JPH0135458B2 - - Google Patents

Info

Publication number
JPH0135458B2
JPH0135458B2 JP17637783A JP17637783A JPH0135458B2 JP H0135458 B2 JPH0135458 B2 JP H0135458B2 JP 17637783 A JP17637783 A JP 17637783A JP 17637783 A JP17637783 A JP 17637783A JP H0135458 B2 JPH0135458 B2 JP H0135458B2
Authority
JP
Japan
Prior art keywords
cathode
impregnated
coating layer
tungsten
impregnated cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17637783A
Other languages
Japanese (ja)
Other versions
JPS6068527A (en
Inventor
Katsuhisa Honma
Toshiharu Higuchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP58176377A priority Critical patent/JPS6068527A/en
Publication of JPS6068527A publication Critical patent/JPS6068527A/en
Publication of JPH0135458B2 publication Critical patent/JPH0135458B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/13Solid thermionic cathodes
    • H01J1/14Solid thermionic cathodes characterised by the material

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、含浸型陰極の改良に関する。[Detailed description of the invention] [Technical field of invention] The present invention relates to improvements in impregnated cathodes.

〔発明の技術的背景及びその問題点〕[Technical background of the invention and its problems]

従来より用いられている含浸型陰極の構造及び
製造法を第1図により説明する。含浸型陰極は、
次のような工程で製作される。粒径が約3μmの
W(タングステン)Mo(モリブデン)等の高融点
金属粉末をプレスした後、比重が約16(空孔率約
17%)になるように高温雰囲気中で焼結し、多孔
質高融点金属基体1を製作する。次に上記基体1
の空孔部にBaO、CaO、Al2O3よりなる電子放射
物質を高温(例えば1800℃)の還元性雰囲気中で
溶融含浸する。図中2のカソードスリーブはTa、
Mo、Re−Mo製で、基体1にレーザ溶接法で固
着される。図中3は陰極の電子放射特性を向上さ
せるために、基体1の表面にスパツタリング法等
により被着形成されたオスミウム(Os)膜(厚
さ約2000Å)で、このOs膜を被覆することによ
り含浸型陰極は完成する。図中4は、上記陰極を
加熱するためのヒータである。
The structure and manufacturing method of a conventionally used impregnated cathode will be explained with reference to FIG. The impregnated cathode is
It is manufactured using the following process. After pressing high melting point metal powder such as W (tungsten) and Mo (molybdenum) with a particle size of approximately 3 μm, the specific gravity is approximately 16 (porosity is approximately
17%) in a high temperature atmosphere to produce a porous high melting point metal substrate 1. Next, the base 1
The pores are melted and impregnated with an electron-emitting material made of BaO, CaO, and Al 2 O 3 in a reducing atmosphere at a high temperature (for example, 1800° C.). The cathode sleeve 2 in the figure is Ta,
It is made of Mo or Re-Mo and is fixed to the base 1 by laser welding. 3 in the figure is an osmium (Os) film (approximately 2000 Å thick) deposited on the surface of the substrate 1 by sputtering or the like in order to improve the electron emission characteristics of the cathode. The impregnated cathode is completed. 4 in the figure is a heater for heating the cathode.

一般的にOs等の金属を被覆した含浸型陰極は、
被覆層のない従来型の含浸型陰極に較べて同じ動
作温度で約3倍のエミツシヨン能力を有してい
る。Os金属被覆型含浸型陰極を例にとつて説明
する。陰極温度1050℃で、両方の陰極の零電界エ
ミツシヨンは、 従来型含浸型陰極…3〜4A/cm2 Os金属被覆型含浸型陰極…10〜13A/cm2 という結果が得られている。しかしながら、この
特性が得られるのは、第2図に曲線Bで示すよう
に動作時間(ライフタイム)が500時間を経過し
て以降のことであり、初期から約500時間までの
間は本来の能力を発揮しないことも実験結果から
判明した。なお従来型含浸型陰極のエミツシヨン
能力は、第2図に曲線Aで示している。
Generally, impregnated cathodes coated with metal such as Os,
Compared to a conventional impregnated cathode without a coating layer, it has approximately three times the emission capacity at the same operating temperature. This will be explained using an Os metal-coated impregnated cathode as an example. At a cathode temperature of 1050 DEG C., the zero field emission of both cathodes is: Conventional impregnated cathode: 3-4 A/cm 2 Os metal-coated impregnated cathode: 10-13 A/cm 2 . However, this characteristic is obtained only after the operating time (lifetime) has passed 500 hours, as shown by curve B in Figure 2. The experimental results also revealed that they did not demonstrate their abilities. The emission capacity of the conventional impregnated cathode is shown by curve A in FIG.

