JPH045744B2 - - Google Patents

Info

Publication number
JPH045744B2
JPH045744B2 JP728383A JP728383A JPH045744B2 JP H045744 B2 JPH045744 B2 JP H045744B2 JP 728383 A JP728383 A JP 728383A JP 728383 A JP728383 A JP 728383A JP H045744 B2 JPH045744 B2 JP H045744B2
Authority
JP
Japan
Prior art keywords
less
toughness
creep rupture
strength
ferrite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP728383A
Other languages
Japanese (ja)
Other versions
JPS59133354A (en
Inventor
Masao Shiga
Seishin Kirihara
Mitsuo Kuryama
Takatoshi Yoshioka
Shintaro Takahashi
Takehiko Yoshida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP728383A priority Critical patent/JPS59133354A/en
Publication of JPS59133354A publication Critical patent/JPS59133354A/en
Publication of JPH045744B2 publication Critical patent/JPH045744B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の利用分野〕 本発明は靱性及び高温強度に優れた12Cr系合
金鋼に係り、特に高温高圧タービン用材料に好適
な12Cr系合金鋼に関する。 〔従来技術〕 現在の蒸気タービンは蒸気温度最大566℃、蒸
気圧力最大246atg−であり、ロータシヤフト材と
しては1Cr−1Mo−1/4V鋼(ASTM470− class8)及び11Cr−1Mo−V−Nb−N鋼(特開
昭56−116858)が用いられている。 しかし最近、石油、石炭などの化石燃料のコス
トが上昇を続けており、これら化石燃料を用いて
いる火力プラントの発電効率向上が重要になつて
いる。発電効率を上げるためには蒸気タービンの
蒸気温度又は圧力を上げる必要がある。これら高
温高圧(高効率)タービン用材料としては、前述
の現在タービンロータ材として用いられているも
のではクリープ破断強度が不足で、これよりも高
強度の材料が必要である。 一方、クリープ破断強度の点では、Ni基合金
及びCo基合金がすぐれているが、これら合金は
コストが高い上に、加工性(鍛造、切削)が悪い
欠点がある。 〔発明の目的〕 本発明の目的は、高いクリープ破断強度を有
し、かつ靱性を損わない12Cr系合金鋼であつて、
特に蒸気温度600℃までの高効率タービン用材料
に好適な12Cr系合金鋼を提供することにある。 〔発明の概要〕 一般に靱性を高めるとクリープ破断強度を低め
るという相反する現象があるが、本発明者らは
12Cr系合金鋼に希土類元素および/又はカルシ
ウムを適正量添加し、実質的に全焼戻しマルテン
サイト組織とするとクリープ破断強度及び靱性を
同時に改善できることを見い出した。 本発明は、このような知見によつて得られたも
のであつて、0.3重量%以下の希土類元素及び
0.01重量%以下のカルシウムのいずれか1種以上
を含み、実質的に全焼戻しマルテンサイト組織か
らなる靱性及び高温強度に優れた12Cr系合金鋼
である。 本発明の12Cr系合金鋼は、重量比でCr:8〜
13%,Mo:0.75〜1.75%,V:0.05〜0.5%,
Nb:0.02〜0.15%,N:0.025〜0.1%,C:0.05
〜0.25%,Si:0.60%以下,Ni:1.5%以下,
Mn:1.5%以下,W:0.1〜0.5%を含み残部はFe
および不純物より成る合金鋼に希土類元素及び/
又はカルシウムを添加することにより、高効率蒸
気タービン用ロータ材として要求されるクリープ
破断強度と靱性の優れた耐熱鋼が得られる。 Cは高い引張強さを得るために0.05%以上必要
であるが、0.25%を越えると、高温に長時間さら
された場合に組織が不安定になり長時間クリープ
破断強度を低下させるので、0.05〜0.25%に限定
される。特に0.1〜0.2%が好ましい。 Nbは0.02%以上で高温強度を高めるのに非常
に効果的な元素であるが、0.15%を越えると大型
鋼塊では粗大なNb炭化物が生じ、また、マトリ
ツクスのC濃度を低下させ、かえつて強度を低下
させたり、疲労強度を低下させるδフエライトを
析出させる欠点があるので0.15%以下に抑える必
要がある。特に、0.04〜0.12%が好ましい。 Nはクリープ破断強度の改善及びδフエライト
の生成防止に効果があるが、0.025%以下ではそ
の効果が充分でなく0.1%を越えると著しく靱性
を低下させる。特に0.03〜0.07%が好ましい。 Crは高温強度改善するが、13%を越えるとδ
フエライトを生成させる原因となり、8%より少
ないと高温高圧蒸気に対する耐食性が不十分とな
る。特に10〜11.5%が好ましい。 Vはクリープ破断強度を高める効果があるが、
0.05%未満ではその効果が不十分で、0.5%を越
えるとδフエライトを生成して疲労強度を低下さ
せる。特に、0.1〜0.3%が好ましい。 Moは固溶強化及び析出硬化作用によつてクリ
ープ強度を改善するが、0.75%未満ではその効果
が少なく、1.75%を越えるとδフエライトを生成
し靱性及びクリープ破断強度を低下させる。特に
1.0〜1.5%が好ましい。 Niは靱性を高め、かつ、δフエライトの生成
を防止するのに非常に有効な元素であるが、1.5
%を越える添加はクリープ破断強度を低下させて
しまうので好ましくない。特に0.2〜0.8%が好ま
しい。 Mnは脱酸剤として添加するものであり、少量
の添加でその効果は達成され、1.5%を超える多
量添加はクリープ破断強度を低下させる。特に、
0.5〜1%が好ましい。 Siも脱酸剤として添加するものであるが、真空
C脱酸法などの製鋼技術によれば、Si脱酸は不要
である。またSiを低くすることにより、δフエラ
イト析出防止及び靱性改善効果があるので0.6%
以下に抑える必要がある。添加する場合、特に
0.25%以下が好ましい。 Wは微量で顕著に高温強度を高める。0.1%未
満では効果が少なく、また0.65%を越えると急激
に強度を低下させる。一方、Wは0.5%を越える
と著しく靱性を低めるので、靱性が要求される部
材では0.5%未満とするのが好ましい。特に、0.2
〜0.45%が好ましい。 上記のような12Cr系合金鋼に0.3重量%以下の
希土類元素と0.01重量%以下のカルシウムを添加
含有させると、靱性とクリープ破断強度が高めら
れる。希土類元素の含有量は増加すると靱性とク
リープ破断強度が向上するが、0.3重量%を超え
てもその効果が飽和するので経済性の点から0.3
重量%以下とする必要がある。カルシウムも希土
類元素と同様の効果があるが、カルシウムの添加
量が0.01重量%を超えてもその効果が飽和する。
更に本発明において、希土類元素とカルシウムの
複合添加によつても靱性とクリープ破断強度が向
上する。 本発明の12Cr系合金鋼は実質的に全焼戻しマ
ルテンサイト組織からなる。この合金は組成によ
つてδフエライトが形成されるので、実質的にδ
フエライトが形成されない組成としなければ、高
い靱性とクリープ破断強度が得られない。δフエ
ライトの制御はクロム当量によつて行うことがで
きる。 クロム当量=−40×C%−30×N%−2×Mn
% −4×Ni%+Cr%+6×Si%+4×Mo% +1.5×W%+11×V%+5×Nb% 本発明の12Cr系合金鋼を蒸気タービンロータ
のような大型鋼塊(50〜100トン)とする場合に
おいては、成分偏析によりδフエライトが生成し
易いので、クロム当量を10.5以下が好ましい。ま
たクロム当量をあまり小さくするとクリープ破断
強度が低くなるので6.5以上が好ましい。特に7
〜10が好ましい。 従来の希土類元素添加鋼には、Cr当量が9以
上になると疲労強度と靱性を低下させる有害なδ
フエライトが析出してくるが、希土類元素を添加
した鋼には、Cr当量が9以上になつても全マル
テンサイト組織で、δフエライトが析出しないこ
とが確認された。しかし希土類元素を添加した鋼
でも、Cr当量が11以上になるとδフエライトが
析出する。 〔発明の実施例〕 第1表は代表的試料の化学組成を示す。表中、
試料No.4〜7にはミツシユメタル(La−Ceを主
成分とする希土類元素合金)を鋳造前に0.3%添
加した。試料No.5及びNo.6が本発明による実施例
である。試料No.8はCaを添加した実施例であり、
試料No.9はCaと希土類元素を複合添加した実施
例である。
[Field of Application of the Invention] The present invention relates to a 12Cr alloy steel having excellent toughness and high-temperature strength, and particularly to a 12Cr alloy steel suitable as a material for high-temperature and high-pressure turbines. [Prior art] Current steam turbines have a maximum steam temperature of 566°C and a maximum steam pressure of 246 atg-, and the rotor shaft materials are 1Cr-1Mo-1/4V steel (ASTM470- class 8) and 11Cr-1Mo-V-Nb- N steel (Japanese Patent Application Laid-Open No. 56-116858) is used. However, recently, the cost of fossil fuels such as oil and coal continues to rise, and it has become important to improve the power generation efficiency of thermal power plants that use these fossil fuels. In order to increase power generation efficiency, it is necessary to increase the steam temperature or pressure of the steam turbine. As materials for these high-temperature, high-pressure (high-efficiency) turbines, the aforementioned materials currently used as turbine rotor materials lack creep rupture strength, and materials with higher strength are required. On the other hand, although Ni-based alloys and Co-based alloys are excellent in terms of creep rupture strength, these alloys have the drawbacks of high cost and poor workability (forging, cutting). [Object of the Invention] The object of the present invention is to provide a 12Cr alloy steel that has high creep rupture strength and does not impair toughness,
The object of the present invention is to provide a 12Cr alloy steel that is particularly suitable as a material for high-efficiency turbines with steam temperatures up to 600°C. [Summary of the Invention] In general, there is a contradictory phenomenon that increasing toughness lowers creep rupture strength, but the present inventors have
It has been found that creep rupture strength and toughness can be simultaneously improved by adding appropriate amounts of rare earth elements and/or calcium to 12Cr alloy steel to create a substantially fully tempered martensitic structure. The present invention was obtained based on the above findings, and contains 0.3% by weight or less of rare earth elements and
