JPS62172592A - Substrate voltage generating circuit device - Google Patents

Substrate voltage generating circuit device

Info

Publication number
JPS62172592A
JPS62172592A JP61012872A JP1287286A JPS62172592A JP S62172592 A JPS62172592 A JP S62172592A JP 61012872 A JP61012872 A JP 61012872A JP 1287286 A JP1287286 A JP 1287286A JP S62172592 A JPS62172592 A JP S62172592A
Authority
JP
Japan
Prior art keywords
charge pump
capacitance
oscillator
circuit
substrate voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61012872A
Other languages
Japanese (ja)
Inventor
Hideji Miyatake
秀司 宮武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP61012872A priority Critical patent/JPS62172592A/en
Publication of JPS62172592A publication Critical patent/JPS62172592A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the titled device suitable for high circuit integration by forming a coupling capacitance by depletion MOS capacitance and connecting a gate electrode to a charge pump circuit side and a counter electrode to an oscillator output side to reduce the injection of a small number of carriers. CONSTITUTION:The coupling capacitance 2 is formed by depletion MOS capacitance, the gate electrode is connected to a node N1 of a charge pump circuit and the counter electrode (diffusion region) is connected to an output phi signal of an oscillator. The capacitance 2 always has the capacitance between electrodes to apply normal charge pump operation, the potential of the diffusion region and the channel region under the gate is brought to the same level as that of the signal phi and does not reach a negative potential. The diffusion region of the node N1 being the negative potential results from the source-drain region only of transistors 4, 5 and the area of the junction receiving a forward bias is reduced. Thus, the injection of a small number of carriers is reduced and the device suitable for high integrated circuit is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、ダイナミック集積回路メモリ装置に内賦さ
れる基板電圧発生回路装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a substrate voltage generation circuit device incorporated in a dynamic integrated circuit memory device.

IEEE J、 5olid−3tate circu
its、 vot、 aa−15゜P、672. Au
g、 1980.)に示された従来の基板電圧発生回路
装置を示す回路図で、図中、fl+は発振器、(21は
容量、(3+tri浮遊容量、+41 、 [51はM
OSトランジスタ、φけ発振信号、VBBに基板雪圧、
N1はノード番号を示す。今ここで破線で囲んだ(lO
)をチャージポンプ回路と称す。
IEEE J, 5solid-3tatecircu
its, vot, aa-15°P, 672. Au
g, 1980. ) is a circuit diagram showing the conventional substrate voltage generation circuit device shown in FIG.
OS transistor, φ oscillation signal, board snow pressure on VBB,
N1 indicates a node number. I have now enclosed it here with a dashed line (lO
) is called a charge pump circuit.

次に、@3図の波形間を用いて、第2図のチャージポン
プ動作について説明する。
Next, the charge pump operation shown in FIG. 2 will be explained using the waveforms shown in FIG.

電源電圧vccが供給されると、′0振器11+が信号
φを発生する。信号φか高レベルになると、容量(21
の結合によりノーFN1け、亮レベルになろうとするか
、トランジスタ(6)がON状態となるので。
When the power supply voltage vcc is supplied, the '0 oscillator 11+ generates the signal φ. When the signal φ becomes high level, the capacitance (21
Due to the combination of FN1 and FN1, the level will become bright, or the transistor (6) will be turned on.

VT ()ランジスタのスレンホール1″電圧)までし
か上昇しない。次に、信号φが低レベルになると、やは
り容量結合により、ノー)N1は、低レベルになろうと
するが、トランジスタ(41がON状態となるので、電
気的にフローティングである基板電位VBBが負電圧と
なり(Nlの電子が基板へ転送される、)、ノードN1
のレベルは、瞬間低(なるが、すぐK VBB−V7ま
で回復する。
It rises only to VT (1" voltage of the transistor).Next, when the signal φ becomes low level, also due to capacitive coupling, N1 tries to go low level, but the transistor (41 is ON). state, the electrically floating substrate potential VBB becomes a negative voltage (electrons of Nl are transferred to the substrate), and the node N1
The level is momentarily low (but quickly recovers to KVBB-V7).

この瞬間的なレベル低下の程/fは、トランジスタ(4
)の能力と容量(2)の大缶さに依存するが、高集積半
導体装置では、トランジスタ(41のサイズに制囮があ
るのでレベル低下は必ず存在する。
The degree of this instantaneous level drop /f is the transistor (4
) and the size of the capacitance (2), but in highly integrated semiconductor devices, there is always a level drop because there is a limit to the size of the transistor (41).

さて、φ信号1サイクルで、基板電位1/BBが負雪圧
となる程度は、基板の浮遊容量(3:と結合容量(2)
で決まる。通常、浮遊容t(31け結合容t(2)より
放100倍大永いので、第3図に示される轡に、上述の
サイクルが繰返えされて、基板電位は徐々に負電位とな
る。そして、基板電位は所定の時間で−(Vcc−2v
T ”)に飽和−f”ル。
Now, the extent to which the substrate potential 1/BB becomes negative snow pressure in one cycle of the φ signal is determined by the stray capacitance (3) of the substrate and the coupling capacitance (2).
It is determined by Normally, the floating capacitance t (31 times longer than the coupling capacitance t(2) is 100 times longer, so the above-mentioned cycle is repeated as shown in Figure 3, and the substrate potential gradually becomes a negative potential. Then, the substrate potential becomes -(Vcc-2v) for a predetermined time.
T ”) saturates −f” le.

以上にて半導体装腎が使用可能伊態となるチャージポン
プの原理であるが、vCCが単一電源であるダイナミッ
クメモリ装置で、負入力や回路動作に伴う負ノードによ
る電子注入を防止する目的のため広(使用さねている。
The above describes the principle of a charge pump in which a semiconductor device can be used.In a dynamic memory device where vCC is a single power supply, the purpose of the charge pump is to prevent electron injection by a negative node due to negative input or circuit operation. Tamehiro (I'm not using it.

従来、結合容量(2)は半導体回路装rTItf構成す
る配線材料(たとλば、At、ポリシリコン)で構成さ
ねていた。
Conventionally, the coupling capacitance (2) has been composed of a wiring material (for example, At, polysilicon) constituting the semiconductor circuit device rTItf.

しかし、近年、ゲートヤ化膜の薄嘆化か進与、MO8容
景容量成することにより、集S度の高いものが得られる
ようになった。
However, in recent years, due to the thinning or advancement of the gate layer and the increase in the MO8 visual capacity, it has become possible to obtain a film with a high S concentration.

@4図にチャージポンプ回路の従来の代表的レイアウト
図を示す。図中の符Ji+け第2図と同じものを示す。
Figure @4 shows a typical conventional layout of a charge pump circuit. The symbol Ji + in the figure indicates the same thing as in Figure 2.

結合容t(21けMO9容量で構敗さね、ゲート雪掻に
は、信号φが、対向層#(拡散領JFc)には、ノード
N1が接続されている。
A coupling capacitance t (21 MO9 capacitance is sufficient), a signal φ is connected to the gate electrode, and a node N1 is connected to the opposing layer # (diffusion region JFc).

以上の構戚忙より、ノー)N1に対して信号φが、常に
高い電位となるので、ゲートの下にチャネルが生じ、常
に容量として働くため、正常なるチャージポンプ作用か
行わねる。
Due to the above reasons, the signal φ is always at a high potential with respect to N1, so a channel is generated under the gate and always functions as a capacitor, so that normal charge pumping cannot be performed.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

さて、高集積ダイナミックメモリ装置でVi%前述した
参考文献にも示されるように、高vCC状態で、内部回
路で発生するホットエレクトロンによ° り流わる茶飯
電流により、基板電圧が期待される値より高(なる現象
がある。この場合、チャージポンプ回路ばて、常にチャ
ージポンプ動作か行われる。この時、ノードN1の電位
は、基板電位より’/〒C〜0.6v)以上に、瞬間低
(なり、ノーl″N1を11峻する接合のビルトインポ
テンシャルを越え、順方向パイ−rスが場合に力pわる
。この結果、少数キャリアがノードN1から基板に注入
される。この程Rは、順方(ロ)バイアスの大きさとノ
ーFN1における接合の大永さに依存する。そして、従
来の構成では容量(21の拡散鎖酸と、ゲート下のチャ
ネル頭絨が、その接合頭Vになり、大きな面積を占めて
いた。この結果、注入される少数キャリアが過大になり
、メモリ装置の蓄積情卸を破壊する間覇が生じていた。
Now, in a highly integrated dynamic memory device, Vi%As shown in the above-mentioned references, in a high VCC state, the substrate voltage increases to the expected value due to the common current flowing due to hot electrons generated in the internal circuit. In this case, the charge pump circuit always performs a charge pump operation. At this time, the potential of node N1 is instantaneously higher than the substrate potential by 0.6 V or more. As a result, minority carriers are injected from node N1 into the substrate. depends on the magnitude of the forward bias and the length of the junction in no-FN1.In the conventional configuration, the capacitance (21 diffusion chains and the channel head under the gate) As a result, the number of minority carriers injected becomes too large, leading to damage that destroys the storage information of the memory device.

この発BJ4は上ゲのような問題点?fN消するために
なされたもので、高vCC状態でもチャージポンプ回路
からの少数キャリヤの注入が低減でき、高集積ダイナミ
ックメモリ装置に最適な基板電圧発生回路を得ることを
目的としている。
Does this release BJ4 have problems like the upper game? This was done to eliminate fN, and the purpose is to obtain a substrate voltage generation circuit that can reduce the injection of minority carriers from the charge pump circuit even in a high vCC state and is optimal for highly integrated dynamic memory devices.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る基板電圧発生回路は、結合容量(21を
デプレッションMO8容量で構成し、そのゲート1!l
iKチヤージポンプ回路のノードN1を2対向電極(拡
散@域)に発振器の出力φ信号を接続し、順方向バイア
スが加わる接合KMの血清を低減させるようにしたもの
である。
The substrate voltage generation circuit according to the present invention includes a coupling capacitor (21) composed of a depletion MO8 capacitor, whose gate 1!l
The output φ signal of the oscillator is connected to the node N1 of the iK charge pump circuit to two opposing electrodes (diffusion@region) to reduce the serum of the junction KM to which a forward bias is applied.

〔作用〕 この発明における基板電圧発生回路は、結合容量部で順
方向バイアスが加わる接合が併(なるので、高隼瑣ダイ
ナミックメモリ装置に使用さねて本、少数キャリアの注
入が低減される。
[Function] Since the substrate voltage generating circuit according to the present invention has a junction to which a forward bias is applied in the coupling capacitance portion, it can be used in a high-performance dynamic memory device and the injection of minority carriers can be reduced.

〔発明の実捲例] 以下、この発明の一実施例のレイアウト図を第1図に示
す。図中、従来例の第2図と同一符号は同等部分を示す
[Example of Implementation of the Invention] A layout diagram of an embodiment of the invention is shown in FIG. 1 below. In the figure, the same reference numerals as in FIG. 2 of the conventional example indicate the same parts.

結合容t(21けデプレッションMO8容量で構成さね
、そのゲー)[極にはノー)N1が、対向電極(拡散領
域)には信号φが接続されている。
A coupling capacitor t (consisting of 21 depletion MO8 capacitors, its gate) [no to the pole] N1 is connected, and a signal φ is connected to the counter electrode (diffusion region).

以下、第1図の動作を説明する。The operation shown in FIG. 1 will be explained below.

容量(21ケ、デプレッションタイプであるので、常に
電接間に容量を持ち、従来回路と同様、正常なるチャー
ジポンプ動作が行ねねる。
Since it is a depletion type capacitor (21 capacitors), there is always a capacitance between the electrical connections, and normal charge pump operation cannot be performed like the conventional circuit.

又、容t(2)の拡散領域およびゲート下のチャネル領
域の電位は信号φと同じレベルとなるので、負電位忙な
ることはない。そして、負電位となるノーI″N1の拡
散領域は、トランジスタ(41、filのソース・ドレ
イン幅域のみとなるので、順方向バイアスとなる接合の
面積が著しく低減さね、注入される少数キャリアによる
間頌が著しく改善さねる。
Further, since the potentials of the diffusion region of capacitor t(2) and the channel region under the gate are at the same level as the signal φ, there is no negative potential. Since the diffusion region of NOI''N1, which has a negative potential, is only the source/drain width region of the transistor (41, fil), the area of the junction that becomes forward biased is significantly reduced, and minority carriers are injected. The interlude by the author has not improved significantly.

上ン、実権例では、容量(2)を単なるデプレッション
タイプのMO3O3容量たが、ダイナミックメモリ装置
のメモリセルにおけるセルプレート下のデプレッション
工程と同一工程で形1ffしてもその効果は変らない。
In the above practical example, the capacitor (2) is a simple depression type MO3O3 capacitor, but the effect does not change even if it is made into a 1ff type in the same process as the depression process under the cell plate in the memory cell of the dynamic memory device.

〔発明の効果〕〔Effect of the invention〕

以上のようにこの発明によねば、チャージポンプ回路の
結合容量をデプレッションMO3容11−で形成し、そ
の容を部で1厨方向バイアスが加わる接合がない構成と
したので、高集猪ダイナミックメモリ装置斤に使用され
ても、少数キャリアの注入が低減され、かつ高集積化が
可能な基板電圧発生回路が得られる。
As described above, according to the present invention, the coupling capacitance of the charge pump circuit is formed by the depletion MO3 capacitor 11-, and the capacitance has a structure in which there is no junction to which a bias in the direction is applied. Even when used in a device, it is possible to obtain a substrate voltage generation circuit in which injection of minority carriers is reduced and high integration is possible.

【図面の簡単な説明】[Brief explanation of drawings]

@1図はこの発明の一実捲例におけるチャージポンプ回
路のレイアウト図、′4IJ2図は従来の基板電圧発生
回路を示す回路図、第3図はそのILII作原理全原理
するための各部常圧波形図、第4図は従来例におけるチ
ャージポンプ回路のレイアウト図である。 図において%(11け発振器、(2)はMO3容量、+
101汀チヤ一ジポンプ回路、φけ発振器出力である。 なか、図中同一符号は同一または相当部分を示ず。
Figure 1 is a layout diagram of a charge pump circuit in one practical example of this invention, Figure '4IJ2 is a circuit diagram showing a conventional substrate voltage generation circuit, and Figure 3 is a normal pressure diagram of each part to implement the entire ILII operating principle. The waveform diagram and FIG. 4 are layout diagrams of a conventional charge pump circuit. In the figure, % (11 oscillators, (2) is MO3 capacity, +
101 phase charge pump circuit, φ oscillator output. In the figures, the same reference numerals do not indicate the same or equivalent parts.

