JPH06173743A - Air-fuel ratio learning control method for internal combustion engine - Google Patents

Air-fuel ratio learning control method for internal combustion engine

Info

Publication number
JPH06173743A
JPH06173743A JP4324243A JP32424392A JPH06173743A JP H06173743 A JPH06173743 A JP H06173743A JP 4324243 A JP4324243 A JP 4324243A JP 32424392 A JP32424392 A JP 32424392A JP H06173743 A JPH06173743 A JP H06173743A
Authority
JP
Japan
Prior art keywords
learning
air
fuel ratio
weighting factor
correction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4324243A
Other languages
Japanese (ja)
Inventor
Toshibumi Hayamizu
俊文 早水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP4324243A priority Critical patent/JPH06173743A/en
Publication of JPH06173743A publication Critical patent/JPH06173743A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PURPOSE:To perform correction with a small memory capacity and at high speed by determining a common learning value in the whole area by defining the deterioration characteristic of emission parts with a weighting factor. CONSTITUTION:A weighting factor by which the deterioration characteristic of an air flow sensor is defined for the whole area is stored in a weighting factor deciding means 102 beforehand. The weighting factor deciding means 102 decides the weighting factor KA corresponding to the intake air quantity detected by a running state detecting means 101. A steady state learning means 103 determines learning correction quantity of this time by judging a specified steady state, sampling the feedback correction quantity of the air fuel ratio decided according to the output of an O2 sensor, and dividing this feedback correction quantity by the weighting factor KA. A learning memory means 104 stores the learning correction value of this time reflected on the common learning value already stored. This learning value corrects fuel injection quantity as an air fuel ratio correction factor by means of fuel injection quantity correcting means 106 by multiplying the weighting factor KA by a learning correction quantity calculating means 105.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、全ての運転領域で最適
な空燃比を得ることのできる内燃機関の空燃比学習制御
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air-fuel ratio learning control method for an internal combustion engine capable of obtaining an optimum air-fuel ratio in all operating regions.

【0002】[0002]

【従来の技術】従来より、O2 センサの出力により燃料
噴射量を補正し、その補正量を学習値として記憶するシ
ステムでは、エンジンの運転状態に応じて、その補正量
を回転数、負荷等により小区分に分割して記憶してい
た。しかしこのような学習方法では、各領域に定常状態
で留まっている必要があるため、学習速度が遅くなると
いう欠点があった。このような問題点に対して、予め定
めたエアフローセンサの劣化特性に従って、未学習領域
を推定する学習方法が特開昭63−259136号公報
に記載されている。
2. Description of the Related Art Conventionally, in a system in which a fuel injection amount is corrected by the output of an O 2 sensor and the correction amount is stored as a learning value, the correction amount is adjusted in accordance with the operating state of the engine, such as rotation speed, load, etc. It was divided into subsections and stored. However, such a learning method has a drawback that the learning speed becomes slow because it is necessary to stay in a steady state in each region. With respect to such a problem, Japanese Patent Laid-Open No. 63-259136 discloses a learning method for estimating an unlearned region according to a predetermined deterioration characteristic of an air flow sensor.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、このよ
うな方法によってもある基準領域での学習結果を用いる
ため、十分な学習速度は得られず、また、メモリ容量を
多く必要とする問題点を有している。本発明は、上記問
題点に鑑み、エミッションパーツの劣化特性を重み係数
で定義することにより、全領域において共通の1つの学
習値を求めることで、少ないメモリ容量でしかも早い速
度で補正ができる内燃機関の空燃比学習制御方法を提供
することを目的とするものである。
However, since the learning result in a certain reference region is used even by such a method, there is a problem that a sufficient learning speed cannot be obtained and a large memory capacity is required. is doing. In view of the above problems, the present invention defines a deterioration characteristic of an emission part by a weighting coefficient to obtain a single learning value common to all areas, thereby enabling correction with a small memory capacity and at a high speed. An object of the present invention is to provide an air-fuel ratio learning control method for an engine.