この原因を調査するため、X線マイクロアナラ
イザを用いライフ途中に取り出した陰極の電子放
射面観察を行なつた。その結果、初期及び250時
間までの陰極表面からは、主にOsが検出され、
部分的に電子放射物質であるBa、Ca等が検出さ
れ、動作時間が500時間を経過したもの、及び
1000時間経過品の陰極表面からは、全面にわたつ
てOs、W、Ba、Caが検出された。
In order to investigate the cause of this, an X-ray microanalyzer was used to observe the electron emitting surface of the cathode taken out during its life. As a result, Os was mainly detected on the cathode surface at the initial stage and up to 250 hours.
Items with partially detected electron emitting substances such as Ba and Ca, and which have been operated for 500 hours, and
Os, W, Ba, and Ca were detected over the entire surface of the cathode after 1000 hours.

この結果からエミツシヨン能力を向上するに
は、Ba、Ca等が全面に分布することが必要であ
り、Os、Wの存在もBa、Caの分布へ好影響を与
えているものと推定した。
From this result, it was assumed that in order to improve the emission ability, it is necessary for Ba, Ca, etc. to be distributed over the entire surface, and that the presence of Os and W also has a positive influence on the distribution of Ba and Ca.

そこで高融点金属粉末と共に、Os、Ir、Ru、
Re等を混合して焼結し、電子放射物質を含浸さ
せた含浸型陰極を試作し、エミツシヨン能力を評
価したが、結果は第2図に曲線Bで示す特性と同
様に好ましくなかつた。
Therefore, along with high melting point metal powder, Os, Ir, Ru,
An impregnated cathode was prototyped by mixing and sintering Re, etc. and impregnating it with an electron-emitting substance, and its emission ability was evaluated, but the results were unfavorable, similar to the characteristics shown by curve B in Figure 2.

〔発明の目的〕[Purpose of the invention]

本発明は、従来の含浸型陰極が有する本来の電
子放射能力を発揮するまでに長時間を要するとい
う欠点を改良した新規な含浸型陰極を提供するこ
とを目的とする。
An object of the present invention is to provide a novel impregnated cathode that improves the disadvantage of conventional impregnated cathodes in that it takes a long time to exhibit their original electron emission ability.

〔発明の概要〕[Summary of the invention]

本発明は空孔部に電子放射物質が含浸された多
孔質金属基体の表面に、10〜90重量%のイリジウ
ム(Ir)およびタングステン(W)のスパツタ
膜、蒸着膜又はCVD法による膜等の合金被覆層
が形成されてなる含浸型陰極である。発明者等は
含浸型陰極のエミツシヨン能力を短時間で発揮で
きるようにするための数々の実験を行う中で、多
孔質タングステン基体表面にIrとWとの合金被覆
層を形成すれば、エミツシヨン能力の早期発揮が
可能であることを見出し本発明を完成した。この
Ir−W合金被覆層を形成する手段としてスパツタ
法、蒸着法、CVD法等を採用することができる。
そして、合金被覆層の厚さは、200〜20000Åの範
囲が好ましい。200Å末満では薄過ぎてエミツシ
ヨン能力を十分に発揮することができない。一方
20000Åを越えると、やはりエミツシヨン能力が
十分に発揮されない。これは陰極基体からの電子
放射物質の拡散が合金膜により妨げられ、Ba原
子の分布が不十分になるためであろう。
In the present invention, a sputtered film, vapor deposited film, or CVD film of 10 to 90% by weight of iridium (Ir) and tungsten (W) is applied to the surface of a porous metal substrate whose pores are impregnated with an electron-emitting substance. This is an impregnated cathode formed with an alloy coating layer. The inventors conducted a number of experiments to demonstrate the emission ability of impregnated cathodes in a short time, and found that by forming an alloy coating layer of Ir and W on the surface of a porous tungsten substrate, the emission ability could be improved. The present invention was completed based on the discovery that early onset of the effects is possible. this
A sputtering method, a vapor deposition method, a CVD method, etc. can be employed as a means for forming the Ir-W alloy coating layer.
The thickness of the alloy coating layer is preferably in the range of 200 to 20,000 Å. At the end of 200 Å, it is too thin and cannot fully demonstrate its emission ability. on the other hand
If it exceeds 20,000 Å, the emission ability will not be fully demonstrated. This is probably because diffusion of the electron-emitting substance from the cathode substrate is hindered by the alloy film, resulting in insufficient distribution of Ba atoms.

