JPS62170461A - Heat resistant steel - Google Patents

Heat resistant steel

Info

Publication number
JPS62170461A
JPS62170461A JP1018986A JP1018986A JPS62170461A JP S62170461 A JPS62170461 A JP S62170461A JP 1018986 A JP1018986 A JP 1018986A JP 1018986 A JP1018986 A JP 1018986A JP S62170461 A JPS62170461 A JP S62170461A
Authority
JP
Japan
Prior art keywords
steel
creep rupture
rupture strength
strength
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1018986A
Other languages
Japanese (ja)
Inventor
Masao Shiga
志賀 正男
Hiroshi Fukui
寛 福井
Mitsuo Kuriyama
栗山 光男
Katsumi Iijima
飯島 活己
Yoshimi Maeno
前野 良美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1018986A priority Critical patent/JPS62170461A/en
Publication of JPS62170461A publication Critical patent/JPS62170461A/en
Pending legal-status Critical Current

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PURPOSE:To provide high creep rupture strength and high toughness at room temp. to a Cr-Ni-Mo-V-Nb-N steel by adding a very small amount of a rare earth element or Ca to the steel. CONSTITUTION:The composition of a steel is composed of, by weight, 0.05-0.25% C, <=0.3% Si, <=1.5% Mn, 1.0-2.5% Ni, 8-13% Cr, 1.0-2.5% Mo, 0.05-0.35% V, 0.02-0.20% Nb and/or Ta, 0.01-0.10% N, at least one between <=0.3% rare earth element and <=0.01% Ca and the balance Fe with inevitable impurities, and a total tempered martensite structure is practically formed as the structure of the steel. Thus, a heat resistant steel having >=50kg/mm<2> creep rupture strength after the lapse of 10<5>hr at 450 deg.C and >4kg-m absorption energy in a V notch Charpy impact test at 25 deg.C can be obtd. The heat resistant steel is suitable for use as a material for a high-speed rotating body such as a gap turbine disk.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は450℃〜500℃において、高いクリープ破
断強度を、室温において高い靭性を有し。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention has high creep rupture strength at 450°C to 500°C and high toughness at room temperature.

500℃以下の温度で使用する回転体に好適な耐熱鋼に
関する。
The present invention relates to a heat-resistant steel suitable for rotating bodies used at temperatures below 500°C.

〔発明の背景〕[Background of the invention]

ガスタービン及び蒸気タービンの回転体(ホイール、ロ
ータシャフト、ブレード)には、450℃以下の温度で
は12Cr−2,5Ni−1,8M o −0、35V
鋼(M 152鋼)が、500℃以上では12Cr−I
Mo−IW−0,25V鋼(Crucible 422
鋼)が広く用いられ好成績を収めている。
The rotating bodies (wheels, rotor shafts, blades) of gas turbines and steam turbines have 12Cr-2,5Ni-1,8M o -0, 35V at temperatures below 450°C.
Steel (M 152 steel) becomes 12Cr-I at 500℃ or higher.
Mo-IW-0,25V steel (Crucible 422
steel) is widely used and has achieved good results.

最近、ガスタービンは高温・高速化の傾向にあり、高温
部材の使用条件も厳しくなってきた。ガスタービンホイ
ール材としては450℃、105hクリープ破断強度が
50 kg / +nm”以上で、室温Vノツチシャル
ピー衝撃値が3 kg −m以上の高強度・高靭性耐熱
鋼が要求されている。
Recently, gas turbines have been trending toward higher temperatures and higher speeds, and the conditions for using high-temperature components have become stricter. Gas turbine wheel materials are required to be high-strength, high-toughness, heat-resistant steels with a creep rupture strength of 50 kg/+nm'' or higher at 450° C. for 105 hours and a room temperature V notch Charpy impact value of 3 kg-m or higher.

