JPS6217012A - Production of silicon tetrachloride - Google Patents

Production of silicon tetrachloride

Info

Publication number
JPS6217012A
JPS6217012A JP15486185A JP15486185A JPS6217012A JP S6217012 A JPS6217012 A JP S6217012A JP 15486185 A JP15486185 A JP 15486185A JP 15486185 A JP15486185 A JP 15486185A JP S6217012 A JPS6217012 A JP S6217012A
Authority
JP
Japan
Prior art keywords
carbon
silicon
chlorine
mixture
contg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15486185A
Other languages
Japanese (ja)
Other versions
JPH0357047B2 (en
Inventor
Takeshi Okuya
猛 奥谷
Yoshinori Nakada
善徳 中田
Fujitaro Goto
後藤 藤太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP15486185A priority Critical patent/JPS6217012A/en
Publication of JPS6217012A publication Critical patent/JPS6217012A/en
Publication of JPH0357047B2 publication Critical patent/JPH0357047B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Silicon Compounds (AREA)

Abstract

PURPOSE:To produce easily high-purity SiCl4 by allowing the ashes obtained by burning biomass silicate to react with a Cl2-contg. carbon compd. CONSTITUTION:The following mixture is allowed to react with each other at 400-1,100 deg.C in the inert or reducing atmosphere which consists of both the ashes obtained by burning biomass silicate consisting of vegetable contg. silica content such as rice hull and straw or a carbonization-treated product obtained by subjecting the silicic acid biomass to the carbonization treatment and a Cl2-contg. carbon compd. (e.g. CCl4) or a mixture of Cl2 and C-contg. compd. (e.g. CO).

Description

【発明の詳細な説明】 〔技術分野〕 本発明はもみがら及び/又は稲わらなどのケイ酸バイオ
マスを原料とする四塩化ケイ素の製造方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a method for producing silicon tetrachloride using silicate biomass such as rice husk and/or rice straw as a raw material.

〔従来技術〕[Prior art]

四塩化ケイ素(SiC14)は、沸点が56.8℃の物
質であり、精密蒸留技術を適用することにより、超高純
度に精製することができる物質である。
Silicon tetrachloride (SiC14) is a substance with a boiling point of 56.8°C, and is a substance that can be purified to ultra-high purity by applying precision distillation technology.

四塩化ケイ素は、トリクロロシラン0ISiC13)、
シラン(SiH4)、ケイ素金属(Si)、シリカ(S
iOz )鳶 窒+÷イ素(Si3i4)、炭化ケイ素(SiC)等の
各種のケイ素誘導体に容易に転換させることが可能であ
る極めて有用な物質であり、各種の分野において広く利
用されている。例えば、これらの誘導体のうち、トリク
ロロシランはシリコーンゴム。
Silicon tetrachloride is trichlorosilane 0ISiC13),
Silane (SiH4), silicon metal (Si), silica (S
It is an extremely useful substance that can be easily converted into various silicon derivatives such as nitride + ion (Si3i4) and silicon carbide (SiC), and is widely used in various fields. For example, among these derivatives, trichlorosilane is a silicone rubber.

シリコーングリース等の有機ケイ素の素材、Si金属は
半導体や太陽電池素材として用いられるアモルファスケ
イ素原料、及びシリカは光フアイバー素材等として利用
されている。
Organic silicon materials such as silicone grease, Si metal are used as amorphous silicon raw materials used as semiconductors and solar cell materials, and silica is used as optical fiber materials.

電子工業分野に用いられるケイ素製品や、有機ケイ素工
業分野で用いられるシリコーンは、高純度のものである
ことが要求されるが、このような高純度のケイ素製品を
得るには、従来、次のような方法が一般的に行われてい
る。即ち、ケイ砂。
Silicon products used in the electronics industry and silicone used in the organosilicon industry are required to be of high purity, but in order to obtain such high purity silicon products, the following methods have traditionally been used: Such methods are commonly used. That is, silica sand.

ケイ石、石英粉末等のケイ素純度の高い鉱物を原料とし
、これを還元剤としての炭素材の存在下、2000℃以
上に加熱させた電気炉で還元して金属ケイ素となした後
、この全席ケイ素に塩化水素を反応させてトリクロロシ
ランを製造し、トリクロロシランを精留により高純度の
ものとなし、そして、この高純度トリクロロシランを原
料として各種のケイ素製品を得ている。また、電子材料
関係で用いられるようなより高純度のケイ素製品を得る
場合には、ケイ素原料として水晶が用いられる。
Minerals with high silicon purity, such as silica stone and quartz powder, are used as raw materials and are reduced to metallic silicon in the presence of a carbon material as a reducing agent in an electric furnace heated to over 2000℃. Trichlorosilane is produced by reacting silicon with hydrogen chloride, and the trichlorosilane is purified to high purity by rectification. Various silicon products are obtained using this high purity trichlorosilane as a raw material. Furthermore, when obtaining higher purity silicon products such as those used in electronic materials, quartz is used as a silicon raw material.