IrとWとの比率は10対90〜90対10(重量比)の
如く広い範囲でも発明の効果は得られ特にWが70
重量%のときが最良である。
The effects of the invention can be obtained even when the ratio of Ir and W is in a wide range from 10:90 to 90:10 (weight ratio).
% by weight is best.

Irは単独で用いてもよいが、他の元素を微量含
んでいてもよい。
Ir may be used alone, but may also contain trace amounts of other elements.

〔発明の実施例〕[Embodiments of the invention]

従来と同じ方法により電子放射物質を含浸した
多孔質タングステン基体1を第3図に示す蒸着装
置に装着する。この装置の真空ベルジヤー11の
中のに、タングステンリボン12とイリジウムリ
ボン13とが、保持板14上に並べられた多孔質
タングステン基体1に対向して設置されている。
両リボンの間には仕切板15が設けられている。
基体1の近くには蒸着膜を測定する水晶膜厚計1
6が置かれる。バルブ17をあけてベルジヤ内を
圧力10-5Paまで排気し、電源18,19を投入
する。それにより、タングステンリボン12及び
イリジウム13は加熱されてそれぞれ蒸発する。
このときタングステンリボン12の温度はほゞ
2800〓に、イリジウムリボン13の温度はほゞ
2100〓になるようにコントロールする。蒸着速度
を水晶膜厚計で測定しながら蒸着する。
A porous tungsten substrate 1 impregnated with an electron-emitting material by the same conventional method is mounted in a vapor deposition apparatus shown in FIG. A tungsten ribbon 12 and an iridium ribbon 13 are placed in a vacuum bell gear 11 of this device, facing a porous tungsten substrate 1 arranged on a holding plate 14.
A partition plate 15 is provided between both ribbons.
Near the substrate 1 is a crystal film thickness gauge 1 for measuring the deposited film.
6 is placed. Open the valve 17 to evacuate the inside of the bell gear to a pressure of 10 -5 Pa, and turn on the power supplies 18 and 19. Thereby, the tungsten ribbon 12 and the iridium 13 are heated and evaporated, respectively.
At this time, the temperature of the tungsten ribbon 12 is approximately
At 2800, the temperature of the iridium ribbon 13 is approximately
Control it so that it becomes 2100〓. Vapor deposition is performed while measuring the deposition rate with a crystal film thickness meter.

このようにして、第4図に示すように基体1上
に厚さ約1000ÅのIr−W合金被覆層31に形成し
た。なお同図において第1図と同一部分は同一符
号であらわしている。
In this manner, an Ir--W alloy coating layer 31 having a thickness of about 1000 Å was formed on the substrate 1, as shown in FIG. In this figure, the same parts as in FIG. 1 are represented by the same reference numerals.

この含浸型陰極を、電子銃に組込でエミツシヨ
ン能力の評価をしたところ、第2図に曲線Cで示
す結果を得た。すなわち、この実施例の含浸型陰
極は、動作開始初期から、安定で十分高いエミツ
シヨン特性を示すことが裏づけられた。
When this impregnated cathode was incorporated into an electron gun and its emission ability was evaluated, the results shown by curve C in FIG. 2 were obtained. That is, it was confirmed that the impregnated cathode of this example exhibited stable and sufficiently high emission characteristics from the initial stage of operation.

なお、Ir−W合金被覆層31は、高周波スパツ
タリング法、CVD法などを利用して形成するこ
とができる。
Note that the Ir-W alloy coating layer 31 can be formed using a high frequency sputtering method, a CVD method, or the like.