This is a 12Cr-based alloy steel containing at least 0.01% by weight of calcium and having a substantially fully tempered martensitic structure, which has excellent toughness and high-temperature strength. The 12Cr alloy steel of the present invention has a weight ratio of Cr: 8 to
13%, Mo: 0.75-1.75%, V: 0.05-0.5%,
Nb: 0.02-0.15%, N: 0.025-0.1%, C: 0.05
~0.25%, Si: 0.60% or less, Ni: 1.5% or less,
Contains Mn: 1.5% or less, W: 0.1 to 0.5%, and the balance is Fe
and rare earth elements and/or impurities.
Alternatively, by adding calcium, a heat-resistant steel with excellent creep rupture strength and toughness required as a rotor material for high-efficiency steam turbines can be obtained. 0.05% or more of C is required to obtain high tensile strength, but if it exceeds 0.25%, the structure will become unstable when exposed to high temperatures for a long time, reducing the long-term creep rupture strength. Limited to ~0.25%. Particularly preferred is 0.1 to 0.2%. Nb is an element that is very effective in increasing high-temperature strength at 0.02% or more, but when it exceeds 0.15%, coarse Nb carbides are formed in large steel ingots, and it also lowers the C concentration in the matrix, causing It has the disadvantage of reducing strength and precipitating δ ferrite which reduces fatigue strength, so it is necessary to suppress it to 0.15% or less. In particular, 0.04 to 0.12% is preferable. N is effective in improving creep rupture strength and preventing the formation of δ ferrite, but if it is less than 0.025%, the effect is not sufficient, and if it exceeds 0.1%, the toughness is significantly reduced. Particularly preferred is 0.03 to 0.07%. Cr improves high temperature strength, but when it exceeds 13%, δ
It causes the formation of ferrite, and if it is less than 8%, corrosion resistance against high temperature and high pressure steam will be insufficient. Particularly preferred is 10 to 11.5%. Although V has the effect of increasing creep rupture strength,
If it is less than 0.05%, the effect is insufficient, and if it exceeds 0.5%, δ ferrite is produced and the fatigue strength is reduced. In particular, 0.1 to 0.3% is preferable. Mo improves creep strength through solid solution strengthening and precipitation hardening, but if it is less than 0.75%, the effect is small, and if it exceeds 1.75%, it produces δ ferrite and reduces toughness and creep rupture strength. especially
1.0-1.5% is preferred. Ni is a very effective element for increasing toughness and preventing the formation of δ ferrite.
Addition of more than % is not preferable because it lowers the creep rupture strength. Particularly preferred is 0.2 to 0.8%. Mn is added as a deoxidizing agent, and its effect can be achieved by adding a small amount, and adding a large amount exceeding 1.5% lowers the creep rupture strength. especially,
0.5-1% is preferred. Although Si is also added as a deoxidizing agent, Si deoxidation is not necessary according to steel manufacturing techniques such as the vacuum C deoxidation method. In addition, by lowering Si, 0.6% is effective to prevent δ ferrite precipitation and improve toughness.
It is necessary to keep it below. When adding, especially
It is preferably 0.25% or less. Even a small amount of W significantly increases high temperature strength. If it is less than 0.1%, the effect will be small, and if it exceeds 0.65%, the strength will decrease rapidly. On the other hand, if W exceeds 0.5%, the toughness will be significantly lowered, so it is preferably less than 0.5% for members requiring toughness. In particular, 0.2
~0.45% is preferred. Addition of 0.3% by weight or less of rare earth elements and 0.01% by weight or less of calcium to the above-mentioned 12Cr alloy steel improves toughness and creep rupture strength. Toughness and creep rupture strength improve as the content of rare earth elements increases, but the effect is saturated even if it exceeds 0.3% by weight, so from the economic point of view,
It is necessary to keep it below % by weight. Calcium also has the same effect as rare earth elements, but the effect is saturated even when the amount of calcium added exceeds 0.01% by weight.
Furthermore, in the present invention, toughness and creep rupture strength are also improved by the combined addition of rare earth elements and calcium. The 12Cr alloy steel of the present invention consists essentially of a completely tempered martensitic structure. This alloy forms δ ferrite depending on its composition, so it is essentially δ
High toughness and creep rupture strength cannot be obtained unless the composition is such that ferrite is not formed. δ ferrite can be controlled by the chromium equivalent. Chromium equivalent = -40 x C% -30 x N% -2 x Mn
% −4×Ni%+Cr%+6×Si%+4×Mo% +1.5×W%+11×V%+5×Nb% The 12Cr alloy steel of the present invention is used in large steel ingots such as steam turbine rotors (50~ 100 tons), the chromium equivalent is preferably 10.5 or less because δ ferrite is likely to be generated due to component segregation. Furthermore, if the chromium equivalent is too small, the creep rupture strength will be low, so it is preferably 6.5 or more. Especially 7
~10 is preferred. Conventional rare earth element-added steel contains harmful δ, which reduces fatigue strength and toughness when the Cr equivalent is 9 or more.
Although ferrite precipitates, it was confirmed that δ ferrite does not precipitate in steel to which rare earth elements have been added, even when the Cr equivalent is 9 or more, even if the Cr equivalent is 9 or more. However, even in steel containing rare earth elements, when the Cr equivalent is 11 or more, δ ferrite precipitates. EXAMPLES OF THE INVENTION Table 1 shows the chemical composition of representative samples. In the table,
0.3% of Mitsushi Metal (a rare earth element alloy whose main component is La-Ce) was added to Samples Nos. 4 to 7 before casting. Samples No. 5 and No. 6 are examples according to the present invention. Sample No. 8 is an example in which Ca was added,
Sample No. 9 is an example in which Ca and rare earth elements were added in combination.