従来、ガスタービンホイール及び蒸気タービンロータに
はlcrlMoo、25V鋼が広く用いられているが、
この450℃、105h  クリープ破断強度は29〜
39 kg / mm”であり、高温・高速ガスタービ
ンホイール材としては高温強度不足である。また、前述
の現有12Cr系耐熱鋼でも。
Conventionally, lcrlMoo, 25V steel has been widely used for gas turbine wheels and steam turbine rotors.
This 450℃, 105h creep rupture strength is 29~
39 kg/mm", which is insufficient in high-temperature strength as a high-temperature/high-speed gas turbine wheel material. Also, even with the existing 12Cr heat-resistant steel mentioned above.

12Cr−IMo−IW−0,25V鋼ではクリープ破
断強度及び靭性が不足であり、12Cr−2,5Ni−
1,8Mo−0,35Vmでは靭性は十分であるがクリ
ープ破断強度が不足である。
12Cr-IMo-IW-0,25V steel lacks creep rupture strength and toughness, and 12Cr-2,5Ni-
1,8Mo-0,35Vm has sufficient toughness but insufficient creep rupture strength.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、従来のI Cr −I M o −0
,25V鋼低合金鋼や12Cr系合金鋼よりも。
The object of the present invention is to solve the conventional I Cr -I M o -0
, 25V steel than low alloy steel and 12Cr alloy steel.

450℃〜500℃で高いクリープ破断強度と室温で高
い靭性を有する材料を提供することにある。
The object of the present invention is to provide a material having high creep rupture strength at 450°C to 500°C and high toughness at room temperature.

[発明の概要〕 本発明の目的である450℃、10”hクリープ破断強
度50 kg / a++++”以上、室温Vノツチシ
ヤルピー衝撃吸収エネルギー4 kg −m以上の高強
度・高靭性鋼は12Cr−Ni−Mo −V−Nb−N
鋼に0.3%以下の希土類元素又は0.01%以下のカ
ルシウムを含有させることにより達成されることが実験
的に明らかにされた。
[Summary of the Invention] The high-strength, high-toughness steel that has a creep rupture strength of 50 kg/a++++" or more at 450° C. and 10"h creep rupture strength of 50 kg/a++++" or more and a room temperature V notched pea shock absorption energy of 4 kg-m or more, which is the object of the present invention, is 12Cr-Ni- Mo-V-Nb-N
It has been experimentally shown that this can be achieved by containing 0.3% or less of rare earth elements or 0.01% or less of calcium in steel.

本発明鋼の熱処理は、まず完全なオーステナイトに変態
するに充分な温度、最低1000℃、最高1100℃に
均一に加熱し、マルテンサイト組織が得られる100℃
/h以上の速度で急冷し、次いで450℃〜600℃の
温度に加熱保持し第1次焼戻しし、次いで、550℃〜
650℃の温度に加熱保持し第2次焼戻しを行う。
The heat treatment of the steel of the present invention involves first uniformly heating the steel to a temperature sufficient to transform into complete austenite, a minimum of 1000°C and a maximum of 1100°C, and then 100°C to obtain a martensitic structure.
/h or more, then heated and held at a temperature of 450°C to 600°C for primary tempering, then 550°C to
Second tempering is performed by heating and maintaining at a temperature of 650°C.

次に本発明の要求値について述べる。高速回転体の破壊
要因の一つに飽性破壊が上げられる。この飽性破壊に対
する抵抗はVノツチシャルピー衝撃吸収エネルギーの高
い材料はど優れていることが多くの研究者によって瀾べ
られている。そこで本発明材の飽性破壊に対する安全性
の評価としてVノツチシャルピーm撃試験を用いた。高
温回転体で最も重要なのはクリープ破断強度であり、設
計許容応力は10万時間クリープ破断強度で決定するこ
とが多い。そこで本発明材の高温強度は高温・高速ガス
タービンホイール材のメタル温度である450”Cにお
ける10万時間クリープ破断強度評価した。105h 
 クリープ破断強度は、一般に用いられているラルソン
・ミラー法で求めた。
Next, the required values of the present invention will be described. Saturation failure is one of the causes of failure of high-speed rotating bodies. Many researchers believe that materials with high V-notch Charpy impact absorption energy are superior in resistance to saturation fracture. Therefore, a V-notch pea impact test was used to evaluate the safety of the material of the present invention against saturation fracture. The most important factor for high-temperature rotating bodies is creep rupture strength, and the design allowable stress is often determined by the 100,000-hour creep rupture strength. Therefore, the high-temperature strength of the present invention material was evaluated by evaluating its creep rupture strength for 100,000 hours at 450"C, which is the metal temperature of high-temperature and high-speed gas turbine wheel materials.
Creep rupture strength was determined by the commonly used Larson-Miller method.

