JPS6331662B2 - - Google Patents

Info

Publication number
JPS6331662B2
JPS6331662B2 JP55112507A JP11250780A JPS6331662B2 JP S6331662 B2 JPS6331662 B2 JP S6331662B2 JP 55112507 A JP55112507 A JP 55112507A JP 11250780 A JP11250780 A JP 11250780A JP S6331662 B2 JPS6331662 B2 JP S6331662B2
Authority
JP
Japan
Prior art keywords
intake air
engine
temperature
target value
air temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55112507A
Other languages
Japanese (ja)
Other versions
JPS5738652A (en
Inventor
Toshiaki Mizuno
Masumi Kinugawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP11250780A priority Critical patent/JPS5738652A/en
Publication of JPS5738652A publication Critical patent/JPS5738652A/en
Publication of JPS6331662B2 publication Critical patent/JPS6331662B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は内燃機関の吸気温度制御方法に関し、
特に、スロツトル弁上流に一本の燃料噴射弁を設
けてこれを間欠的に駆動して複数の気筒に燃料を
供給するシステム(以下SPIシステムという)を
備えた内燃機関の吸気温度制御方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an intake air temperature control method for an internal combustion engine.
In particular, the present invention relates to an intake temperature control method for an internal combustion engine equipped with a system (hereinafter referred to as an SPI system) in which a single fuel injection valve is provided upstream of a throttle valve and is driven intermittently to supply fuel to a plurality of cylinders.

[従来技術とその問題点] 気化器を用いた内燃機関における従来の吸気温
度制御方法としては、切り替え弁部分を通る吸気
温度が一定の設定温度に達した時に外気と加熱空
気の切り替えを行なうようにしたものがある。こ
のような切り替えによる吸気温度制御方法では内
燃機関の暖機状態等を考慮して制御を行つていな
いため、例えば、周囲温度が高くて外気直接導入
に切り替えられたとしても、冷却水温が低いこと
に起因して吸気管内で空気が冷やされ燃料の霧化
が悪くなることがある。この結果、壁面に付着す
る燃料が多くなり、過渡時に空燃比の乱れを生
じ、加減速時のドライバビリテイーの悪化及び失
火によるエミツシヨンの悪化が起こることがあつ
た。一般的にこのような欠点のある従来の吸気温
度制御方法を、更にSPIシステムを備えた内燃機
関に適用した場合には、前述の各状態は気化器を
備えた内燃機関の場合よりも一層悪化する。この
原因は、SPIシステムではスロツトル弁上流の大
気圧中に燃料を供給する構造をとるため、気化器
のようにベンチユリー部の負圧中に燃料を供給す
る構造のものに比較して燃料の霧化が悪く、それ
に起因する燃焼状態の悪化及び吸気管壁面へ付着
する燃料量増大による過渡時空燃比変動にあると
考えられる。
[Prior art and its problems] The conventional method for controlling intake air temperature in an internal combustion engine using a carburetor is to switch between outside air and heated air when the intake air temperature passing through the switching valve reaches a certain set temperature. There is something I did. This type of switching intake air temperature control method does not take into account the warm-up state of the internal combustion engine, so for example, even if the ambient temperature is high and you switch to direct intake of outside air, the cooling water temperature may be low. As a result, the air in the intake pipe may be cooled, resulting in poor atomization of the fuel. As a result, more fuel adheres to the wall surface, causing disturbances in the air-fuel ratio during transient periods, resulting in deterioration of drivability during acceleration and deceleration and deterioration of emissions due to misfires. If the conventional intake air temperature control method, which generally has these drawbacks, is further applied to an internal combustion engine equipped with an SPI system, the above-mentioned conditions will be even worse than in the case of an internal combustion engine equipped with a carburetor. do. The reason for this is that the SPI system has a structure in which the fuel is supplied into the atmospheric pressure upstream of the throttle valve, so compared to a carburetor which is structured to supply fuel into the negative pressure of the ventilate, the fuel mist is This is thought to be due to the deterioration of the combustion state caused by this, and the transient air-fuel ratio fluctuation due to the increase in the amount of fuel adhering to the intake pipe wall.