【表】 第1表に示す組成の試料を鋳造後、その鋼塊を
1150℃に加熱し、鍛造して実験試料とした。試料
の熱処理は大型ロータの中心部の条件にシユミレ
ートして、1050℃加熱後100℃/hで冷却し、565
℃×20h炉冷、665℃×45h炉冷の2段焼もどしを
行なつた。No.7の試料には若干のδフエライトが
析出していたが、他の試料は実質的に全焼戻しマ
ルテンサイト組織を有していた。 熱処理後の試料から鍛造直角方向に引張試験片
クリープ破断試験片及び2mmVノツチシヤルピー
衝撃試験片を採取し実験した。その結果を第2表
に示す。
[Table] After casting a sample with the composition shown in Table 1, the steel ingot is
It was heated to 1150℃ and forged to become an experimental sample. The heat treatment of the sample simulates the conditions at the center of a large rotor, heating to 1050℃ and cooling at 100℃/h to 565℃.
Two-stage tempering was performed: furnace cooling at ℃×20 hours and furnace cooling at 665℃×45 hours. Although some δ ferrite was precipitated in sample No. 7, the other samples had substantially completely tempered martensitic structures. Tensile test specimens, creep rupture test specimens, and 2 mm V-notched pierced impact test specimens were taken from the heat-treated samples in the direction perpendicular to the forging and tested. The results are shown in Table 2.

〔発明の効果〕〔Effect of the invention〕

本発明鋼の靱性及び593℃クリープ破断強度は
著しく高く、高効率タービンロータとして要求さ
れる機械的性質を十分満足し、1100。F(593℃)
までの高効率タービン用ロータとして好適であ
る。
The toughness and creep rupture strength of the steel of the present invention at 593°C are extremely high and fully satisfy the mechanical properties required for a high-efficiency turbine rotor. F (593℃)
It is suitable as a rotor for high-efficiency turbines.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は20℃での衝撃試験における吸収エネル
ギーとCr当量との関係を示す線図、第2図は593
℃,105hクリープ破断強度とCr当量との関係を
示す線図、第3図は吸収エネルギーと希土類元素
の添加量との関係を示す線図、第4図は吸収エネ
ルギーとカルシウムの添加量との関係を示す線図
である。
Figure 1 is a diagram showing the relationship between absorbed energy and Cr equivalent in an impact test at 20℃, Figure 2 is a diagram showing the relationship between 593
℃, 10 5 h A diagram showing the relationship between creep rupture strength and Cr equivalent. Figure 3 is a diagram showing the relationship between absorbed energy and the amount of rare earth element added. Figure 4 is a diagram showing the relationship between absorbed energy and the amount of calcium added. FIG.