本発明材の成分範囲限定理由について説明する。The reason for limiting the range of components of the material of the present invention will be explained.

Cは高い引張強さと耐力を得るために最低0.05 %
必要である。しかし、あまり多くすると高温に長時間さ
らされた場合に金属組織が不安定になり、クリープ破断
強度を低下させるので0.25%以下にしなければなら
ない。0.09〜0.13%が最も好ましい。
C is at least 0.05% to obtain high tensile strength and yield strength.
is necessary. However, if the content is too large, the metal structure becomes unstable when exposed to high temperatures for a long period of time, reducing the creep rupture strength, so it must be kept at 0.25% or less. Most preferred is 0.09-0.13%.

Siは脱酸・脱硫剤として鋼の溶製の際に添加するもの
であり、小量でも効果がある。Siはδフエライト生成
元素であり、多量の添加は疲労及び靭性を低下させるδ
フエライト生成原因になるので0.3%以下にしなけれ
ばならない。しかし。
Si is added as a deoxidizing and desulfurizing agent during steel melting, and even a small amount is effective. Si is a δ ferrite-forming element, and addition of a large amount of δ reduces fatigue and toughness.
Since it causes the formation of ferrite, it must be kept at 0.3% or less. but.

カーボン真空脱酸法及びエレクトロスラグ溶解法などに
よればSi添加の必要がない。Siは0.07%以下が
最も好ましい。
According to carbon vacuum deoxidation method, electroslag melting method, etc., it is not necessary to add Si. Most preferably, Si is 0.07% or less.

Mnは多量の添加で高温強度を低下させるので1.5%
以下にしなければならない。特に0.5〜0.9%が好
ましい。
Adding a large amount of Mn lowers high temperature strength, so add 1.5%.
Must be as follows. Particularly preferred is 0.5 to 0.9%.

Crは耐食性と高温強度を高めるが13%以上添加する
とδフエライト組織生成の原因になる。
Cr increases corrosion resistance and high-temperature strength, but when added in an amount of 13% or more, it causes the formation of a δ-ferrite structure.

8%より少ないと耐食性及び高温強度が不十分なので8
〜13%に決定された。特に10.5〜11.5%が好
ましい。
If it is less than 8%, corrosion resistance and high temperature strength are insufficient.
It was determined to be ~13%. Particularly preferred is 10.5 to 11.5%.

Moは固溶及び析出強化作用によってクリープ破断強度
を高めると同時に胞化防止効果がある。
Mo increases the creep rupture strength through solid solution and precipitation strengthening effects, and at the same time has the effect of preventing pore formation.

1.0 %以下ではクリープ破断強度向上効果が不十分
であり、2.5%以上になるとδフエライト生成原因に
なるので1.0〜2.5 %に限定された。
If it is less than 1.0%, the creep rupture strength improving effect is insufficient, and if it is more than 2.5%, it will cause the formation of δ ferrite, so it was limited to 1.0 to 2.5%.

特に1.45〜1.75%が好ましい。Particularly preferred is 1.45 to 1.75%.