【0004】[0004]

【課題を解決するための手段】本発明は、上記目的を達
成するため、エアフローセンサの劣化特性を重み係数と
して定義しておき、各領域での空燃比のずれ量を前記重
み係数で除したものを平均化して共通の1つの学習値と
すると共に、該学習値に運転領域に対応する重み係数を
乗算した値を空燃比補正係数として、実際の燃料噴射量
の補正を行う。
In order to achieve the above object, the present invention defines the deterioration characteristic of the air flow sensor as a weighting coefficient and divides the deviation amount of the air-fuel ratio in each region by the weighting coefficient. The values are averaged to obtain one common learning value, and the actual fuel injection amount is corrected using a value obtained by multiplying the learning value by a weighting coefficient corresponding to the operating region as an air-fuel ratio correction coefficient.

【0005】[0005]

【作用】上記手段により、学習領域を小区分に領域分割
しなくとも全領域での学習補正が可能となるので、メモ
リ容量が少なく、学習速度の早い空燃比学習制御方法が
実現できる。
By the above means, the learning correction can be performed in the entire area without dividing the learning area into the small areas. Therefore, an air-fuel ratio learning control method with a small memory capacity and a high learning speed can be realized.

【0006】[0006]

【実施例】本発明の内燃機関の空燃比学習制御方法を、
実施例に基づき図を用いて説明する。本例においては、
エミッションパーツの劣化特性としてエアフローの劣化
特性を採用し、運転領域を吸入空気量により分割して重
み係数を定義している。図2は、本例の空燃比学習制御
方法を適用する内燃機関の要部概略図である。1はエン
ジン本体、2はエアクリーナ、3はエアフローセンサ、
4は吸気管、5はスロットルバルブ、6はスロットルチ
ャンバ、7は吸気マニホルド、8はインジェクタ、9は
排気管、10はO2 センサ、11は三元触媒コンバー
タ、12は水温センサ、13はクランクシャフトであ
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An air-fuel ratio learning control method for an internal combustion engine of the present invention
An example will be described with reference to the drawings. In this example,
The deterioration characteristic of the airflow is adopted as the deterioration characteristic of the emission parts, and the operating region is divided by the intake air amount to define the weighting coefficient. FIG. 2 is a schematic view of a main part of an internal combustion engine to which the air-fuel ratio learning control method of this example is applied. 1 is an engine body, 2 is an air cleaner, 3 is an air flow sensor,
4 is an intake pipe, 5 is a throttle valve, 6 is a throttle chamber, 7 is an intake manifold, 8 is an injector, 9 is an exhaust pipe, 10 is an O 2 sensor, 11 is a three-way catalytic converter, 12 is a water temperature sensor, and 13 is a crank. It is a shaft.

【0007】16はECU(電子制御装置)であり、そ
の入力には次のものが入力される。すなわち、エアフロ
ーセンサ3により検出される吸入空気量、スロットルセ
ンサ17により検出されるスロットルバルブ5の開度、
水温センサ12により検出されるエンジンの冷却水温、
クランクシャフト13に連結された回転センサ18によ
り検出されるエンジン回転数、O2 センサ10により検
出される酸素濃度が入力される。
Reference numeral 16 is an ECU (electronic control unit) to which the following is input. That is, the intake air amount detected by the air flow sensor 3, the opening degree of the throttle valve 5 detected by the throttle sensor 17,
Engine cooling water temperature detected by the water temperature sensor 12,
The engine speed detected by the rotation sensor 18 connected to the crankshaft 13 and the oxygen concentration detected by the O 2 sensor 10 are input.

【0008】ECU16は、前記各入力信号に応じてイ
ンジェクタの基本通電時間を決定し、さらに、所定の学
習値演算手段により演算された学習補正値により、上記
基本通電時間を補正して最終的な噴射量を決定する。一
方、ECU16の出力はインジェクタ8に接続され、O
2 センサ10が検出した酸素濃度によって燃焼の過濃・
過薄を判断し、インジェクタ8の噴射量をフィードバッ
ク制御する。
The ECU 16 determines the basic energization time of the injector in accordance with each of the input signals, and further corrects the basic energization time by the learning correction value calculated by the predetermined learning value calculating means to finally obtain the final energization time. Determine the injection amount. On the other hand, the output of the ECU 16 is connected to the injector 8 and
2 Depending on the oxygen concentration detected by the sensor 10,
The fuel injection amount of the injector 8 is feedback-controlled by determining the overthickness.