以上説明したようにこの発明によれば、動作開
始の初期から安定で高いエミツシヨン特性が得ら
れる。
As explained above, according to the present invention, stable and high emission characteristics can be obtained from the initial stage of operation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の含浸型陰極の構造を示す縦断面
図、第2図は従来及び本発明に係る陰極のエミツ
シヨン特性図、第3図は本発明の陰極の製造に用
いる装置の概略図、第4図は本発明の含浸型陰極
の構造を示す縦断図である。 1……多孔質タングステン基体、31……Ir−
W合金被覆層。
FIG. 1 is a vertical cross-sectional view showing the structure of a conventional impregnated cathode, FIG. 2 is an emission characteristic diagram of cathodes according to the conventional method and the present invention, and FIG. 3 is a schematic diagram of an apparatus used for manufacturing the cathode of the present invention. FIG. 4 is a longitudinal sectional view showing the structure of the impregnated cathode of the present invention. 1...Porous tungsten base, 31...Ir-
W alloy coating layer.

Claims (1)

【特許請求の範囲】[Claims] 1 多孔質タングステン基体と、このタングステ
ン基体の空孔部に含浸された電子放射物質と、上
記タングステン基体上に被覆された表面金属被覆
層とを具備する含浸型陰極において、上記表面金
属被覆層は、イリジウムが10重量%乃至90重量%
の範囲のイリジウム−タングステン合金層からな
り、且つこの被覆層が200Å乃至20000Åの範囲の
厚さに形成されてなることを特徴とする含浸型陰
極。
1. In an impregnated cathode comprising a porous tungsten base, an electron emitting material impregnated into the pores of the tungsten base, and a surface metal coating layer coated on the tungsten base, the surface metal coating layer is , 10% to 90% iridium by weight
An impregnated cathode comprising an iridium-tungsten alloy layer having a thickness ranging from 200 Å to 20,000 Å.
JP58176377A 1983-09-26 1983-09-26 Impregnated cathode Granted JPS6068527A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58176377A JPS6068527A (en) 1983-09-26 1983-09-26 Impregnated cathode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58176377A JPS6068527A (en) 1983-09-26 1983-09-26 Impregnated cathode

Publications (2)

Publication Number Publication Date
JPS6068527A JPS6068527A (en) 1985-04-19
JPH0135458B2 true JPH0135458B2 (en) 1989-07-25

Family

ID=16012565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58176377A Granted JPS6068527A (en) 1983-09-26 1983-09-26 Impregnated cathode

Country Status (1)

Country Link
JP (1) JPS6068527A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0777115B2 (en) * 1985-05-20 1995-08-16 株式会社日立製作所 Impregnated cathode
DE3782543T2 (en) * 1986-06-06 1993-05-06 Toshiba Kawasaki Kk IMPREGNATED CATHODE.
KR930008611B1 (en) * 1991-06-13 1993-09-10 삼성전관 주식회사 Dispenser-type cathode and manufacturing method thereof

Also Published As

Publication number Publication date
JPS6068527A (en) 1985-04-19

Similar Documents

Publication Publication Date Title
US4173522A (en) Method and apparatus for producing carbon coatings by sputtering
JPH054772B2 (en)
US4417173A (en) Thermionic electron emitters and methods of making them
JPS61183838A (en) Impregnated type cathode
JPH0135458B2 (en)
JP3957344B2 (en) Discharge tube or discharge lamp and scandate-dispenser cathode
US5041757A (en) Sputtered scandate coatings for dispenser cathodes and methods for making same
JPS6113526A (en) Impregnated cathode
US4675091A (en) Co-sputtered thermionic cathodes and fabrication thereof
US5065070A (en) Sputtered scandate coatings for dispenser cathodes
JPS60154430A (en) Oxide cathode
US5173633A (en) Dispenser cathode
CN86101082A (en) impregnated cathode
JPS6220653B2 (en)
US4404492A (en) Cathode structure for cathode ray tubes and method for producing same
US3672989A (en) Porous layer of a secondary electron multiplier and a method of manufacturing the same
US4400647A (en) Cathode structure for cathode ray tubes and method
JP2585232B2 (en) Impregnated cathode
JPH04141928A (en) Impregnation-type cathode structural body
JPS61121233A (en) Manufacture of impregnated cathode
JPS628409A (en) Formation of transparent conducting metal oxide film
JPH08227650A (en) Cathode-ray tube
JPH0552617B2 (en)
JPH08329837A (en) Manufacture of impregnated cathode
JPH11176314A (en) Electron gun, its manufacture and manufacture of cathode-ray tube

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees