JPS62171927A - Molybdenum electrode for melting glass and production thereof - Google Patents

Molybdenum electrode for melting glass and production thereof

Info

Publication number
JPS62171927A
JPS62171927A JP984586A JP984586A JPS62171927A JP S62171927 A JPS62171927 A JP S62171927A JP 984586 A JP984586 A JP 984586A JP 984586 A JP984586 A JP 984586A JP S62171927 A JPS62171927 A JP S62171927A
Authority
JP
Japan
Prior art keywords
molybdenum
electrode
pressure
low
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP984586A
Other languages
Japanese (ja)
Inventor
Yoshio Fukuhara
福原 由雄
Miharu Fukazawa
深沢 美治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP984586A priority Critical patent/JPS62171927A/en
Publication of JPS62171927A publication Critical patent/JPS62171927A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a molybdenum electrode suitable for melting glass simply and in good mass productivity, by forming a dense molybdenum silicide in improved adhesivity on the surface of a base of electrode made of Mo by the use of flame spray method in a low-pressure inert gas atmosphere. CONSTITUTION:The surface of base of electrode made of molybdenum is preferably treated by blasting, etc., set in a low-pressure flame spray device and a molybdenum silicide having >=85% density ratio to theory is formed on the surface of base of electrode by applying flame spray method carried out in a low-pressure inert gas atmosphere at 50-500Torr to give the aimed molybdenum electrode for melting glass. After low-pressure flame spray process is over, the base with the formed coated layer of molybdenum silicide is heat- treated at about 900-1,200 deg.C so that crystal bond strength of the molybdenum silicide layer can be further improved.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は硝子溶融用モリブデン電極およびその製造方法
に関し、さらに詳しくは、その表面に緻密で、かつモリ
ブデン基体との密着性が良好なケイ化モリブデン層を有
する硝子溶融用モリブデン電極と、該電極を簡便な1程
で縫産することができる製造方法に関する。
Detailed Description of the Invention [Technical Field of the Invention] The present invention relates to a molybdenum electrode for melting glass and a method for manufacturing the same, and more specifically, the present invention relates to a molybdenum silicide electrode that is dense on its surface and has good adhesion to a molybdenum substrate. The present invention relates to a molybdenum electrode for melting glass having a layer, and a manufacturing method that allows the electrode to be easily manufactured in one step.

[発明の技術的背景とその問題点1 硝子溶融用に使用されているモリブデン(Mo)電極は
、使用中におけるMO材表面からのMO結晶の脱落に基
づく溶融硝子の品質低下を防止し、また、Mo材の酸化
あるいは溶融硝子による浸食を防止し、もって、溶融硝
子の品位の維持および電極の長寿命化を図る[]的で、
その表面に耐酸化性ならびに耐硝子浸食性を有するケイ
化モリブデン(MoSi2)よりなる被覆層を形成して
実用に供することが試みられている。
[Technical background of the invention and its problems 1 Molybdenum (Mo) electrodes used for glass melting prevent the quality of molten glass from deteriorating due to falling of MO crystals from the surface of the MO material during use, and , to prevent oxidation of Mo material or erosion by molten glass, thereby maintaining the quality of molten glass and extending the life of the electrode.
Attempts have been made to form a coating layer made of molybdenum silicide (MoSi2), which has oxidation resistance and glass erosion resistance, on the surface and put it into practical use.

かかるMoS+2の形成に際しては、通常、Mo基体に
直接SNを反応せしめる所謂表面ケイ化法、CVD法、
大気中で行なわれる通常の溶射法およびMO基体表面に
MoSi、、粉末を塗布後焼付ける方法などが適用され
ている。
When forming such MoS+2, the so-called surface silicification method, CVD method, which directly reacts SN on the Mo substrate, is usually used.
The usual thermal spraying method carried out in the atmosphere, and the method of coating MoSi powder on the surface of the MO substrate and then baking it, etc., have been applied.

しかしながら、これらの方法には、得られたM OS 
i 2被覆層の健全度が低い、具体的には、表面ケイ化
法では、均一な組成のコーティング層が得られず、CV
D法の場合には保護層として有効な厚みのコーティング
層を得ることはかなり困難であること、そして、通常の
溶射法では空孔率が大きく、しかも酸化物の巻き込みが
生ずる。そして、被覆層が緻密でない、などの問題や工
程が繁雑であって量産性に欠けるなどの問題がある。
However, these methods require that the obtained MOS
i 2 The soundness of the coating layer is low. Specifically, the surface silicification method cannot obtain a coating layer with a uniform composition, and the CV
In the case of method D, it is quite difficult to obtain a coating layer with a thickness that is effective as a protective layer, and in the case of ordinary thermal spraying, the porosity is large and oxide entrainment occurs. Further, there are problems such as the coating layer not being dense, and problems such as the complicated process and lack of mass productivity.

[発明の目的] 本発明は従来のかかる問題を解消し、緻密で、健全度の
高いM OS I 2被覆層を有する硝子溶融用モリブ
デン電極と、それを簡易な工程により量産しうる方法の
提供を目的とする。
[Object of the invention] The present invention solves the problems of the conventional art and provides a molybdenum electrode for melting glass having a dense and highly sound MOS I2 coating layer, and a method for mass-producing the same through simple steps. With the goal.

[発明の概要] 本発明者らは、上記目的を達成すべく鋭意研究を重ねる
中で、つぎのような知見を得た。すなわち、前述した従
来の被覆層形成方法のうち、溶射法は作業性よく短時間
で厚膜を形成できるという利点を有しているため、工程
的には上記した本発明の目的に添うものであるが、しか
し、得られたMoS+2層がポーラスであって被覆層と
しての充分な機能を果たすことができないという不都合
があるということである。
[Summary of the Invention] The present inventors have obtained the following knowledge while conducting intensive research to achieve the above object. That is, among the conventional coating layer forming methods described above, the thermal spraying method has the advantage of being easy to work with and can form a thick film in a short time, so that it does not meet the above-mentioned object of the present invention in terms of process. However, there is a disadvantage that the obtained MoS+2 layer is porous and cannot perform a sufficient function as a covering layer.

そこで、本発明者らは、上記の如き大気中で行なわれる
溶射法ではなく、低圧溶射法、すなわち、低圧の不活性
ガス雰囲気中での溶射法を適用すれば、前述した溶剤法
の工程的な利点を充分生かしながら、しかも緻密で健全
度の高い被覆を得ることができるものと考え、その最適
条件、とくに不活性ガスの圧力を見出して本発明を完成
した。
Therefore, the present inventors believe that by applying a low-pressure thermal spraying method, that is, a thermal spraying method in a low-pressure inert gas atmosphere, instead of the thermal spraying method performed in the atmosphere as described above, the process of the solvent method described above can be improved. Considering that it is possible to obtain a dense and highly sound coating while making full use of these advantages, the present invention was completed by finding the optimum conditions, especially the pressure of the inert gas.

すなわち、本発明の硝子溶融用モリブデン電極は、モリ
ブデンよりなる電極基体と、該基体表面に形成されたケ
イ化モリブデン被覆層とからなる硝子溶融用モリブデン
電極であって、該被覆層が、対理論密度比85%以上の
ケイ化モリブデン溶射層であることを特徴とし、その製
造方法は、モリブデンよりなる電極基体表面に、圧力5
0〜500Torrの不活性ガス雰囲気で行なう溶射法
を適用してケイ化モリブデン層を形成する工程を含むこ
とを特徴とする。
That is, the molybdenum electrode for glass melting of the present invention is a molybdenum electrode for glass melting that is composed of an electrode base made of molybdenum and a molybdenum silicide coating layer formed on the surface of the base, and the coating layer is It is characterized by being a sprayed molybdenum silicide layer with a density ratio of 85% or more, and its manufacturing method involves applying a pressure of 50% to the surface of an electrode base made of molybdenum.
The method is characterized by including a step of forming a molybdenum silicide layer by applying a thermal spraying method in an inert gas atmosphere of 0 to 500 Torr.

本発明の硝子溶融用モリブデン電極は、上述したように
、MOよりなる電極基体の表面に、被覆層としてM O
S I 2よりなる溶射層が形成されてなるものである
。そして、この溶射層の対理論密度比は85%以上であ
ることが必要である。この対理論密度比が85%未満で
あると、この電極基体が溶融ガラスにより浸食されるな
ど被覆層としての機能を充分に果たすことができない。
As mentioned above, the molybdenum electrode for glass melting of the present invention has MO as a coating layer on the surface of the electrode base made of MO.
A thermally sprayed layer made of S I 2 is formed. The thermal sprayed layer needs to have a theoretical density ratio of 85% or more. If the theoretical density ratio is less than 85%, the electrode base will be eroded by the molten glass and cannot function as a covering layer sufficiently.