【0009】ここで、従来一般的にECU16内で演算
されていた燃料噴射パルス幅は、次の〔数1〕に示すよ
うなものである。 〔数1〕Ti =K1 ×QA /N×K2 ×α+TVi …燃料噴射パルス幅、K1 …定数、QA …吸入空気
量、N…エンジン回転数、K2 …水温,過渡等の補正係
数、α…フィードバック補正係数、TV …無効噴射時
間。
Here, the fuel injection pulse width generally calculated in the conventional ECU 16 is as shown in the following [Equation 1]. [Equation 1] T i = K 1 × Q A / N × K 2 × α + T V T i ... Fuel injection pulse width, K 1 ... Constant, Q A ... Intake air amount, N ... Engine speed, K 2 ... Water temperature , Correction coefficient for transient, α ... Feedback correction coefficient, T V ... Invalid injection time.

【0010】通常、〔数1〕で用いられるフィードバッ
ク補正係数αは1.0を中心に制御できるように調整さ
れているが、時間の経過と共に各センサあるいはインジ
ェクタ8等が経時劣化を生じ、αの値が1.0からずれ
たところで制御されるようになる。一方、O2 フィード
バックを開始するには、O2 センサ10の暖機完了が必
要であり、それまではαは1.0に固定される。したが
って、システムの経時劣化によりαの値がずれている
と、フィードバックを開始するまでのベース空燃比がず
れた値となる。また、αの制御範囲は、制御上、応答性
等の面から、一般に±25%程度に制御されているた
め、空燃比がこれ以上の値にずれるとフィードバック制
御ができなくなる。
Normally, the feedback correction coefficient α used in [Equation 1] is adjusted so that it can be controlled around 1.0, but with the passage of time, each sensor or injector 8 and the like deteriorates with time, and α Is controlled when the value of is deviated from 1.0. On the other hand, in order to start the O 2 feedback, it is necessary to complete the warm-up of the O 2 sensor 10, and α is fixed at 1.0 until then. Therefore, if the value of α deviates due to the deterioration of the system over time, the base air-fuel ratio before the start of feedback becomes a deviated value. Further, the control range of α is generally controlled to about ± 25% in terms of responsiveness in terms of control, so that feedback control cannot be performed when the air-fuel ratio deviates from this value.

【0011】そこで、本発明においては、フィードバッ
ク補正係数αの1.0からの偏差を、バックアップ可能
な記憶装置に記憶しておき、これを燃料噴射パルス幅の
計算に用いる。この時、計算式は次式のようになる。 〔数2〕 Ti =K1 ×QA /N×K2 ×(α+KL )+TV ここで、KL は空燃比補正係数で、後述の〔数5〕を用
いて、記憶された学習補正量および重み係数により最終
学習補正量として得られるものである。
Therefore, in the present invention, the deviation of the feedback correction coefficient α from 1.0 is stored in a back-up storage device and used for calculation of the fuel injection pulse width. At this time, the calculation formula is as follows. [Equation 2] T i = K 1 × Q A / N × K 2 × (α + K L ) + T V Here, K L is an air-fuel ratio correction coefficient, which is stored by using [Equation 5] described later. The correction amount and the weighting coefficient are obtained as the final learning correction amount.