また上記従来の吸気温度制御方法では内燃機関
の負荷状態も考慮に入れていないため、例えば機
関の全負荷状態においては加熱空気が機関に吸入
されその結果機関の吸入効率が落ちることがあつ
た。
Further, the conventional intake air temperature control method described above does not take into account the load condition of the internal combustion engine, so that, for example, when the engine is in a full load condition, heated air is drawn into the engine, resulting in a drop in the engine's intake efficiency.

そこで、本発明の目的は、スロツトル弁の上流
側に燃料噴射弁を設け一本の燃料噴射弁で複数の
気筒に燃料を供給するようにした内燃機関に特有
の吸気温度制御上の問題を解決するものであり、
内燃機関の温度状態、負荷状態等の機関の運転状
態の要求に応じて吸気温の目標値を設定し最適な
吸気温度制御方法を提供することにある。
Therefore, an object of the present invention is to solve the problem of intake air temperature control peculiar to internal combustion engines in which a fuel injection valve is provided upstream of a throttle valve and one fuel injection valve supplies fuel to multiple cylinders. and
An object of the present invention is to provide an optimal intake air temperature control method by setting a target value of intake air temperature according to the requirements of engine operating conditions such as internal combustion engine temperature and load conditions.

[問題点を解決するための手段] 本発明に係る内燃機関の吸気温度制御方法は、
加熱されて吸入された空気と直接吸入された外気
とを制御弁で制御して吸気としてエアクリーナに
導入すると共に、スロツトル弁の上流に燃料噴射
弁を設け一本の燃料噴射弁で複数の気筒へ燃料を
供給するように構成された内燃機関に適用される
吸気温度制御方法であつて、 前記制御弁の下流側で吸気温度を検知する段階
と、 前記機関の温度状態を検知する段階と、 機関の温度に対応させて予め用意された吸気温
度の目標値データの中から、前記の検知された機
関温度に応じた目標値データを選び出す段階と、 前記の選び出された目標値データと、前記の検
知された吸気温度とを比較し、比較結果に応じ吸
気温度が目標値データに一致するように前記制御
弁を連続的に駆動して前記空気と前記外気を混合
させる段階とを含んで成る。
[Means for solving the problem] The intake air temperature control method for an internal combustion engine according to the present invention includes:
The heated intake air and directly intake outside air are controlled by a control valve and introduced into the air cleaner as intake air.A fuel injection valve is installed upstream of the throttle valve, and one fuel injection valve injects multiple cylinders. An intake air temperature control method applied to an internal combustion engine configured to supply fuel, the method comprising: detecting an intake air temperature downstream of the control valve; detecting a temperature state of the engine; selecting target value data corresponding to the detected engine temperature from among target value data of intake air temperature prepared in advance corresponding to the temperature of the engine; and the detected intake air temperature, and according to the comparison result, the control valve is continuously driven so that the intake air temperature matches the target value data, and the air and the outside air are mixed. .

[作用] SPIシステムを備えた内燃機関では、機関の水
温に対する失火限界空燃比は、一般に、水温低下
に伴い小さくなり、空燃比が過渡時に変動したと
きは失火状態になりやすい。一方、過渡時の空燃
比は、吸気温を上げると変動が小さくなり、失火
する可能性が低くなる。そこで、本発明に係る内
燃機関の吸気温度制御方法では、前述の各段階か
ら成る構成で明らかなように、通常の理論空燃比
として与えられる制御空燃比が失火を起こしやす
い空燃比領域に近くなる低温時には、吸気温を上
げることによつて制御空燃比が前記空燃比領域に
入らないように、空燃比の変動を押さえるよう制
御するものである。
[Operation] In an internal combustion engine equipped with an SPI system, the misfire limit air-fuel ratio with respect to the engine water temperature generally decreases as the water temperature decreases, and a misfire condition is likely to occur when the air-fuel ratio fluctuates during a transient period. On the other hand, when the air-fuel ratio during a transient period increases, fluctuations become smaller as the intake temperature increases, and the possibility of a misfire becomes lower. Therefore, in the intake air temperature control method for an internal combustion engine according to the present invention, as is clear from the configuration consisting of the above-mentioned stages, the control air-fuel ratio given as the normal stoichiometric air-fuel ratio is close to the air-fuel ratio region where misfires are likely to occur. At low temperatures, control is performed to suppress fluctuations in the air-fuel ratio so that the control air-fuel ratio does not fall into the air-fuel ratio range by increasing the intake temperature.