■及びNbは炭化物及び窒化物を析出し高温強度を高め
ると同時に靭性向上効果がある#VO005%及びNb
0.02%以下ではその効果が不十分であり、VoO,
35%及びNb0.20%以上ではδフエライト生成の
原因となると共にクリープ破断強度が低下傾向を示すよ
うになる。特にVo、15〜0.20%、Nb0.04
〜0.08%が好ましい。
■ and Nb precipitate carbides and nitrides to increase high temperature strength and have the effect of improving toughness #VO005% and Nb
If it is less than 0.02%, the effect is insufficient, and VoO,
35% and 0.20% or more of Nb causes the formation of δ ferrite and the creep rupture strength tends to decrease. Especially Vo, 15-0.20%, Nb0.04
~0.08% is preferred.

Niは靭性を高め、かつ、δフエライト生成の防止効果
があるが、1.0 %以下ではその効果が十分でなく、
2.5 %以上ではクリープ破断強度を低下させる6特
に1.4〜1.6%が好ましい。
Ni increases toughness and has the effect of preventing the formation of δ ferrite, but if it is less than 1.0%, the effect is not sufficient.
A content of 2.5% or more lowers creep rupture strength.6 Particularly preferred is 1.4 to 1.6%.

TaはNbと同じくクリープ破断強度及び靭性向上効果
がある。0.02 %以下ではその効果が不十分であり
、0.20%以上ではδフエライト生成の原因となる。
Like Nb, Ta has the effect of improving creep rupture strength and toughness. If it is less than 0.02%, the effect is insufficient, and if it is more than 0.20%, it causes the formation of δ ferrite.

一般に靭性を高めるとクリープ破断強度を低めるという
相反する現象があるが、本発明者らは12Cr系合金鋼
に希土類元素及び、又はカルシウムを適正量添加し、実
質的に全焼戻しマルテンサイト組織とするとクリープ破
断強度及び靭性を同時に改善できることを見い出した。
In general, there is a contradictory phenomenon in which increasing toughness lowers creep rupture strength, but the present inventors added appropriate amounts of rare earth elements and/or calcium to 12Cr alloy steel to create a substantially fully tempered martensitic structure. It has been found that creep rupture strength and toughness can be simultaneously improved.

本発明は、このような知見によって得られたものであっ
て、0.3重量%以下の希土類元素及び0.01 %重
量以下のカルシウムのいずれが1種以上を含み、実質的
に全焼戻しマルテンサイト組織からなる靭性及び高温強
度に優れた1 2 Cr系合金鋼である。
The present invention was obtained based on such findings, and includes at least one of rare earth elements of 0.3% by weight or less and calcium of 0.01% by weight or less, and substantially entirely tempered marten. It is a 12Cr alloy steel with excellent toughness and high-temperature strength consisting of a site structure.

特に、前述の合金鋼に希土類元素又はカルシウムを添加
することにより、ガスタービンディスク材として要求さ
れるクリープ破断強度と靭性の優れた耐熱鋼が得られる
In particular, by adding rare earth elements or calcium to the above-mentioned alloy steel, a heat-resistant steel with excellent creep rupture strength and toughness required as a gas turbine disk material can be obtained.

上記のような12Gr系合金鋼に0.3 重量%以下の
希土類元素と0.01重量%以下のカルシウムを添加含
有させると、靭性とクリープ破断強度が高められる。希
土類元素の含有量は増加すると靭性とクリープ破断強度
が向上するが、0.3重量%を超えてもその効果が飽和
するので経済性の点から0.3 重量%以下とする必要
がある。カルシウムも希土類元素と同様の効果があるが
、カルシウム添加量が0.01重量%を超えてもその効
果が飽和する。更に本発明において、希土類元素とカル
シウムの複合添加によっても靭性とクリープ破断強度が
向上する。
When 0.3% by weight or less of a rare earth element and 0.01% by weight or less of calcium are added to the 12Gr alloy steel as described above, the toughness and creep rupture strength are increased. As the rare earth element content increases, toughness and creep rupture strength improve, but the effect is saturated even if it exceeds 0.3% by weight, so it is necessary to keep it below 0.3% by weight from the economic point of view. Calcium also has the same effect as rare earth elements, but the effect is saturated even if the amount of calcium added exceeds 0.01% by weight. Furthermore, in the present invention, toughness and creep rupture strength are also improved by the combined addition of rare earth elements and calcium.

〔発明の実施例〕[Embodiments of the invention]

第1表に示す組織の試料をそれぞれ10kg溶解し、t
tso℃に加熱し鍛造して実験素材とした。この素材に
第1表に示すような熱処理を施した。この素材からクリ
ープ破断、引張及びVノツチシャルピー衝撃試験片を採
取し実験した。
10 kg of each tissue sample shown in Table 1 was dissolved, and t
It was heated to 20°C and forged to be used as an experimental material. This material was subjected to heat treatment as shown in Table 1. Creep rupture, tensile and V-notch Charpy impact test specimens were collected from this material and tested.

第1表において、賦香2〜5は本発明鋼であり。In Table 1, fragrances 2 to 5 are steels of the present invention.

賦香1,6及び7は比較鋼である。比較鋼6はガスター
ビンディスク及び蒸気タービンブレードに使用されてい
る材料である。比較[7は12Cr系耐熱鋼として最も
広く使用されてCrucible422鋼である。賦香
2及び3にはミツシュメタル(L a −Ceを主成分
とする希土類元素合金)を鋳造前に0.3%添加した。
Flavors 1, 6 and 7 are comparative steels. Comparative Steel 6 is a material used in gas turbine disks and steam turbine blades. Comparison [7] is Crucible 422 steel, which is most widely used as a 12Cr heat-resistant steel. To the perfumers 2 and 3, 0.3% of Mitshu metal (a rare earth element alloy whose main component is La-Ce) was added before casting.

賦香4はCaを添加した実施例であり、賦香5はCaと
希土類元素を複合添加した実施例である。
Perfume 4 is an example in which Ca is added, and Perfume 5 is an example in which Ca and rare earth elements are added in combination.

第2表はこれら試料の機械性試験結果を示す。Table 2 shows the mechanical test results for these samples.

まず現用材(賦香6及び7)の結果を見ると、賦香6は
衝撃吸収エネルギーは高いが、クリープ破断強度が低い
。賦香7は衝撃吸収エネルギーもクリープ破断強度も、
高温・高速ガスタービンディスク材として必要な強度(
450℃、105h強度) 50 kg/mm2.室温
衝撃吸収エネルギー>3kg−I        m)
より低い。発明者らが先に開発した比較材賦香1は高温
・高速ガスタービンディスク材として必要な強度を満足
するもの、衝撃吸収エネルギーの強度が低い。
First, looking at the results of the currently used materials (Fragrance 6 and 7), Flavor 6 has high impact absorption energy but low creep rupture strength. Fuka 7 has both impact absorption energy and creep rupture strength,
The strength required for high-temperature and high-speed gas turbine disk materials (
450℃, 105h strength) 50 kg/mm2. Room temperature shock absorption energy > 3 kg-I m)
lower. Comparative material No. 1, which was previously developed by the inventors, satisfies the strength required as a high-temperature/high-speed gas turbine disk material, but has low impact absorption energy strength.

これに対し、本発明材賦香2〜5は450〜500℃、
 10sh  りIJ−j破断強に及ヒ?if@吸収エ
ネルギーが高く、高温・高速ガスタービン用材として必
要な強度・靭性を十分満足することが確認された。
In contrast, the present invention materials 2 to 5 were heated at 450 to 500°C;
10sh ri IJ-j rupture? It was confirmed that it has a high absorbed energy and fully satisfies the strength and toughness required as a material for high-temperature and high-speed gas turbines.

〔発明の効果〕〔Effect of the invention〕

本発明鋼の450〜500℃クリープ破断強度及び衝撃
吸収エネルギーは著しく優れており。
The 450-500°C creep rupture strength and impact absorption energy of the steel of the present invention are extremely excellent.