【0012】次に、上記最終学習補正量KL の計算を行
うためのECU16内の制御ブロックを図1に示す。運
転状態検出手段101は、本例では吸入空気量QA を検
出する。重み係数決定手段102には予め、図5に示す
ような吸入空気量QA の全領域に対してエアフローセン
サ3の劣化特性を定義した重み係数が記憶されている。
重み係数検出手段102は、運転状態検出手段101が
検出した吸入空気量QAに対応した重み係数KA を決定
する。
Next, FIG. 1 shows a control block in the ECU 16 for calculating the final learning correction amount K L. The operating state detecting means 101 detects the intake air amount Q A in this example. The weighting factor determining means 102 stores in advance a weighting factor that defines the deterioration characteristic of the air flow sensor 3 for the entire region of the intake air amount Q A as shown in FIG.
The weighting factor detecting means 102 determines the weighting factor K A corresponding to the intake air amount Q A detected by the operating state detecting means 101.

【0013】定常学習手段103は、所定の定常状態を
判定し、O2 センサ出力に応じて決定された空燃比のフ
ィードバック補正量をサンプリングして、重み係数決定
手段102により決定した重み係数KA により該フィー
ドバック補正量を除算したものを今回の学習補正値K
LN(i) として演算する。学習値記憶手段104は、今回
の学習補正値KLN(i) を既に記憶している共通の1つの
学習値KLNに対して、全部あるいはその一部を反映し記
憶する。こうして記憶された学習値KLNは、学習補正量
演算手段105にて、重み係数決定手段102にて決定
された重み係数KA を乗算し、最終学習補正量すなわち
空燃比補正係数KL として燃料噴射量補正手段106に
て燃料噴射量を補正する。
The steady learning means 103 determines a predetermined steady state, samples the feedback correction amount of the air-fuel ratio determined according to the O 2 sensor output, and weights the coefficient K A determined by the weighting coefficient determining means 102. This feedback correction amount is divided by this learning correction value K
Calculate as LN (i) . The learning value storage unit 104 reflects all or part of the common learning value K LN that has already stored the learning correction value K LN (i) of this time and stores it. The learning value K LN stored in this way is multiplied by the weighting coefficient K A determined by the weighting coefficient determination means 102 in the learning correction amount calculation means 105 to obtain the final learning correction amount, that is, the air-fuel ratio correction coefficient K L as the fuel. The injection amount correction means 106 corrects the fuel injection amount.

【0014】以上説明した最終学習補正量KL を求める
手順を、図3、図4のフローチャートを用いて説明す
る。まず、ステップ301にて、フラグ1および2を共
に1とし、カウンタおよびフィードバック補正係数αの
積算値αSを共に0とする。ステップ302で、水温条
件、定常判定等から、所定の学習可能条件が成立してい
るか否かを判断する。条件が成立しない場合、ステップ
401にて、フラグ1および2を共に0として、ステッ
プ402に進む。条件が成立した場合、ステップ303
〜308にて以下のようにフィードバック補正係数αの
積算を行う。
The procedure for obtaining the final learning correction amount K L described above will be described with reference to the flowcharts of FIGS. 3 and 4. First, in step 301, both the flags 1 and 2 are set to 1, and the integrated value αS of the counter and the feedback correction coefficient α is set to 0. In step 302, it is judged from the water temperature condition, the steady state judgment, etc. whether or not a predetermined learning enable condition is satisfied. If the condition is not satisfied, both flags 1 and 2 are set to 0 in step 401, and the process proceeds to step 402. If the condition is met, step 303
Up to 308, the feedback correction coefficient α is integrated as follows.

【0015】ステップ303にてフィードバック補正係
数αを取り込む。ステップ304にてαS=αS+αの
演算を行い、フィードバック補正係数αの積算値αSを
得る。ステップ305にてカウンタに1を加える。ステ
ップ306にて、カウンタが所定のサンプリング回数S
に達したか否かを判断し、達成していなければ、ステッ
プ308からステップ302へ戻る。以上のようにフィ
ードバック周期毎にフィードバック補正係数αを積算
し、サンプリング回数が所定回数Sだけ繰り返されて、
ステップ306にて積算が終了したと判断されると、ス
テップ307、308からステップ402へ進む。
At step 303, the feedback correction coefficient α is fetched. In step 304, αS = αS + α is calculated to obtain the integrated value αS of the feedback correction coefficient α. In step 305, 1 is added to the counter. In step 306, the counter indicates the predetermined sampling number S
It is determined whether or not has reached, and if not achieved, the process returns from step 308 to step 302. As described above, the feedback correction coefficient α is integrated for each feedback cycle, and the sampling number is repeated a predetermined number of times S,
If it is determined in step 306 that the integration has been completed, the process proceeds from step 307, 308 to step 402.

【0016】ステップ402では、フラグ2が1である
か否か(学習条件が成立しているか否か)を判断し、N
oであればリターンし、Yesであればステップ309
以降へ進み、学習値の演算と更新を行う。ステップ30
9では、図5に示す予め定義された重み係数KA を吸入
空気量Q A に応じて読み出す。ステップ310では、今
回の学習値としてKLN(i) を次の〔数3〕として求め
る。 〔数3〕KLN(i) =αS/S/KA
In step 402, flag 2 is 1.
It is judged whether or not (whether or not the learning condition is satisfied), and N
If it is o, the process returns, and if Yes, step 309.
Then, the learning value is calculated and updated. Step 30
9, the predefined weighting factor K shown in FIG.AInhale
Air volume Q ARead according to. In step 310, now
K as a learning value of timesLN (i)Is calculated as the following [Equation 3]
It [Equation 3] KLN (i)= ΑS / S / KA

【0017】ステップ311では、既に記憶している学
習値KLNに対し、今回求めた学習値KLN(i) を所定の学
習更新割合β(β<1)だけ反映して更新するため、次
の〔数4〕の演算を行う。 〔数4〕KLN=KLN*β+KLN(i) *(1−β) これは、誤学習を防止すると共に、学習の急激な変化に
より制御性を損なうのを防止するためである。
At step 311, the learning value K LN (i) obtained this time is updated by reflecting the learning value K LN already stored by a predetermined learning update ratio β (β <1). [Formula 4] is calculated. [ Equation 4] K LN = K LN * β + K LN (i) * (1-β) This is to prevent erroneous learning and also to prevent the controllability from being impaired due to a rapid change in learning.

【0018】以上のようにして記憶された学習値KLN
より、実際の燃料噴射量を演算するときは、学習値算出
の時と同様に重み係数KA を読み出し、次の〔数5〕に
より各領域に適合した最終補正量として空燃比補正係数
L を算出する。 〔数5〕KL =KLN*KA そして、この係数KL を用いて前述の〔数2〕により実
際の燃料噴射パルス幅を算出する。このような構成とす
ることにより、学習領域を小区分に領域分割しなくとも
全域領域での学習補正が可能となるので、メモリ容量も
少なく、学習速度の早い空燃比学習制御方法が実現でき
る。
When the actual fuel injection amount is calculated from the learning value K LN stored as described above, the weighting coefficient K A is read out as in the case of calculating the learning value, and the following [Equation 5] is used. The air-fuel ratio correction coefficient K L is calculated as the final correction amount suitable for each region. [Equation 5] K L = K LN * K A Then, using this coefficient K L , the actual fuel injection pulse width is calculated by the above [Equation 2]. With such a configuration, the learning correction can be performed in the entire area without dividing the learning area into small sections, so that an air-fuel ratio learning control method with a small memory capacity and a high learning speed can be realized.

【0019】以上説明した実施例では、重み係数K
A は、エアフローセンサの劣化特性を基に吸入空気量方
向のみで定義したが、その他のエミッションパーツ、例
えばインジェクタ等の劣化特性も考慮し、吸気管圧力ま
たは単位回転当たりの吸気量等のエンジン負荷パラメー
タおよびエンジン回転数により領域分割した2次元マッ
プとすることもできる。この場合、前記実施例の少ない
メモリ容量ですむという効果は少なくなるが、より精密
な空燃比制御および高速の学習ができるメリットが発揮
される。
In the embodiment described above, the weighting factor K
A was defined only in the intake air amount direction based on the deterioration characteristics of the air flow sensor, but considering the deterioration characteristics of other emission parts, such as the injector, the engine load such as the intake pipe pressure or the intake air amount per unit rotation is also considered. It is also possible to make a two-dimensional map that is divided into regions by parameters and engine speed. In this case, the effect of using the small memory capacity of the above-described embodiment is reduced, but the merit of more precise air-fuel ratio control and high-speed learning is exhibited.