Claims (1)

【特許請求の範囲】[Claims] 1 重量比にて、Cr8〜13%,Mo0.75〜1.75%,
V0.05〜0.5%,Nb0.02〜0.15%,N0.025〜0.1%,
C0.05〜0.25%,Si0.60%以下,Ni1.5%以下,
Mn1.5%以下,W0.1〜0.5%と、希土類元素0.3%
以下及びカルシウム0.01%以下の1種以上の元素
とを含有し、残部が実質的にFeであり、実質的
に全焼戻しマルテンサイト組織を有することを特
徴とする靱性及び高温強度に優れた12Cr系合金
鋼。
1 Weight ratio: Cr8~13%, Mo0.75~1.75%,
V0.05~0.5%, Nb0.02~0.15%, N0.025~0.1%,
C0.05~0.25%, Si0.60% or less, Ni1.5% or less,
Mn 1.5% or less, W 0.1~0.5%, rare earth elements 0.3%
12Cr system with excellent toughness and high-temperature strength, characterized by containing at least one element below and 0.01% or less of calcium, with the remainder being substantially Fe, and having a substantially fully tempered martensitic structure. Alloy steel.
JP728383A 1983-01-21 1983-01-21 12cr alloy steel with superior toughness and superior strength at high temperature Granted JPS59133354A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP728383A JPS59133354A (en) 1983-01-21 1983-01-21 12cr alloy steel with superior toughness and superior strength at high temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP728383A JPS59133354A (en) 1983-01-21 1983-01-21 12cr alloy steel with superior toughness and superior strength at high temperature

Publications (2)

Publication Number Publication Date
JPS59133354A JPS59133354A (en) 1984-07-31
JPH045744B2 true JPH045744B2 (en) 1992-02-03

Family

ID=11661702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP728383A Granted JPS59133354A (en) 1983-01-21 1983-01-21 12cr alloy steel with superior toughness and superior strength at high temperature

Country Status (1)

Country Link
JP (1) JPS59133354A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60190551A (en) * 1984-03-09 1985-09-28 Hitachi Ltd Heat resistant steel for main steam pipe
JPH0650041B2 (en) * 1986-03-20 1994-06-29 株式会社日立製作所 Gas turbine
JPS62222027A (en) * 1986-03-25 1987-09-30 Nippon Chiyuutankou Kk Manufacture of heat resisting rotor
JPH0734202A (en) * 1993-07-23 1995-02-03 Toshiba Corp Steam turbine rotor

Also Published As

Publication number Publication date
JPS59133354A (en) 1984-07-31

Similar Documents

Publication Publication Date Title
JPH0319295B2 (en)
JPH0563544B2 (en)
JP4262414B2 (en) High Cr ferritic heat resistant steel
EP1035225B1 (en) Ni-base superalloy
JPS5837159A (en) Heat resistant martensite steel
JPH062927B2 (en) High strength low alloy steel with excellent corrosion resistance and oxidation resistance
Demo Structure, constitution, and general characteristics of wrought ferritic stainless steels
CN108342661A (en) A kind of fired power generating unit heat-resisting steel alloy material and its manufacturing process
JPH0532463B2 (en)
JP2006022343A (en) Heat resistant steel, rotor shaft for steam turbine using it, steam turbine, and power plant with the use of steam turbine
CN115976426B (en) High-strength and high-toughness martensitic heat-resistant steel
JPH045744B2 (en)
JP3905739B2 (en) 12Cr alloy steel for turbine rotor, method for producing the same, and turbine rotor
JP3345988B2 (en) Steam turbine rotor
JPS58110662A (en) Heat resistant steel
JPH07238349A (en) Heat resistant steel
US4049432A (en) High strength ferritic alloy-D53
JPS59232231A (en) Manufacture of rotor for turbine
JPH07118812A (en) Heat-resistant cast steel turbine casting and its production
CN109295396A (en) A kind of steam turbine forging heat resisting steel
JPS58120764A (en) Moving vane of steam turbine with superior strength at high temperature and low creep crack propagating speed
JP2004018897A (en) High-chromium alloy steel and turbine rotor using this
CN115948700B (en) Martensitic heat-resistant steel
JPS6293353A (en) Austenitic heat resisting alloy
JPS61190049A (en) Low alloy steel