[実施例] 以下本発明の一実施例について付図を参照しな
がら説明する。
[Example] An example of the present invention will be described below with reference to the accompanying drawings.

第1図は本発明の構成を示す概略構成図であ
る。吸気管1とエアクリーナ2との間に切り替え
弁3をもちこの切り替え弁3の位置で排気マニホ
ールド4により暖められた空気(以下「ホツトエ
ア」と呼ぶ)と直接取り込んだ外気(以下「クー
ルエア」と呼ぶ)との混合比を決定し、吸気温度
を調節する。該切り替え弁3は電子制御ユニツト
6から出る信号により駆動される可逆直流モータ
5と連動して動く。モータ5への信号は、エアク
リーナ2下流に設けられた吸気温度センサ7、機
関温度を表わす一つの温度である冷却水温を検知
する水温センサ8、スロツトル全開を検知するス
ロツトルスイツチ9及び切り替え弁3の全開、全
閉双方の位置を示す切り替え弁スイツチ10から
の信号に基いて電子制御ユニツト6により計算さ
れる。燃料電子制御ユニツト13は、スロツトル
弁11の上流にある電磁作動式の燃料噴射弁12
を駆動し、燃料を機関20に供給する。
FIG. 1 is a schematic configuration diagram showing the configuration of the present invention. A switching valve 3 is provided between the intake pipe 1 and the air cleaner 2, and at the position of the switching valve 3, air warmed by the exhaust manifold 4 (hereinafter referred to as "hot air") and outside air directly taken in (hereinafter referred to as "cool air") are provided. ) and adjust the intake air temperature. The switching valve 3 moves in conjunction with a reversible DC motor 5 driven by a signal output from an electronic control unit 6. Signals to the motor 5 are sent from an intake air temperature sensor 7 installed downstream of the air cleaner 2, a water temperature sensor 8 that detects cooling water temperature, which is one temperature representing the engine temperature, a throttle switch 9 that detects when the throttle is fully open, and a changeover valve 3. It is calculated by the electronic control unit 6 based on the signal from the selector valve switch 10 indicating both the fully open and fully closed positions. The electronic fuel control unit 13 controls an electromagnetically actuated fuel injection valve 12 located upstream of the throttle valve 11.
and supplies fuel to the engine 20.

第2図は上記電子制御ユニツト6を詳細に説明
するためのブロツク図で、図において100は直
流モータ5の駆動方向および駆動量を演算するマ
イクロプロセツサユニツト(CPU)である。
A/D変換器101は吸気温度センサ7及び水温
センサ8からの信号をA−D変換してマイクロプ
ロセツサユニツト100に読み込ませる機能をも
つ。102はI/Oポートで、スロツトルスイツ
チ9のスロツトル全開を示すON−OFF信号と切
り替え弁スイツチ10からの切り替え弁3の全開
(全てクールエア)または全閉(全てホツトエア)
を示す信号とを“1”、“0”のデイジタル信号と
してCPU100に送り込み読み込ませる。10
3はCPU100の制御プログラムがROMに格納
されると共に各ユニツト101,102からの出
力情報をRAMに一時記憶するメモリユニツトで
ある。CPU100と各ユニツト101,102,
103との情報伝達はコモンバス106を通して
行なわれる。104はCPU100からの信号を
増幅し、直流モータ5に供給する電力増幅器であ
る。
FIG. 2 is a block diagram for explaining the electronic control unit 6 in detail. In the figure, 100 is a microprocessor unit (CPU) that calculates the driving direction and driving amount of the DC motor 5. As shown in FIG.
The A/D converter 101 has the function of A/D converting the signals from the intake air temperature sensor 7 and the water temperature sensor 8 and reading the signals into the microprocessor unit 100. 102 is an I/O port, which receives an ON-OFF signal from the throttle switch 9 indicating that the throttle is fully open, and a switching valve 3 from the switching valve switch 10 that is fully open (all cool air) or fully closed (all hot air).
A signal indicating ``1'' and ``0'' is sent to the CPU 100 as a digital signal of "1" and "0" and read. 10
Reference numeral 3 denotes a memory unit in which the control program for the CPU 100 is stored in the ROM, and the output information from each unit 101 and 102 is temporarily stored in the RAM. CPU 100 and each unit 101, 102,
Information transmission with 103 is performed through common bus 106. 104 is a power amplifier that amplifies the signal from the CPU 100 and supplies it to the DC motor 5.

第3図は、CPU100の概略フローチヤート
を示す。機関20が始動するとステツプ1001でル
ーチンが起動され、ステツプ1002で後述するタイ
マカウンタの値をもとに前回の処理から50ms以
上経過しているかどうかを判別し、経過していな
ければステツプ1014に進み、ステツプ1001にもど
る。以下50ms経過するまでこれをくり返えす。
次に50ms経過するとステツプ1003で吸気温度セ
ンサ7と水温センサ8のアナログ信号をA−D変
換器101でA−D変換させた後メモリユニツト
103にそのデイジタル値を一時記憶する。次に
ステツプ1004に進みスロツトルスイツチ9がスロ
ツトル全開信号を出力しているかどうかを判別
し、スロツトル全開でない場合はステツプ1005に
進み、メモリユニツト103に一時記憶している
冷却水温のデータから第4図の波形Bのような特
性をもつメモリユニツト103内のマツプから吸
気温度の目標値T0を計算する。第4図の波形か
ら明らかなように冷却水温が上昇するにつれ吸気
温度の目標値T0を減少させて機関20の運転状
態に最適になるような特性を持たせている。
FIG. 3 shows a schematic flowchart of the CPU 100. When the engine 20 is started, the routine is started in step 1001, and in step 1002 it is determined whether 50 ms or more has elapsed since the previous processing based on the value of a timer counter, which will be described later. If not, the routine proceeds to step 1014. , return to step 1001. Repeat this until 50ms have passed.
Next, when 50 ms have elapsed, in step 1003, the analog signals of the intake air temperature sensor 7 and the water temperature sensor 8 are A-D converted by the A-D converter 101, and then the digital values are temporarily stored in the memory unit 103. Next, the process proceeds to step 1004, and it is determined whether or not the throttle switch 9 is outputting a throttle fully open signal. If the throttle is not fully open, the process proceeds to step 1005, where a fourth A target value T 0 of the intake air temperature is calculated from a map in the memory unit 103 having characteristics such as waveform B in the figure. As is clear from the waveforms in FIG. 4, as the cooling water temperature rises, the target value T 0 of the intake air temperature is reduced to provide a characteristic that is optimal for the operating condition of the engine 20.

一方、スロツトルスイツチ9がスロツトル全開
の場合は、機関20に負荷がかかつていることを
示しているからステツプ1006に進みステツプ1005
と同様冷却水温のデータから第4図の波形Cのよ
うな特性をもつメモリユニツト103内のマツプ
から吸気温度の目標値T0を計算する。第4図の
波形から明らかなように機関全負荷時の波形Cは
通常の波形Bより全体にわたつて目標値が下つて
おり、これにより機関への吸気の充填効率の低下
による機関の出力低下を防いでいる。このように
機関の負荷状態を考慮して、負荷状態に応じた吸
気温度データをメモリユニツト103内のマツプ
に予め用意し、負荷状態に対応させて選択的に吸
気温度データを使用し、状況に応じ有効な出力を
得ることができる。
On the other hand, if the throttle switch 9 is fully open, this indicates that a load is being applied to the engine 20, so proceed to step 1006 and proceed to step 1005.
Similarly, the target value T 0 of the intake air temperature is calculated from the map in the memory unit 103 having characteristics such as waveform C in FIG. 4 from the cooling water temperature data. As is clear from the waveforms in Figure 4, waveform C when the engine is at full load has a lower target value throughout than normal waveform B, and this results in a decrease in engine output due to a decrease in the filling efficiency of intake air into the engine. is prevented. In this way, taking into consideration the load condition of the engine, intake air temperature data corresponding to the load condition is prepared in advance in the map in the memory unit 103, and the intake air temperature data is selectively used in accordance with the load condition, and the intake air temperature data is used according to the situation. You can get effective output according to your needs.

次にステツプ1007でこの目標値T0とメモリユ
ニツト103に一時記憶された吸気温度Tとを比
較する。ステツプ1007でT<T0ならばステツプ
1008へ進み該切り替え弁3が全閉(ホツトエア
側)になつているかどうかを切り替え弁スイツチ
10の信号により判別し、全閉になつていなけれ
ば次のステツプ1009Aで、モータ5を閉弁方向へ
所定時間だけ駆動する。ステツプ1007でT≧T0
ならばステツプ1010へ進み該切り替え弁3が全開
(クールエア側)になつているかどうかを切り替
え弁スイツチ10の信号により判別し、全開にな
つていなければ次のステツプ1009Bでモータ5を
開弁方向へ所定時間だけ駆動する。次にステツプ
1013で次回の処理時刻を計測するためのタイマー
カウンタ(図示していない)をリセツトしルーチ
ンで終わる。以後前述の動作をくり返えして50m
s毎に制御動作を行なう。このようにして機関の
運転状態に応じて最適の吸気温度に制御すること
ができる。
Next, in step 1007, this target value T 0 is compared with the intake air temperature T temporarily stored in the memory unit 103. If T<T 0 at step 1007, step
Proceeding to step 1008, it is determined whether the changeover valve 3 is fully closed (hot air side) or not based on the signal from the changeover valve switch 10. If it is not fully closed, the motor 5 is moved in the valve closing direction in the next step 1009A. Drive for a predetermined time. At step 1007, T≧T 0
If so, proceed to step 1010, and determine whether the changeover valve 3 is fully open (cool air side) based on the signal from the changeover valve switch 10. If it is not fully open, the motor 5 is moved in the valve opening direction in the next step 1009B. Drive for a predetermined time. Next step
At step 1013, a timer counter (not shown) for measuring the next processing time is reset, and the routine ends. After that, repeat the above operation for 50m.
A control operation is performed every s. In this way, the intake air temperature can be controlled to the optimum temperature depending on the operating state of the engine.

上記実施例においては、切り替え弁3の駆動は
直流モータ5によるものであつたが、バキユムサ
ーボ式、コイル・リニヤソレノイド式、ステツプ
モータ式のいずれかによるものであつても良い。
また上記実施例においては直流モータ5を所定時
間ずつ駆動させているが、機関の運転状態に応じ
て駆動時間を可変させるようにしても良い。また
制御コンピユータ100はデイジタルコンピユー
タであつたが、アナログコンピユータであつても
良いし、エンジン制御と同じコンピユータを用い
ても良い。また燃料供給システムは、上記実施例
においてはシングルポイントインジエクタを用い
ていたが、各気筒毎にインジエクタを取り付けた
ものでも、キヤブレタ式によるものであつても良
い。また、吸気温の加熱は排気マニホールド4の
熱を用いたが、ヒータのような加熱装置により加
熱するものでも良い。
In the above embodiment, the switching valve 3 is driven by the DC motor 5, but it may be driven by any one of a vacuum servo type, a coil linear solenoid type, and a step motor type.
Further, in the above embodiment, the DC motor 5 is driven for a predetermined period of time, but the driving time may be varied depending on the operating state of the engine. Further, although the control computer 100 is a digital computer, it may be an analog computer, or the same computer used for engine control may be used. Further, although the single point injector is used in the above embodiment, the fuel supply system may be one in which an injector is attached to each cylinder or a carburetor type one. Further, although the heat of the exhaust manifold 4 is used to heat the intake air temperature, it may be heated by a heating device such as a heater.

[発明の効果] 本発明によれば、SPIシステムを備える内燃機
関において、冷却水温又はエンジン温度により設
定された目標値に吸気温度を制御し、燃料供給部
分に最適な吸気温度を提供することにより、SPI
システムを備える内燃機関で特に問題とされた、
燃料の霧化を向上せしめると共に、過渡時の空燃
比の乱れによるドライバビリテイーの悪化及びエ
ミツシヨンの悪化を防止することができる。また
暖機中の燃料の霧化の向上により、燃費を良くす
ることができ、暖機後においては、冷却水温又は
エンジン温度によりクールエアインテークに切り
替え、ベーパーロツクを防ぐことができるという
優れた効果がある。
[Effects of the Invention] According to the present invention, in an internal combustion engine equipped with an SPI system, the intake air temperature is controlled to a target value set by the cooling water temperature or the engine temperature, and the optimum intake air temperature is provided to the fuel supply section. , SPI
This was a particular problem in internal combustion engines equipped with
It is possible to improve fuel atomization and prevent deterioration of drivability and deterioration of emission due to disturbances in the air-fuel ratio during transient periods. Additionally, improved fuel atomization during warm-up improves fuel efficiency, and after warm-up, the system switches to cool air intake depending on the cooling water temperature or engine temperature, which has the excellent effect of preventing vapor lock. be.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す構成図であ
る。第2図は第1図に示す電子制御ユニツト6の
ブロツク図である。第3図は第2図に示すマイク
ロプロセツサ100の制御フローチヤートであ
る。第4図は、水温に対して設定した吸気温目標
値の特性図である。 1……吸気管、2……エアクリーナ、3……切
り替え弁、4……排気マニホールド、5……直流
モータ、6……電子制御ユニツト、7……吸気温
度センサ、8……水温センサ、9……スロツトル
全開スイツチ、10……切り替え弁スイツチ、1
1……スロツトル弁、100……CPU。
FIG. 1 is a block diagram showing an embodiment of the present invention. FIG. 2 is a block diagram of the electronic control unit 6 shown in FIG. FIG. 3 is a control flow chart of the microprocessor 100 shown in FIG. FIG. 4 is a characteristic diagram of the intake temperature target value set with respect to the water temperature. DESCRIPTION OF SYMBOLS 1...Intake pipe, 2...Air cleaner, 3...Switching valve, 4...Exhaust manifold, 5...DC motor, 6...Electronic control unit, 7...Intake air temperature sensor, 8...Water temperature sensor, 9 ... Throttle full open switch, 10 ... Selector valve switch, 1
1...Throttle valve, 100...CPU.

Claims (1)

【特許請求の範囲】 1 加熱されて吸入された空気と直接吸入された
外気を制御弁で制御し、吸気としてエアクリーナ
を導入すると共に、スロツトル弁の上流に燃料噴
射弁を設け一本の燃料噴射弁で複数の気筒へ燃料
供給を行う内燃機関の吸気温度制御方法であつ
て、 前記制御弁の下流側で吸気温度を検知する段階
と、 前記機関の温度状態を検知する段階と、 機関の温度に対応させて予め用意された吸気温
度の目標値データの中から、前記の検知された機
関温度に応じた目標値データを選び出す段階と、 前記の選び出された目標値データと、前記の検
知された吸気温度とを比較し、比較結果に応じ吸
気温度が目標値データに一致するように前記制御
弁を連続的に駆動して前記空気と前記外気を混合
させる段階と を包含することを特徴とする内燃機関の吸気温度
制御方法。 2 特許請求の範囲第1項において、前記の機関
の温度状態を検知する段階は、前記機関の冷却水
温を検知する段階であることを特徴とする内燃機
関の吸気温度制御方法。 3 特許請求の範囲第1項又は第2項において、
前記の目標値データを選び出す段階は、更に、前
記機関の負荷状態を検出する段階と、機関の負荷
状態に対応させて異なる目標値データを用意し、
検知された機関の負荷状態に対応して目標値デー
タを選択する段階とを含むことを特徴とする内燃
機関の吸気温度制御方法。
[Scope of Claims] 1. The heated intake air and directly intake outside air are controlled by control valves, an air cleaner is introduced as intake air, and a fuel injection valve is provided upstream of the throttle valve to inject one fuel. A method for controlling the intake air temperature of an internal combustion engine in which fuel is supplied to a plurality of cylinders by a valve, the method comprising: detecting the intake air temperature downstream of the control valve; detecting the temperature state of the engine; selecting target value data corresponding to the detected engine temperature from among target value data for intake air temperature prepared in advance in correspondence with the detected engine temperature; and a step of continuously driving the control valve to mix the air and the outside air so that the intake air temperature matches the target value data according to the comparison result. A method for controlling the intake air temperature of an internal combustion engine. 2. An intake air temperature control method for an internal combustion engine according to claim 1, wherein the step of detecting the temperature state of the engine is a step of detecting a cooling water temperature of the engine. 3 In claim 1 or 2,
The step of selecting the target value data further includes the step of detecting the load state of the engine, and preparing different target value data corresponding to the load state of the engine,
1. A method for controlling intake air temperature of an internal combustion engine, comprising the step of selecting target value data in response to a detected engine load condition.
JP11250780A 1980-08-15 1980-08-15 Suction air temperature control method for internal combustion engine Granted JPS5738652A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11250780A JPS5738652A (en) 1980-08-15 1980-08-15 Suction air temperature control method for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11250780A JPS5738652A (en) 1980-08-15 1980-08-15 Suction air temperature control method for internal combustion engine

Publications (2)

Publication Number Publication Date
JPS5738652A JPS5738652A (en) 1982-03-03
JPS6331662B2 true JPS6331662B2 (en) 1988-06-24

Family

ID=14588372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11250780A Granted JPS5738652A (en) 1980-08-15 1980-08-15 Suction air temperature control method for internal combustion engine

Country Status (1)

Country Link
JP (1) JPS5738652A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3339759A1 (en) * 1983-11-03 1985-05-15 Franz X. 6200 Wiesbaden Wittek Process and preparation system for the production of an ignitable fuel-air mixture for internal combustion engines
JP2000234568A (en) * 1999-02-12 2000-08-29 Nippon Thermostat Co Ltd Temperature control method and device for intake air

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS516564U (en) * 1974-07-01 1976-01-17

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS516564U (en) * 1974-07-01 1976-01-17

Also Published As

Publication number Publication date
JPS5738652A (en) 1982-03-03

Similar Documents

Publication Publication Date Title
US5278762A (en) Engine control apparatus using exhaust gas temperature to control fuel mixture and spark timing
US4545348A (en) Idle speed control method and system for an internal combustion engine
US4373187A (en) Corrective feedback technique for controlling air-fuel ratio for an internal combustion engine
US4399789A (en) Warm up control system for an internal combustion engine
US4430976A (en) Method for controlling air/fuel ratio in internal combustion engines
US5662084A (en) Engine idling speed control apparatus
US4389996A (en) Method and apparatus for electronically controlling fuel injection
US20080167790A1 (en) EGR Control Device For Internal Combustion Engine
US20110132325A1 (en) System and method for reducing particulate matter produced by an engine
JPS6138340B2 (en)
US5586432A (en) Device for regulation of a motor vehicle engine at idle speed
JP3493986B2 (en) Diesel engine cylinder intake gas temperature calculation device and EGR control device
US5481462A (en) Apparatus for determining an altitude condition of an automotive vehicle
US4753209A (en) Air-fuel ratio control system for internal combustion engines capable of controlling air-fuel ratio in accordance with degree of warming-up of the engines
US6898928B2 (en) Co-ordination of different requirements of the exhaust gas temperature and corresponding heating and cooling measures
US6286993B1 (en) Method for forming a signal representing the instantaneous temperature of a catalytic converter
JPS6331662B2 (en)
JP3018740B2 (en) Ignition timing control device for internal combustion engine
JP2853436B2 (en) Intake air amount control device for internal combustion engine
JPH0577867B2 (en)
JPS5939951A (en) Idling speed controller of internal-combustion engine
JP3630694B2 (en) Engine transmission cooperative control method and apparatus
JP2870356B2 (en) Exhaust gas recirculation control device for internal combustion engine
JPH09242654A (en) Ignition timing controller for engine
JPH01116213A (en) Air/fuel ratio control device for internal combustion engine