【0020】[0020]

【発明の効果】本発明は、運転状態の全領域で常に共通
の1つの学習値の更新を行い、しかも全領域にわたって
共通の1つの学習値により、エミッションパーツの劣化
を補償することができるので、少ないメモリ容量でしか
も高速度で学習できる内燃機関学習制御方法が得られる
ものである。
According to the present invention, one common learning value is constantly updated in all regions of the operating state, and deterioration of emission parts can be compensated by one common learning value in all regions. Therefore, an internal combustion engine learning control method that can learn at a high speed with a small memory capacity can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の学習補正量の計算を行う制御
ブロックのブロック図。
FIG. 1 is a block diagram of a control block that calculates a learning correction amount according to an embodiment of the present invention.

【図2】本発明の実施例の空燃比学習制御方法を適用す
る内燃機関の要部概略図。
FIG. 2 is a schematic view of a main part of an internal combustion engine to which the air-fuel ratio learning control method according to the embodiment of the present invention is applied.

【図3】本発明の実施例の学習補正量を求める手順を示
すフローチャート、その1。
FIG. 3 is a flowchart showing a procedure for obtaining a learning correction amount according to the embodiment of the present invention, part 1;

【図4】本発明の実施例の学習補正量を求める手順を示
すフローチャート、その2。
FIG. 4 is a flowchart showing a procedure for obtaining a learning correction amount according to the embodiment of the present invention, part 2;

【図5】本発明の実施例において用いる重み係数を示す
グラフ。
FIG. 5 is a graph showing weighting factors used in the embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…エンジン本体 3…エアフローセンサ 8…インジェクタ 10…O2 センサ 16…ECU Ti …燃料噴射パルス幅 QA …吸入空気量 α…フィードバック補正係数 KA …重み係数 KL …最終学習補正量 KLN…学習値 KLN(i) …今回の学習補正値1 ... engine body 3 ... air flow sensor 8 ... injector 10 ... O 2 sensor 16 ... ECU T i ... fuel injection pulse width Q A ... intake air quantity alpha ... feedback correction coefficient K A ... weighting factor K L ... final learning correction amount K LN … Learning value K LN (i) … Learning correction value this time

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 空燃比制御に影響を及ぼすエミッション
パーツの劣化特性を、全運転領域に対して重み係数によ
り定義しておき、各運転領域の空燃比ずれ量を当該運転
領域における重み係数で除算した値を共通の1つの学習
値として記憶すると共に、該学習値に運転領域に対応す
る重み係数を乗算した値を空燃比補正係数として燃料噴
射量の補正を行うことを特徴とする内燃機関の空燃比学
習制御方法。
1. Degradation characteristics of emission parts that affect air-fuel ratio control are defined by weighting factors for all operating regions, and the air-fuel ratio deviation amount of each operating region is divided by the weighting factor in the operating region. Is stored as one common learning value, and the fuel injection amount is corrected using a value obtained by multiplying the learning value by a weighting coefficient corresponding to the operating region as an air-fuel ratio correction coefficient. Air-fuel ratio learning control method.
【請求項2】 前記運転領域は吸入空気量により分割さ
れ、前記重み係数は、エアフローセンサの劣化特性を基
にした値であることを特徴とする請求項1記載の内燃機
関の空燃比学習制御方法。
2. The air-fuel ratio learning control of an internal combustion engine according to claim 1, wherein the operating region is divided by an intake air amount, and the weighting coefficient is a value based on a deterioration characteristic of an air flow sensor. Method.
【請求項3】 前記運転領域をエンジン負荷パラメータ
およびエンジン回転数により分割した2次元マップとし
たことを特徴とする請求項1記載の内燃機関の空燃比学
習制御方法。
3. The air-fuel ratio learning control method for an internal combustion engine according to claim 1, wherein the operating region is a two-dimensional map divided by an engine load parameter and an engine speed.
JP4324243A 1992-12-03 1992-12-03 Air-fuel ratio learning control method for internal combustion engine Pending JPH06173743A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4324243A JPH06173743A (en) 1992-12-03 1992-12-03 Air-fuel ratio learning control method for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4324243A JPH06173743A (en) 1992-12-03 1992-12-03 Air-fuel ratio learning control method for internal combustion engine

Publications (1)

Publication Number Publication Date
JPH06173743A true JPH06173743A (en) 1994-06-21

Family

ID=18163635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4324243A Pending JPH06173743A (en) 1992-12-03 1992-12-03 Air-fuel ratio learning control method for internal combustion engine

Country Status (1)

Country Link
JP (1) JPH06173743A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007023960A (en) * 2005-07-20 2007-02-01 Nissan Motor Co Ltd Learning control device for internal combustion engine
JP2007138853A (en) * 2005-11-18 2007-06-07 Honda Motor Co Ltd Intake air quantity detection device for internal combustion engine
JP2009162125A (en) * 2008-01-08 2009-07-23 Honda Motor Co Ltd Control device
JP2018150825A (en) * 2017-03-10 2018-09-27 株式会社豊田自動織機 Controller of engine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007023960A (en) * 2005-07-20 2007-02-01 Nissan Motor Co Ltd Learning control device for internal combustion engine
JP2007138853A (en) * 2005-11-18 2007-06-07 Honda Motor Co Ltd Intake air quantity detection device for internal combustion engine
JP2009162125A (en) * 2008-01-08 2009-07-23 Honda Motor Co Ltd Control device
US7949458B2 (en) 2008-01-08 2011-05-24 Honda Motor Co., Ltd. Control apparatus and method and control unit
JP2018150825A (en) * 2017-03-10 2018-09-27 株式会社豊田自動織機 Controller of engine
DE102018104035B4 (en) 2017-03-10 2023-07-06 Kabushiki Kaisha Toyota Jidoshokki Engine control device

Similar Documents

Publication Publication Date Title
US5158063A (en) Air-fuel ratio control method for internal combustion engines
US4636957A (en) Method for controlling operating state of an internal combustion engine with an overshoot preventing function
JP3356878B2 (en) Air-fuel ratio control device for internal combustion engine
JPH0531646B2 (en)
JPH08158918A (en) Air fuel ratio learning control device for internal combustion engine
US5440877A (en) Air-fuel ratio controller for an internal combustion engine
JP2869916B2 (en) Fuel control device for internal combustion engine
JP2002303166A (en) Exhaust gas recirculation control device for internal combustion engine
JPH04339147A (en) Control device for air-fuel ratio of internal combustion engine
EP0199457B1 (en) Fuel supply control method for internal combustion engines at low temperature
US5551408A (en) Exhaust gas recirculation control system for internal combustion engines
US4699111A (en) Air-fuel ratio control method for internal combustion engines
US4751906A (en) Air-fuel ratio control method for internal combustion engines
JPH06173743A (en) Air-fuel ratio learning control method for internal combustion engine
JPH041439A (en) Air-fuel ratio controller of internal combustion engine
JPH06102999B2 (en) Fuel supply control method for internal combustion engine
JP2596054Y2 (en) Air-fuel ratio feedback control device for internal combustion engine
US20030106530A1 (en) Control system for internal combustion engine
JP2759545B2 (en) Air-fuel ratio control device for internal combustion engine
JPH06185396A (en) Basic fuel injection method
JP2621068B2 (en) Air-fuel ratio feedback control method for an internal combustion engine
JPH11173218A (en) Egr rate estimation device for engine
JP3303614B2 (en) Idle speed control device for internal combustion engine
JP2558153Y2 (en) Auxiliary air flow control device for internal combustion engine
JPH0243900B2 (en) NAINENKIKANNOGAKUSHUSEIGYOSOCHI