Claims (1)

【特許請求の範囲】[Claims] 1、重量比で0.05〜0.25%のC、0.3%以下
のSi、1.5%以下のMn、1.0〜2.5%のNi
、8〜13%のCr、1.0〜2.5%のMo、0.0
5〜0.35%のV、0.02%0.20%のNb、T
aのいずれか又は両方、0.01〜0.10%のN、希
土類元素0.3%以下及びCa0.01%以下の少なく
とも1種、残部がFeおよび不可避不純物からなり、4
50℃、10^5hクリープ破断強度が50kg/mm
^2を、25℃、Vノツチシヤルピー衝撃吸収エネルギ
ーが4kg−mを超えることを特徴とする耐熱鋼。
1. Weight ratio of 0.05 to 0.25% C, 0.3% or less Si, 1.5% or less Mn, 1.0 to 2.5% Ni
, 8-13% Cr, 1.0-2.5% Mo, 0.0
5-0.35% V, 0.02% 0.20% Nb, T
either or both of a, 0.01 to 0.10% N, at least one of rare earth elements 0.3% or less and Ca 0.01% or less, the balance consisting of Fe and inevitable impurities, 4
50℃, 10^5h creep rupture strength is 50kg/mm
A heat-resistant steel having a V-notch mechanical impact absorption energy exceeding 4 kg-m at 25°C.
JP1018986A 1986-01-22 1986-01-22 Heat resistant steel Pending JPS62170461A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1018986A JPS62170461A (en) 1986-01-22 1986-01-22 Heat resistant steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1018986A JPS62170461A (en) 1986-01-22 1986-01-22 Heat resistant steel

Publications (1)

Publication Number Publication Date
JPS62170461A true JPS62170461A (en) 1987-07-27

Family

ID=11743336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1018986A Pending JPS62170461A (en) 1986-01-22 1986-01-22 Heat resistant steel

Country Status (1)

Country Link
JP (1) JPS62170461A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5820817A (en) * 1997-07-28 1998-10-13 General Electric Company Steel alloy
US5906791A (en) * 1997-07-28 1999-05-25 General Electric Company Steel alloys

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5820817A (en) * 1997-07-28 1998-10-13 General Electric Company Steel alloy
US5906791A (en) * 1997-07-28 1999-05-25 General Electric Company Steel alloys
EP0976844A2 (en) * 1998-07-27 2000-02-02 General Electric Company Steel alloys
EP0976844A3 (en) * 1998-07-27 2000-03-22 General Electric Company Steel alloys

Similar Documents

Publication Publication Date Title
US5779821A (en) Rotor for steam turbine and manufacturing method thereof
JPH0319295B2 (en)
US2572191A (en) Alloy steel having high strength at elevated temperature
JPH083697A (en) Heat resistant steel
JPH0532463B2 (en)
JPS62170461A (en) Heat resistant steel
JPS616256A (en) 12% cr heat resisting steel
JP2001247942A (en) Rotor shaft for steam turbine
JPS58110662A (en) Heat resistant steel
JPS62180040A (en) Compressor blade for gas turbine
JPS6338420B2 (en)
JP2003129193A (en) 12-Cr ALLOY STEEL FOR TURBINE ROTOR, MANUFACTURING METHOD THEREFOR, AND TURBINE ROTOR
JPS6013060B2 (en) Ferritic heat-resistant steel
JPS6031898B2 (en) Turbine rotor material
JPH045744B2 (en)
Gulyaev et al. High strength austenitic steels
JPH07118812A (en) Heat-resistant cast steel turbine casting and its production
JPS62278251A (en) Low-alloy steel excellent in stress corrosion cracking resistance
JPS6283449A (en) Heat resistant steel
JP4878511B2 (en) MX type carbonitride precipitation strengthened heat resistant steel
JPS61235543A (en) Low alloy steel excelling in stress corrosion cracking resistance
JPS60165360A (en) High strength and high toughness steam turbine rotor
JPS6293353A (en) Austenitic heat resisting alloy
JPS608299B2 (en) Low alloy steel for high temperature rotating discs
JPS6212304B2 (en)