また、この被覆層は後述するように低圧溶射法を適用し
て形成されるものであって、その層厚はとくに限定され
るものではないが、通常は0.2〜5mm程度である。
Further, this coating layer is formed by applying a low-pressure thermal spraying method as described later, and the layer thickness is not particularly limited, but is usually about 0.2 to 5 mm.

ついで、本発明の硝子溶融用Mo電極の製造方法につい
て説明する。
Next, a method for manufacturing a Mo electrode for melting glass according to the present invention will be explained.

本発明方法は、MOからなる電極基体表面に、低圧溶射
法を適用してMO312被覆層を形成する工程を骨子と
するものであるが、このM OS i 2被覆層の形成
工程に先立ち、MO電極基体表面に例えばホーニング加
工を施すと、電極基体と被覆層との密着性を高めるうえ
で好ましい。具体的には、例えば20〜70メツシユの
AM203粉末もしくはGO粒粉末使用して、ブラスト
圧3〜10 kg/ cm2程度で行なうブラスト処理
などを適用しうる。
The method of the present invention is based on the step of forming an MO312 coating layer on the surface of an electrode substrate made of MO by applying a low-pressure spraying method. For example, it is preferable to perform honing on the surface of the electrode base in order to improve the adhesion between the electrode base and the coating layer. Specifically, for example, a blasting process using 20 to 70 meshes of AM203 powder or GO granule powder at a blasting pressure of about 3 to 10 kg/cm2 can be applied.

続く低圧溶射工程は、M o S i 2粉末を原料粉
末として使用し、低圧の不活性ガス雰囲気中で行なわれ
る。このとき使用される不活性ガスの種類はヘリウム(
He)、アルゴン(Ar)あるいはこれらの混合ガスを
あげることができる。この不活性ガスの圧力は、50〜
500Torr、好ましくは200〜300 Torr
に設定する必要がある。このガス圧が50Torr未満
である場合には溶射に用いるキャリヤガスが充分に使用
できなくなったり、原料粉末の飛散を招くことになり、
一方、500 Tartを超えると溶射層内の緻密性が
低下する。さらに、原料粉末としては粒度が20〜10
0−程度のものを使用することが好ましい。
The subsequent low-pressure thermal spraying process is performed in a low-pressure inert gas atmosphere using MoSi 2 powder as a raw material powder. The type of inert gas used at this time is helium (
Examples include He), argon (Ar), or a mixture thereof. The pressure of this inert gas is 50~
500 Torr, preferably 200-300 Torr
It is necessary to set it to . If this gas pressure is less than 50 Torr, the carrier gas used for thermal spraying may not be able to be used sufficiently or the raw material powder may scatter.
On the other hand, if it exceeds 500 Tart, the density within the sprayed layer will decrease. Furthermore, the particle size of the raw material powder is 20 to 10
It is preferable to use one with a value of about 0-.

具体的には、この工程は低圧溶射装置を使用]7て実施
することができる。すなわち、まず、チャンバー内を利
気17て、O、1Torr以下の真空にし、ついで、雰
囲気カスである不活性ガスを21人して所定の圧にする
。そして、プラズマア・−クガスどしてArガスを溶剤
ガンに導入し、溶射ガンでプラズマアークを発生させる
とともに、粉末供給装置により原料粉末を溶射ガンに供
給し上記プラズマアークで溶融しつつ、基体表面に溶剤
する。なお、このとき基体の表面温度を200.〜80
0 ’O程度に保持することが好ましい。
Specifically, this step can be carried out using a low-pressure thermal spraying device. That is, first, the inside of the chamber is evacuated to a vacuum of 1 Torr or less using an air conditioner 17, and then an inert gas, which is an atmosphere waste, is blown into the chamber to a predetermined pressure. Then, Ar gas is introduced into the solvent gun as a plasma arc gas, and the spray gun generates a plasma arc.The raw material powder is supplied to the spray gun by the powder supply device, and is melted by the plasma arc, while the substrate is heated. Solvent on the surface. At this time, the surface temperature of the substrate was set to 200. ~80
It is preferable to maintain it at about 0'O.

かかる低圧溶剤工稈終r後、MoSi2被覆層の形成き
れた基体を900へ一1200’OfI川゛の温度で熱
処理すると、M o S i 2層の結晶結合力を高め
ることができるため効果的である。また、このMoSi
2層への電子線照射あるいはレーザ照射などの方法によ
っても結晶結合力を高めることができる。
After completing the low-pressure solvent treatment, heat treatment of the substrate on which the MoSi2 coating layer has been formed at a temperature of 900° to 1200°C is effective because it can increase the crystal bonding strength of the MoSi2 layer. It is. Also, this MoSi
The crystal bond strength can also be increased by methods such as electron beam irradiation or laser irradiation on the two layers.

[発明の実施例1 実施例 FIL Pt 50 mm、 −M 81000 mm
のMo電極基体表面を#30(7)GC砥粒と水の混合
体−7゛ノラスI・圧7kg/cm2の条件(Jよりホ
=−J−、ング処岬L タC7)ち、表示の条4!1で
MoSi2粉末の低圧溶用を行なった。溶射装臀としで
は、市販きれている通常の低圧溶射装置全使用し、M 
o S i 2粉末はずべて程度30−・75μmのも
のを使用した。基体の表面温度1コロ 00 ’Oとし
た。そして、溶射−[゛稈終r後に、真空中、900’
Oにおいて熱処理を行なった。得られたM o S i
 2層の層厚It 1. 、5mmテあった。
[Example 1 of the invention Example FIL Pt 50 mm, -M 81000 mm
The Mo electrode substrate surface of #30 (7) GC abrasive grains and water mixture -7゛ Noras I, pressure 7kg/cm2 conditions (from J-H = -J-, Ng treatment cape L TaC7) are shown. In Section 4!1, low-pressure dissolution of MoSi2 powder was performed. For thermal spraying, we use all commercially available normal low-pressure thermal spraying equipment, and
The o Si 2 powder used was of the order of 30-75 μm in all cases. The surface temperature of the substrate was set at 100'O. Then, thermal spraying - [After finishing the culm, in vacuum, 900'
Heat treatment was carried out at O. The obtained M o S i
Layer thickness It of two layers 1. , there was a 5mm hole.

こ−のようにして得られた41子溶融用M O電極のM
 o S + 2被覆層の対理論密度比(%)を測定し
て表中Iコ示した1、また、この電極を実際に硝子溶融
−[程に使用したときの耐硝r−浸食性の1氏合を調べ
で表中に111記した。
M of the M O electrode for melting 41 molecules obtained in this way
o The theoretical density ratio (%) of the S + 2 coating layer was measured and shown in Table 1, and the corrosion resistance when this electrode was actually used for glass melting. 111 was written in the table based on a survey of 1 family.

比較例1、? MoSi2層として従来υいすなわち、大気圧中での溶
”射J):(比較例2)を適用)7て形成きれたものを
41するMo電極につき、−1−記実施例と同様の評価
を行ない結果を表に示]、7た。
Comparative example 1? Evaluations similar to those in Example 1-1 were made for Mo electrodes that were completely formed as MoSi 2 layers by conventional thermal spraying at atmospheric pressure (applying Comparative Example 2). The results are shown in the table], 7.

さらに、実施例および比較例の製造に葬する時間を実施
例をlと12で算出することによりそれぞれのm−産性
を評価し結果を表中に示した。
Furthermore, the m-productivity of each Example and Comparative Example was evaluated by calculating the time required for production using 1 and 12, and the results are shown in the table.

[発明の効果] 以りの説明から明らかなように、本発明の硝子溶融用モ
リブデン電極はその表面に極めて緻密なM OS i 
2被覆層を有しており、しかもその製造法は工程的に簡
便であるとともに製造に要する時間も短く量産性の高い
ものである。つまり、本発明方法は、従来法である大気
圧溶用法では達し得ない高品質な被覆層ならびにCVD
法では達し得ない高い量産性を同時に満足するものであ
り、したがって、その]二業的価値は大である。
[Effects of the Invention] As is clear from the following explanation, the molybdenum electrode for glass melting of the present invention has extremely dense MOS i on its surface.
It has two coating layers, and its manufacturing method is simple in terms of process, requires a short manufacturing time, and is highly suitable for mass production. In other words, the method of the present invention provides a high-quality coating layer that cannot be achieved with the conventional atmospheric pressure dissolution method, as well as CVD.
It also satisfies the high level of mass production that cannot be achieved by the method, and therefore its secondary value is great.

Claims (2)

【特許請求の範囲】[Claims] (1)モリブデンよりなる電極基体と、該基体表面に形
成されたケイ化モリブデン被覆層とからなる硝子溶融用
モリブデン電極であって、該被覆層が、対理論密度比8
5%以上のケイ化モリブデン溶射層であることを特徴と
する硝子溶融用モリブデン電極。
(1) A molybdenum electrode for glass melting consisting of an electrode base made of molybdenum and a molybdenum silicide coating layer formed on the surface of the base, the coating layer having a theoretical density ratio of 8.
A molybdenum electrode for melting glass, characterized by a sprayed layer of molybdenum silicide containing 5% or more.
(2)モリブデンよりなる電極基体表面に、圧力50〜
500Torrの不活性ガス雰囲気で行なう溶射法を適
用してケイ化モリブデン層を形成する工程を含むことを
特徴とする硝子溶融用モリブデン電極の製造方法。
(2) Apply a pressure of 50~ to the surface of the electrode base made of molybdenum.
A method for manufacturing a molybdenum electrode for melting glass, comprising the step of forming a molybdenum silicide layer by applying a thermal spraying method in an inert gas atmosphere of 500 Torr.
JP984586A 1986-01-22 1986-01-22 Molybdenum electrode for melting glass and production thereof Pending JPS62171927A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP984586A JPS62171927A (en) 1986-01-22 1986-01-22 Molybdenum electrode for melting glass and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP984586A JPS62171927A (en) 1986-01-22 1986-01-22 Molybdenum electrode for melting glass and production thereof

Publications (1)

Publication Number Publication Date
JPS62171927A true JPS62171927A (en) 1987-07-28

Family

ID=11731463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP984586A Pending JPS62171927A (en) 1986-01-22 1986-01-22 Molybdenum electrode for melting glass and production thereof

Country Status (1)

Country Link
JP (1) JPS62171927A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10329277A1 (en) * 2003-06-30 2005-01-27 Schott Ag Ceramic-molybdenum composite materials for glass contact

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10329277A1 (en) * 2003-06-30 2005-01-27 Schott Ag Ceramic-molybdenum composite materials for glass contact
DE10329277B4 (en) * 2003-06-30 2005-11-17 Schott Ag Ceramic-molybdenum composite materials for glass contact, method of manufacture and use

Similar Documents

Publication Publication Date Title
KR100762856B1 (en) Manufacturing method of mask blank, and sputtering target for the same
TW200307652A (en) Quartz glass thermal sprayed parts and method for producing the same
US3029559A (en) Glass-metal seals
US5965278A (en) Method of making cathode targets comprising silicon
JP4006596B2 (en) Rare earth oxide sprayed member and powder for spraying
JPS62171927A (en) Molybdenum electrode for melting glass and production thereof
US20200407834A1 (en) COMPOSITE COATING CONTAINING Ba2-xSrxSmTaO6 CERAMIC AND PREPARATION METHOD THEREOF
JPS58167770A (en) Preparation of shadow mask
JPH0568812B2 (en)
JPH03127439A (en) Anode of x-ray tube and method of manufac- turing the same
US6649270B2 (en) SiC jig for use in heat treatment
JPH1068072A (en) Ito cylindrical target and its production
US3433682A (en) Silicon coated graphite
JP2616964B2 (en) Glass press mold
JPS62170183A (en) Tungsten or molybdenum heater which is excellent in acid errosion resistant properties and manufacture of the same
JPS5855562A (en) Polishing dish and manufacture thereof
US4400647A (en) Cathode structure for cathode ray tubes and method
JPH0827566A (en) Production of observation window of vacuum device
JPS62170138A (en) Positive electrode fox x ray tube and its manufacture
JPH05235149A (en) Adhesion-preventive plate and inner jig
JPS6320377B2 (en)
KR20190068364A (en) Plasma resistant dense ceramic coating film and manufacturing method thereof
JPH0135458B2 (en)
JPS62169077A (en) Structural material for nuclear fusion reactor and manufacture thereof
JP2000096240A (en) Treatment of perforated electrode board for plasma chemical deposition