストリビ
ュータ6のロータは機関回転の1/2の回転数で回転駆
動され、内部には機関回転数、燃料噴射時期を示す信号
と気筒判別信号を出力する回転センサ7が配設される。
1 is a cylinder of a six-cylinder internal combustion engine, and 2 is an intake pressure sensor that detects the intake air pressure in an intake manifold 3 connected to the cylinder 1, and is constituted by a semiconductor pressure sensor. 4 is an electromagnetically actuated fuel injection valve provided near each cylinder intake boat of the intake manifold 3, and 6 is a distributor. The rotor of the distributor 6 is driven to rotate at 1/2 of the engine rotation speed, and a rotation sensor 7 that outputs a signal indicating the engine rotation speed, fuel injection timing, and a cylinder discrimination signal is disposed inside.

9はスロットルバルブ、10はスロットルバルブ9の開
度を検出するスロットルポジションセンサ、11は機関
の冷却水温度を検出するサーミスタ式の水温センサ、1
2は吸入空気温度を検出する吸気温センサである。13
はインテークマニホールド3とエキシストマニホールド
16間に接続された排気ガス循環路17に装着されたバ
キュームサーボ型の排気ガス再循環制御用バルブ(以下
EGRパルプと略す)であり、EGRバルブ13を制御
する制御管路18はECRバルブ13のダイヤフラム室
とサージタンク19人口との間に接続され、排気ガス再
循環を行なうか否かの切り換えを行なう電磁弁15がこ
の制御管路18に設置される。電磁弁15は電子制御回
路8の出カポ−1−107(第2図)に接続され、例え
ば、冷間時、アイドル時、高負荷時にはEGRバルブ1
3のダイアフラム室へ大気圧が通ずるように動作し、一
方排気ガス再循環実施時にはサージタンク19人口のス
ロットルバルブ9付近の負圧をEGRバルブ13のダイ
アフラム室へ印加するように作動信号を受ける。
9 is a throttle valve; 10 is a throttle position sensor that detects the opening degree of the throttle valve 9; 11 is a thermistor type water temperature sensor that detects the engine cooling water temperature;
2 is an intake air temperature sensor that detects intake air temperature. 13
is a vacuum servo type exhaust gas recirculation control valve (hereinafter abbreviated as EGR pulp) installed in the exhaust gas circulation path 17 connected between the intake manifold 3 and the exhaust manifold 16, and controls the EGR valve 13. A control line 18 is connected between the diaphragm chamber of the ECR valve 13 and the surge tank 19, and a solenoid valve 15 for switching whether or not to perform exhaust gas recirculation is installed in this control line 18. The solenoid valve 15 is connected to the output port 1-107 (Fig. 2) of the electronic control circuit 8, and for example, the EGR valve 1
On the other hand, when performing exhaust gas recirculation, it receives an activation signal to apply negative pressure near the throttle valve 9 in the surge tank 19 to the diaphragm chamber of the EGR valve 13.

第4図は、内燃機関の燃料噴射量制御を行なって空燃比
を制御する電子制御回路8と各種センサ等のブロック図
を示し、電子制御回路8はマイクロコンピュータを中心
に構成される。
FIG. 4 shows a block diagram of an electronic control circuit 8 that controls the fuel injection amount of the internal combustion engine to control the air-fuel ratio, various sensors, etc. The electronic control circuit 8 is mainly composed of a microcomputer.