Claims (2)

【特許請求の範囲】[Claims] (1)発振器と、この発振器の出力からダイナミック半
導体集積回路メモリ装置の基板電圧を発生するチャージ
ポンプ回路とからなるものにおいて、上気発振器の出力
を上記チャージポンプ回路へ結合する結合容量をデプレ
ッション形のMOS容量で形成し、 そのゲート電極を上記チャージポンプ回路側に、拡散半
導体領域からなる対向電極を上気発振器の出力側に接続
したことを特徴とする基板電圧発生回路装置。
(1) In a device consisting of an oscillator and a charge pump circuit that generates a substrate voltage of a dynamic semiconductor integrated circuit memory device from the output of this oscillator, the coupling capacitance that couples the output of the upper oscillator to the charge pump circuit is a depletion type. What is claimed is: 1. A substrate voltage generating circuit device, characterized in that the gate electrode is connected to the charge pump circuit side, and the counter electrode made of a diffused semiconductor region is connected to the output side of the upper air oscillator.
(2)デプレッション形のMOS容量はそのチャネル領
域がダイナミック半導体集積回路メモリ装置のメモリセ
ルにおけるプレートの下の領域と同一のデプレッション
工程で形成された領域であることを特徴とする特許請求
の範囲第1項記載の基板電圧発生回路装置。
(2) The channel region of the depression type MOS capacitor is a region formed in the same depression process as the region under the plate in the memory cell of the dynamic semiconductor integrated circuit memory device. The substrate voltage generation circuit device according to item 1.
JP61012872A 1986-01-23 1986-01-23 Substrate voltage generating circuit device Pending JPS62172592A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61012872A JPS62172592A (en) 1986-01-23 1986-01-23 Substrate voltage generating circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61012872A JPS62172592A (en) 1986-01-23 1986-01-23 Substrate voltage generating circuit device

Publications (1)

Publication Number Publication Date
JPS62172592A true JPS62172592A (en) 1987-07-29

Family

ID=11817511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61012872A Pending JPS62172592A (en) 1986-01-23 1986-01-23 Substrate voltage generating circuit device

Country Status (1)

Country Link
JP (1) JPS62172592A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5828865A (en) * 1981-05-15 1983-02-19 ソーン、イーエムアイ、ノース、アメリカ、インコーポレーテッド Substrate bias generator for generating substrate voltage stabilized for mos integrated circuit
JPS60234354A (en) * 1984-05-07 1985-11-21 Hitachi Ltd Bias generating circuit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5828865A (en) * 1981-05-15 1983-02-19 ソーン、イーエムアイ、ノース、アメリカ、インコーポレーテッド Substrate bias generator for generating substrate voltage stabilized for mos integrated circuit
JPS60234354A (en) * 1984-05-07 1985-11-21 Hitachi Ltd Bias generating circuit

Similar Documents

Publication Publication Date Title
KR940003891B1 (en) Semiconductor memory device having an arrangement for preventing operational errors
KR890005159B1 (en) The generator of back-bias voltage
KR960012249B1 (en) C-mos integrated circuit having a latch-up protection circuit
JPH0249057B2 (en)
JPH0632228B2 (en) Integrated circuit voltage multiplier
JPS6222269B2 (en)
KR950020709A (en) Method for reducing soft errors and memory devices and memory devices with reduced soft error
KR880004578A (en) CMOS integrated circuit device with latch-up protection circuit
US4384218A (en) Substrate bias generator
JPS6050066B2 (en) MOS semiconductor integrated circuit device
JPH03232269A (en) Input circuit of semiconductor device
JPH0344423B2 (en)
JPS62172592A (en) Substrate voltage generating circuit device
JPH0713871B2 (en) Dynamic RAM
JPH0612869B2 (en) Time delay circuit for CMOS dynamic RAM
JP2613579B2 (en) Generator circuit in integrated semiconductor circuit
JP3190940B2 (en) Boost circuit
US3684903A (en) Dynamic circuit arrangements
JPH0219979B2 (en)
JPH02196469A (en) Semiconductor device
JP2869989B2 (en) Static booster circuit
JPS6043585B2 (en) semiconductor integrated circuit
JP3453455B2 (en) Boost circuit
JPS5950098B2 (en) boot strap circuit
JPH0715792B2 (en) Bootstrap circuit