制御回路8は、吸気圧センサ2、回転センサ7、スロッ
トルポジションセンサ10、水温センサ11、吸気温セ
ンサ12からの各検出信号を取り込み、これらの検出デ
ータに基づいて燃料噴射量を算出し、燃料噴射弁4の開
弁時間を制御して空燃比制御を行なう。100は所定の
プログラムによって演算処理を実行するMPU (マイ
クロプロセッサユニット)、101はMPU100に割
り込み信号を出力する割り込み制御部、102は回転セ
ンサ7からの回転角信号をカウントし、機関の回転数を
算出するカウンタ部、104は吸気圧センサ2、スロッ
トルポジションセンサ10、水温センサ11、吸気温セ
ンサ12からの検出信号(アナログ信号)を選択的に人
力してデジタル信号に変換するA/D変換部である。1
05はプログラムや演算に使用するマツプデータ等が予
め記憶された読み出し専用メモリであるROM、106
は書き込み読み出し可能な不揮発性メモリであるRAM
であり、キースイッチのオフ後も記憶内容を保持する。
The control circuit 8 takes in each detection signal from the intake pressure sensor 2, rotation sensor 7, throttle position sensor 10, water temperature sensor 11, and intake temperature sensor 12, calculates the fuel injection amount based on these detection data, and calculates the fuel injection amount. Air-fuel ratio control is performed by controlling the opening time of the injection valve 4. 100 is an MPU (microprocessor unit) that executes arithmetic processing according to a predetermined program, 101 is an interrupt control unit that outputs an interrupt signal to the MPU 100, and 102 is a unit that counts the rotation angle signal from the rotation sensor 7 and calculates the engine rotation speed. The counter section 104 for calculation is an A/D conversion section that selectively manually converts detection signals (analog signals) from the intake pressure sensor 2, throttle position sensor 10, water temperature sensor 11, and intake temperature sensor 12 into digital signals. It is. 1
05 is a ROM, which is a read-only memory in which map data, etc. used for programs and calculations are stored in advance; 106;
RAM is a non-volatile memory that can be written and read.
The memory contents are retained even after the key switch is turned off.

107は電磁弁15に接続された出力ボート、108は
レジスタを含む燃料噴射量(時間)制御信号出力用の出
力カウンタ部であって、MPU100から送られる燃料
噴射量データを入力し、このデータに基づいて燃料噴射
弁4の開弁時間を制御する制御パルス信号のデユーティ
比を決定し、噴射量制御信号を出力する。なお、出力用
のカウンタ部108から出力される制御信号は電力増幅
器110を介して各気筒毎の燃料噴射弁4に印加される
。また、上記制御回路8内において、IPUloo、割
り込み制御部101、入力カウンタ部102、A/D変
換器104、ROM105、RAM106、出力カウン
タ部108はそれぞれコモンハス111に接続され、必
要なデータの転送がMPU100の指令により行なわれ
る。
107 is an output boat connected to the electromagnetic valve 15, and 108 is an output counter unit including a register for outputting a fuel injection amount (time) control signal. Based on this, a duty ratio of a control pulse signal that controls the opening time of the fuel injection valve 4 is determined, and an injection amount control signal is output. Note that the control signal output from the output counter section 108 is applied to the fuel injection valve 4 of each cylinder via the power amplifier 110. Further, in the control circuit 8, the IPUloo, interrupt control section 101, input counter section 102, A/D converter 104, ROM 105, RAM 106, and output counter section 108 are each connected to the common hash 111, so that necessary data transfer is possible. This is performed according to a command from the MPU 100.

次に上記構成の作動を第3図フローチャートに基づき説
明する。
Next, the operation of the above configuration will be explained based on the flowchart of FIG.

第3図に示すフローチャートはEGRの作動、非作動の
判別、ならび実行を行なうと共にEGRの作動時、非作
動時に応じた燃料噴射量の制御を実行するプログラムの
フローチャートであり、割り込み制御部101から与え
られる、例えば回転に同期した割り込み信号に応じて起
動する。
The flowchart shown in FIG. 3 is a flowchart of a program that determines and executes whether EGR is activated or not, and also controls the fuel injection amount depending on when EGR is activated or deactivated. It is activated in response to a given interrupt signal synchronized with rotation, for example.

割り込み信号がMPU100に与えられ、本ルーチンが
起動すると、まずステップ201にて最新のデータとし
てA/D変換部104を介してRAM106内に格納さ
れている吸気圧P、冷却水温THW、吸気温THAと、
カウンタ部102にテ算出されてRAM106内に格納
されている回転数Nを取込む。ステップ202,203
ではEGRの作動条件が満たされているか否かの判定が
行なわれる。つまりステップ202では上記冷却水温T
HWが予めROM105内に記憶設定されていた比較水
温To  (例えば70’C)より高いが否かを判別し
、またステップ203では上記回転1i3Nが予めRO
M105内に記憶設定されていた比較回転数No(例え
ば3000rpm)より低いか否かを判別する。
When an interrupt signal is given to the MPU 100 and this routine is started, first in step 201, the intake pressure P, cooling water temperature THW, and intake air temperature THA stored in the RAM 106 via the A/D converter 104 are stored as the latest data. and,
The rotation speed N calculated and stored in the RAM 106 is loaded into the counter section 102. Steps 202, 203
Then, it is determined whether the EGR operating conditions are satisfied. In other words, in step 202, the cooling water temperature T
It is determined whether the HW is higher than the comparative water temperature To (for example, 70'C) stored in advance in the ROM 105, and in step 203, the rotation 1i3N is set to RO in advance.
It is determined whether the rotation speed is lower than the comparison rotation speed No. (for example, 3000 rpm) stored in M105.

そしてステップ202,203でいずれも[YESJ、
つまりTHW>Toであって、がっN〈Noであった場
合は、ECRの作動条件が満たされているとして、ステ
ップ204に進み、ステップ204で電磁弁15をON
にすべく出力ポート107に対して指令する。この指令
に応じて、出力ポート107は電磁弁15に対して作動
信号を印加して、電磁弁15をONL、EGRパルプ1
3のダイアフラム室に負圧を伝えて、EGRパルプ13
を開弁動作させる。そして、EGRバルブ13が開弁さ
れることで排気ガスがインテークマニホールド3へと還
流される。
Then, in steps 202 and 203, both [YESJ,
In other words, if THW>To and N<No, it is assumed that the ECR operating conditions are satisfied, and the process proceeds to step 204, where the solenoid valve 15 is turned ON.
A command is given to the output port 107 to In response to this command, the output port 107 applies an actuation signal to the solenoid valve 15 to turn the solenoid valve 15 ONL and EGR pulp 1.
By transmitting negative pressure to the diaphragm chamber 3, the EGR pulp 13
Open the valve. Then, by opening the EGR valve 13, the exhaust gas is recirculated to the intake manifold 3.

また逆にステップ202.あるいは203のいずれかで
「NO」と判断された場合は、EGRの作動条件が満た
されていないとして、ステップ206に進み、ステップ
206で電磁弁15をOFFにすべく出力ポート107
に対して指令する。
Conversely, step 202. Alternatively, if it is determined "NO" in either step 203, it is assumed that the EGR operating conditions are not satisfied, and the process proceeds to step 206.
give commands to

この指令に応じて、出力ポート107は電磁弁15に対
しての作動信号を与えず、電磁弁をOFFし、EGRバ
ルブ13のダイアフラム室に大気圧を伝えて、EGRバ
ルブ13を閉じる。そしてEGRバルブ13が閉じられ
ることで、排気ガスはインテークマニホールド3へと還
流されることはない。
In response to this command, the output port 107 does not provide an activation signal to the solenoid valve 15, turns off the solenoid valve, transmits atmospheric pressure to the diaphragm chamber of the EGR valve 13, and closes the EGR valve 13. Since the EGR valve 13 is closed, the exhaust gas is not recirculated to the intake manifold 3.

このようにしてステップ204、または206で電磁弁
15のON、OFF制御が実行される。
In this manner, ON/OFF control of the solenoid valve 15 is executed in step 204 or 206.

、ステップ204での電磁弁15をONとする指令を出
力した後は、ステップ205に進み、ステップ205で
は第4図のごと< EGRが作動している時に応じて予
め記憶設定され、ROM105内に格納されている2次
元のEGR・ONマツプより上記吸気圧Pと回転数Nと
に応じて基本噴射時間T、を決定する。
, After outputting the command to turn on the solenoid valve 15 in step 204, the process proceeds to step 205, and in step 205, as shown in FIG. Based on the stored two-dimensional EGR/ON map, the basic injection time T is determined according to the above-mentioned intake pressure P and rotational speed N.

またステップ206での電磁弁工5をOFFとする指令
を出力した後は、ステップ207に進み、ステップ20
6では第4図(blのごと<EGRが作動していない時
に応じて予め記憶設定され、ROM105内に格納され
ている2次元のEGR−OFFマツプより上記吸気圧P
と回転数Nとに応じて基本噴射時間T、を決定する。
Further, after outputting the command to turn off the solenoid valve 5 in step 206, the process proceeds to step 207, and step 20
6, the above intake pressure P is determined from the two-dimensional EGR-OFF map stored in the ROM 105, which is pre-memorized and set according to when EGR is not operating, as shown in FIG.
The basic injection time T is determined according to the rotation speed N and the rotation speed N.

なお、この基本噴射時間は第4図(al、 (blの各
マス(格子点)の中に設定されており、また吸気圧Pや
回転数Nが各設定の中間的な値であった場合には両側の
値を補間演算して基本噴射時間T、が決定される。
Note that this basic injection time is set in each square (lattice point) in Figure 4 (al, (bl), and if the intake pressure P and rotation speed N are intermediate values between each setting. The basic injection time T is determined by interpolating the values on both sides.

ところで、第6図(alのEGR・ONマツプは同図(
blのEGR・OFFマツプより吸気圧P側で細かく設
定しである。
By the way, the EGR ON map of Figure 6 (al) is shown in the same figure (
It is set more precisely on the intake pressure P side than the BL EGR/OFF map.

ステップ205,207で基本噴射時間T、が決定され
ると、ステップ208では、冷却水温THWや吸気温T
HAに応じた各補正値に7、。
When the basic injection time T is determined in steps 205 and 207, the cooling water temperature THW and the intake air temperature T are determined in step 208.
7 for each correction value according to HA.

K THAをROM105内に格納されているマツプよ
り検索し、加算して今回の総補正値に0を求める。ステ
ップ209では総補正値に0によって基本噴射時間T、
を掛算補正すると共に、無効噴射時間Tv (バッテリ
電圧によって決まる)を加えて今回の実噴射時間、すな
わち燃料噴射弁4の開弁時間Tを算出する。ステップ2
10ではステップ209で求められた開弁時間Tを出力
カウンタ部108に出力して、本ルーチンを終了する。
K THA is searched from the map stored in the ROM 105 and added to obtain 0 for the current total correction value. In step 209, the basic injection time T,
The current actual injection time, that is, the valve opening time T of the fuel injection valve 4 is calculated by multiplying and correcting and adding the invalid injection time Tv (determined by the battery voltage). Step 2
In step 10, the valve opening time T obtained in step 209 is output to the output counter section 108, and this routine is ended.

出力カウンタ部108は割り込み制御部101からの燃
料噴射時期を示す信号に応じて開弁時間Tに応じたデユ
ーティ比を有する噴射量制御信号を電力増幅器110に
与えて、燃料噴射弁4を開弁駆動させて燃料を機関に噴
射供給する。
The output counter section 108 gives an injection amount control signal having a duty ratio according to the valve opening time T to the power amplifier 110 in response to a signal indicating the fuel injection timing from the interrupt control section 101, and opens the fuel injection valve 4. It is driven to inject and supply fuel to the engine.

ところで回転数一定の場合の吸気圧Pに対する機関が要
求する燃料量は第5図に示すごとく、EGRのOFF時
(実線)とON時(破線)とで異なり、しかも、同図か
らも解かるようにEGRの0FFBSの吸気圧Pに対す
る要求燃料量の変化はほぼ一様なものであるのに対し、
EGRのON時の同変化は一様なものではなくなる。従
ってEGRのOFF時の特性を満たす程度にEGRのO
FF時、ならびにEGRのON時の回転数Nと吸気圧P
とによって設定されるマツプの回転数Nと吸気圧Pとの
格子点の間隔を大きめに設定すると、第6図に示すよう
にEGRのON時の要求燃料量(破線)とそのマツプよ
り算出される燃料量(一点鎖&?りとの間に大きな差が
生じるようになり、また逆にEGRのON時の特性を満
たす程度に上記両マツプの回転数Nと吸気圧Pとの格子
点の間隔を細かく設定すると、EGRのON、OFFに
関係なく機関の要求燃料量と算出される燃料量とをほぼ
一致させることができるようになるものの、このマツプ
を記憶するための記憶容量が膨大なものとなる。
By the way, as shown in Figure 5, the amount of fuel required by the engine for the intake pressure P when the rotation speed is constant is different when EGR is OFF (solid line) and when it is ON (broken line), and it can also be explained from the figure. As shown above, the change in the required fuel amount with respect to the intake pressure P of EGR 0FFBS is almost uniform, whereas
The same change when EGR is turned on is not uniform. Therefore, the EGR O
Rotation speed N and intake pressure P when FF and when EGR is ON
If the interval between the grid points of the map between rotational speed N and intake pressure P is set to be large, the required fuel amount when EGR is turned on (broken line) and the map are calculated as shown in Fig. 6. There is a large difference between the fuel amount (single chain &?), and conversely, the lattice points of the rotation speed N and intake pressure P of both maps are adjusted to the extent that the characteristics when EGR is turned on are satisfied. If the intervals are set finely, the amount of fuel required by the engine and the calculated amount of fuel can be almost matched regardless of whether EGR is ON or OFF, but the memory capacity required to store this map is enormous. Become something.

しかしながら、本実施例ではEGRのON時のマツプの
格子点をEGRのOFF時のマツプの格子点より細かく
設定している。そしてこのように構成することで、記憶
容量をそれほど膨大なものとすることな(、第7図に示
すように要求燃料量とマツプから算出される燃料量とを
EGRのON時、ならびにOFF時ともに一致させる得
るようになり、従って空燃比の制御性が向上するように
なる。
However, in this embodiment, the grid points of the map when EGR is ON are set finer than the grid points of the map when EGR is OFF. By configuring it in this way, the storage capacity does not become so huge (as shown in Fig. 7, the required fuel amount and the fuel amount calculated from the map are stored when EGR is ON and when EGR is OFF). Therefore, the controllability of the air-fuel ratio is improved.

ところで上記実施例ではEGROON時とOFF時との
夫々に対応させて回転数Nと吸気圧Pとに応じて基本噴
射時間T、の設定された2次元マツプを備えるよう構成
していたが、EGRのOFF時の回転数Nと吸気圧Pと
に応じて基本噴射時間T、の設定される2次元マツプと
EGRのON時の回転数Nと吸気圧Pとに応じてBGR
のOFF時の基本噴射時間Tpを補正する補正マ・ノブ
とを備えるように構成した場合は、この補正マツプの格
子点をEGRのOFF時のものより多くし、EGRのO
FF時のマツプより細かく設定しておけば、上記実施例
と同様の効果が得られる。
By the way, in the above embodiment, a two-dimensional map is provided in which the basic injection time T is set according to the rotational speed N and the intake pressure P in correspondence to the EGROON and OFF times, respectively. The basic injection time T is set according to the rotation speed N and intake pressure P when EGR is OFF, and the BGR is set according to the rotation speed N and intake pressure P when EGR is ON.
If the configuration is equipped with a correction map knob that corrects the basic injection time Tp when the EGR is OFF, the number of lattice points of this correction map is larger than that when the EGR is OFF, and the EGR O
If the map is set more finely than the FF map, the same effect as in the above embodiment can be obtained.

また上記実施例では吸気圧P側のみEGRのON時のマ
ツプをEGRのOFF時のマツプより細かく設定してい
たが、−回転数N側も細かく設定してもかまわない。
Further, in the above embodiment, the map when EGR is ON is set more finely on the side of intake pressure P than the map when EGR is OFF, but it is also possible to set finely on the side of -revolutions N.

また上記各実施例では基本噴射時間T、を回転数Nと吸
気圧Pとによって設定された2次元マツプ中に記憶した
構成としていたが、回転数Nの1次元マツプと吸気圧P
の1次元マツプの組み合せにより基本噴射時間T2を算
出するよう構成してもよく、この場合、EGRのON時
の回転数Nの1次元マツプと吸気圧Pの1次元マツプの
少なくとも一方をEGRのOFF時のものに比べて細か
く設定しておけば上記実施例と同様の効果が得られる。
Furthermore, in each of the above embodiments, the basic injection time T is stored in a two-dimensional map set by the rotational speed N and the intake pressure P, but the one-dimensional map of the rotational speed N and the intake pressure P
The basic injection time T2 may be calculated by a combination of one-dimensional maps of If the settings are made more finely than when OFF, the same effect as in the above embodiment can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本第1発明によれば、内燃機関の排
気ガスを吸入管へ還流させる還流管と、 この還流管を開閉する開閉手段と、 この開閉手段を開閉制御する制御手段と、内燃機関の吸
気管のスロットル弁下流域の吸気圧を検出する吸気圧検
出手段と、 内燃機関の回転数を検出する回転数検出手段と、内燃機
関に対して燃料を噴射供給する電磁的に作動される燃料
噴射弁と、 予めマツプによって記憶設定されている基本噴射時間を
上記吸気圧と上記回転数とを用いて決定し、この基本噴
射時間に基づいて上記燃料噴射弁の開弁時間を算出する
開弁時間算出手段とを備える電子制御式燃料噴射装置で
あって、上記マツプは上記制御手段にて上記開閉手段が
開制御されている時と、閉制御されている時とに応じて
、夫々備えられており、しかも開制御時間のマツプは閉
制御時間用のマツプに比べて細かく設定されていること
を特徴とする電子制御式燃料噴射装置としたことから、 また本第2発明によれば、 内燃機関の排気ガスを吸気管へ還流させる還流管と、 この還流管を開閉する開閉手段と、 この開閉手段を開閉制御する制御手段と、内燃機関の吸
気管のスロットル弁の下流域の吸気圧を検出する吸気圧
検出手段と、 内燃機関の回転数を検出する回転数検出手段と、内燃機
関に対して燃料を噴射供給する電磁的に作動される燃料
噴射弁と、 予めマツプによって記憶設定されている基本噴射時間を
上記吸気圧と上記回転数とを用いて決定し、この基本噴
射時間に基づいて上記燃料噴射弁の開弁時間を算出する
開弁時間算出手段とを備える電子制御式燃料噴射装置で
あって、上記マツプは上記制御手段にて上記開閉手段が
閉制御されている時に応じて設定されたものであると共
に、この閉制御時間用のマツプを開制御されている時に
対応するよう補正する補正マツプが設けられており、し
かもこの補正マツプは上記閉制御時間用のマツプより細
かく設定されていることを特徴とする電子制御式燃料噴
射装置としたことから、 EGRO開制御時の機関への供給燃料量を機関が要求す
る燃料量に対応させることが充分に可能となり、機関の
空燃比の制御性が向上し、適正な空燃比が得られるよう
になるという優れた効果があり、しかもEGRの開制御
時用マツプ内容または補正マツプ内容の増分だけ記憶装
置の容量が増加させるだけで済むので、記憶装置の容量
はそれほど膨大なものとはならない。
As described above, according to the first invention, a recirculation pipe that recirculates exhaust gas from an internal combustion engine to an intake pipe, an opening/closing means for opening and closing this recirculation pipe, and a control means for controlling opening and closing of this opening/closing means, An intake pressure detection means for detecting the intake pressure downstream of a throttle valve in an intake pipe of an internal combustion engine, a rotation speed detection means for detecting the rotation speed of the internal combustion engine, and an electromagnetic actuator for injecting and supplying fuel to the internal combustion engine. Determine the fuel injection valve to be used and the basic injection time, which is stored and set in advance by the map, using the above-mentioned intake pressure and the above-mentioned rotational speed, and calculate the valve opening time of the above-mentioned fuel injection valve based on this basic injection time. An electronically controlled fuel injection device comprising a valve opening time calculating means for calculating the valve opening time, wherein the map is determined depending on whether the opening/closing means is controlled to be open or closed by the control means. In addition, the second invention provides an electronically controlled fuel injection device characterized in that the map for the open control time is set more precisely than the map for the closed control time. For example, a recirculation pipe that recirculates exhaust gas from an internal combustion engine to an intake pipe, an opening/closing means for opening and closing this recirculation pipe, a control means for controlling opening/closing of this opening/closing means, and a downstream region of a throttle valve in an intake pipe of an internal combustion engine. An intake pressure detection means for detecting the intake pressure, a rotation speed detection means for detecting the rotation speed of the internal combustion engine, an electromagnetically actuated fuel injection valve for injecting and supplying fuel to the internal combustion engine, and a fuel injection valve stored in advance in a map. Electronic control comprising: a valve opening time calculation means that determines a set basic injection time using the intake pressure and the rotational speed, and calculates the valve opening time of the fuel injection valve based on the basic injection time. In the fuel injection device, the map is set according to when the opening/closing means is controlled to be closed by the control means, and the map for the closing control time is set according to when the opening/closing means is controlled to be open. Since the electronically controlled fuel injection system is equipped with a correction map that corrects the EGRO opening control, and this correction map is set more finely than the above-mentioned map for the closing control time, This has the excellent effect of making it possible to fully match the amount of fuel supplied to the engine with the amount of fuel required by the engine, improving the controllability of the engine's air-fuel ratio, and making it possible to obtain an appropriate air-fuel ratio. Moreover, since the capacity of the storage device only needs to be increased by the increment of the contents of the map for EGR opening control or the contents of the correction map, the capacity of the storage device does not become enormous.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を備える内燃機関及びその周
辺装置の構成を示す概略構成図、第2図は第1図図示の
制御回路の構成を示すブロック図、第3図は本実施例の
作動を示すフローチャート、第4図(alならびに(b
lはROM内に記憶されているEGROON時、ならび
にOFF時の基本噴射時間Tpが設定された回転数N−
吸気圧Pの2次元マツプ、第5図は回転数一定の場合の
吸気圧Pに対する機関の要求燃料量を示すグラフ、第6
図は従来構成による回転数一定の場合の吸気圧Pに対す
る機関の要求燃料量とマツプより算出される燃料量とを
示すグラフ、第7図は本実施例による回転数一定の場合
の吸気圧Pに対する機関の要求燃料量とマツプにより算
出される燃料量とを示すグラフ、第8図、ならびに第9
図は第1発明ならびに第2発明の構成を概略的に示す概
略構成図である。 2・・・吸気圧センサ、4・・・燃料噴射弁、7・・・
回転センサ、8・・・制御回路、100・・・MPU、
105・・・ROM、106・・・RAM。
FIG. 1 is a schematic configuration diagram showing the configuration of an internal combustion engine and its peripheral devices equipped with an embodiment of the present invention, FIG. 2 is a block diagram showing the configuration of the control circuit shown in FIG. 1, and FIG. Flowchart showing the operation of the example, FIG. 4 (al and (b)
l is the rotational speed N- at which the basic injection time Tp is set during EGROON and OFF, which is stored in the ROM.
A two-dimensional map of the intake pressure P, Figure 5 is a graph showing the fuel amount required by the engine with respect to the intake pressure P when the rotation speed is constant, Figure 6
The figure is a graph showing the required fuel amount of the engine and the fuel amount calculated from the map with respect to the intake pressure P when the rotation speed is constant according to the conventional configuration, and FIG. Graphs showing the fuel amount required by the engine and the fuel amount calculated by the map with respect to the atmospheric pressure P, FIGS. 8 and 9
The figure is a schematic configuration diagram schematically showing the configurations of the first invention and the second invention. 2... Intake pressure sensor, 4... Fuel injection valve, 7...
Rotation sensor, 8... Control circuit, 100... MPU,
105...ROM, 106...RAM.

Claims (2)

【特許請求の範囲】[Claims] (1)内燃機関の排気ガスを吸入管へ還流させる還流管
と、 この還流管を開閉する開閉手段と、 この開閉手段を開閉制御する制御手段と、 内燃機関の吸気管のスロットル弁下流域の吸気圧を検出
する吸気圧検出手段と、 内燃機関の回転数を検出する回転数検出手段と、内燃機
関に対して燃料を噴射供給する電磁的に作動される燃料
噴射弁と、 予めマップによって記憶設定されている基本噴射時間を
上記吸気圧と上記回転数とを用いて決定し、この基本噴
射時間に基づいて上記燃料噴射弁の開弁時間を算出する
開弁時間算出手段と を備える電子制御式燃料噴射装置であって、上記マップ
は上記制御手段にて上記開閉手段が開制御されている時
と、閉制御されている時とに応じて、夫々備えられてお
り、しかも開制御時用のマップは閉制御時用のマップに
比べて細かく設定されていることを特徴とする電子制御
式燃料噴射装置。
(1) A recirculation pipe that recirculates exhaust gas from an internal combustion engine to an intake pipe, an opening/closing means for opening and closing this recirculation pipe, a control means for controlling opening and closing of this opening/closing means, and a downstream region of a throttle valve in an intake pipe of an internal combustion engine. An intake pressure detection means for detecting the intake pressure; a rotation speed detection means for detecting the rotation speed of the internal combustion engine; an electromagnetically actuated fuel injection valve for injecting and supplying fuel to the internal combustion engine; Electronic control comprising: a valve opening time calculation means that determines a set basic injection time using the intake pressure and the rotational speed, and calculates the valve opening time of the fuel injection valve based on the basic injection time. The above-mentioned map is provided depending on when the opening/closing means is controlled to open and when it is controlled to close by the control means, and the map is provided for when the opening/closing means is controlled to be closed by the control means. This electronically controlled fuel injection system is characterized by its map being more detailed than the map for closed control.
(2)内燃機関の排気ガスを吸気管へ還流させる還流管
と、 この還流管を開閉する開閉手段と、 この開閉手段を開閉制御する制御手段と、 内燃機関の吸気管のスロットル弁の下流域の吸気圧を検
出する吸気圧検出手段と、 内燃機関の回転数を検出する回転数検出手段と、内燃機
関に対して燃料を噴射供給する電磁的に作動される燃料
噴射弁と、 予めマップによって記憶設定されている基本噴射時間を
上記吸気圧と上記回転数とを用いて決定し、この基本噴
射時間に基づいて上記燃料噴射弁の開弁時間を算出する
開弁時間算出手段と を備える電子制御式燃料噴射装置であって、上記マップ
は上記制御手段にて上記開閉手段が閉制御されている時
に応じて設定されたものであると共に、この閉制御時用
のマップを開制御されている時に対応するよう補正する
補正マップが設けられており、しかもこの補正マップは
上記閉制御時用のマップより細かく設定されていること
を特徴とする電子制御式燃料噴射装置。
(2) A recirculation pipe that recirculates the exhaust gas of the internal combustion engine to the intake pipe, an opening/closing means for opening and closing this recirculation pipe, a control means for controlling the opening and closing of this opening/closing means, and a downstream region of the throttle valve of the intake pipe of the internal combustion engine. an intake pressure detection means for detecting the intake pressure of the internal combustion engine; a rotation speed detection means for detecting the rotation speed of the internal combustion engine; and an electromagnetically actuated fuel injection valve for injecting and supplying fuel to the internal combustion engine; an electronic valve-opening time calculation means for determining a stored basic injection time using the intake pressure and the rotational speed, and calculating the opening time of the fuel injection valve based on the basic injection time; In the controlled fuel injection device, the map is set according to when the opening/closing means is controlled to be closed by the control means, and the map for when the opening/closing means is controlled to be closed is controlled to be open. 1. An electronically controlled fuel injection system, characterized in that a correction map is provided for making corrections to correspond to the time, and the correction map is set more finely than the map for the closed control.
JP1451286A 1986-01-24 1986-01-24 Electronic control type fuel injector Pending JPS62174542A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1451286A JPS62174542A (en) 1986-01-24 1986-01-24 Electronic control type fuel injector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1451286A JPS62174542A (en) 1986-01-24 1986-01-24 Electronic control type fuel injector

Publications (1)

Publication Number Publication Date
JPS62174542A true JPS62174542A (en) 1987-07-31

Family

ID=11863131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1451286A Pending JPS62174542A (en) 1986-01-24 1986-01-24 Electronic control type fuel injector

Country Status (1)

Country Link
JP (1) JPS62174542A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5882037A (en) * 1981-11-11 1983-05-17 Honda Motor Co Ltd Electronic fuel supply controller having exhaust gas recirculation control function of internal-combustion engine
JPS618443A (en) * 1984-06-22 1986-01-16 Nippon Denso Co Ltd Air-fuel ratio control device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5882037A (en) * 1981-11-11 1983-05-17 Honda Motor Co Ltd Electronic fuel supply controller having exhaust gas recirculation control function of internal-combustion engine
JPS618443A (en) * 1984-06-22 1986-01-16 Nippon Denso Co Ltd Air-fuel ratio control device

Similar Documents

Publication Publication Date Title
US4553518A (en) Air-fuel ratio control for an exhaust gas recirculation engine
US4636957A (en) Method for controlling operating state of an internal combustion engine with an overshoot preventing function
US6609059B2 (en) Control system for internal combustion engine
US4598684A (en) Apparatus for controlling air/fuel ratio for internal combustion engine
JPS6246692B2 (en)
US20080167790A1 (en) EGR Control Device For Internal Combustion Engine
JP2007247445A (en) Intake control device of internal combustion engine
JPS6256342B2 (en)
JPH0264244A (en) Device for controlling quantity of fuel injection in internal combustion engine
JPH0737777B2 (en) Fuel control device
JP2001323834A (en) Control device for engine
EP0447765B1 (en) An air-fuel ratio control device for an engine
JPS62174542A (en) Electronic control type fuel injector
JP3005718B2 (en) Exhaust gas recirculation control system for diesel engine
JP3728930B2 (en) Exhaust gas recirculation control device for internal combustion engine
JP3307306B2 (en) Combustion system control device for internal combustion engine
US6807942B2 (en) Control system for internal combustion engine
JPH07293347A (en) Exhaust reflux control device for internal combustion engine
JPH06173743A (en) Air-fuel ratio learning control method for internal combustion engine
JPS6331662B2 (en)
JPH077567Y2 (en) Internal combustion engine intake system
JP2873506B2 (en) Engine air-fuel ratio control device
JP2721025B2 (en) Control method of exhaust gas recirculation control device
JP2558153Y2 (en) Auxiliary air flow control device for internal combustion engine
JPH01151748A (en) Electronic control fuel injection device for internal combustion engine