ところで、前記のような高純度のケイ素原料を将来にわ
たって安定的に確保することはむつかしく、従って、資
源的に安定に供給され、かつ高純度のケイ素製品を与え
る新しいケイ素資源の探索、確保及びその処理プロセス
の開発が必要となるが、現在のところ未だ有効なプロセ
スは見出されていない。
By the way, it is difficult to stably secure the above-mentioned high-purity silicon raw materials into the future, and therefore, it is necessary to search for, secure, and use new silicon resources that can be stably supplied as resources and provide high-purity silicon products. Although it is necessary to develop a treatment process, no effective process has been found so far.

〔目   的〕〔the purpose〕

本発明者らは、高純度ケイ素製品の製造分野に見られる
前記のような事情に鑑み、新しいケイ素資源の探索及び
処理プロセスの開発について鋭意研究を重ねた結果、稲
、麦などのもみがらやワラ、笹の葉、トウモロコシの葉
、クキなどにはシリカ分が多量に含まれており、ケイ素
資源として極めて有効であることを見出すと共に、その
処理プロセスの開発について鋭意研究の結果、本発明を
完成するに到った。
In view of the above-mentioned circumstances in the field of manufacturing high-purity silicon products, the inventors of the present invention have conducted extensive research into searching for new silicon resources and developing treatment processes. We discovered that straw, bamboo leaves, corn leaves, persimmons, etc. contain large amounts of silica, and that they are extremely effective as silicon resources.As a result of intensive research into the development of a treatment process, we have developed the present invention. It has been completed.

〔構  成〕〔composition〕

即ち、本発明によれば、ケイ酸バイオマスを原料とし、
これを燃焼処理ないし、炭化処理し、得られた処理生成
物を含塩素炭素化合物又は塩素と含炭素化合物の混合物
で反応処理することを特徴とする四塩化ケイ素の製造方
法が提供される。
That is, according to the present invention, silicic acid biomass is used as a raw material,
A method for producing silicon tetrachloride is provided, which comprises subjecting the silicon tetrachloride to a combustion treatment or carbonization treatment, and reacting the resulting treatment product with a chlorine-containing carbon compound or a mixture of chlorine and a carbon-containing compound.

本発明でいうケイ酸バイオマスとは、シリカ分を含む植
物(ケイ酸植物)又はその葉、茎等の部分を意味し、稲
、麦などのもみがらやワラ、笹の葉、トウモロコシの葉
や茎等が包含される。
The silicic acid biomass used in the present invention refers to plants containing silica (silicic acid plants) or their leaves, stems, etc., such as rice husks and straw, bamboo leaves, corn leaves, etc. Includes stems, etc.

従来のように、鉱物中のSiO2を塩素化する場合、コ
ークス、木炭などの炭素質物質を、SiO2粉末と混合
し、純塩素ガスで塩素化処理に供するが、この場合、炭
素質物質の表面積、細孔分布などの物理特性が、塩素化
反応性に大きな影響を与える。本発明で用いるられる塩
素化処理温度は、通常、400〜1100℃程度であり
、塩素化剤としては、四塩化炭素やテトラクロロエチレ
ン、ホスゲン等の含塩素炭素化合物、あるいは、塩素と
、−酸化炭素、炭化水素、塩化炭素、塩化炭化水素など
の含炭素化合物との混合物が用いられ、その組合せ、種
類は特に制約されない。従って、反応系中に炭素は固体
ではなく、塩素と結合した気体状態あるいはC01CH
4のような気体として供給されるために試料中のSiO
2との接触は固体炭素の場合よりは良好である。さらに
、発明者らの研究では、従来のSi02と炭素との混合
物からなる固体と純塩素ガスを接触させて、塩素化反応
を行わせる場合、塩素が直接Si02と反応するのでは
なく、塩素と炭素が反応し、塩化炭素を生成し、これが
SiO2と反応することが判明した。
Conventionally, when chlorinating SiO2 in minerals, carbonaceous substances such as coke and charcoal are mixed with SiO2 powder and subjected to chlorination treatment with pure chlorine gas, but in this case, the surface area of the carbonaceous substance , physical properties such as pore distribution have a major influence on chlorination reactivity. The chlorination treatment temperature used in the present invention is usually about 400 to 1100°C, and the chlorinating agent is a chlorine-containing carbon compound such as carbon tetrachloride, tetrachloroethylene, or phosgene, or chlorine and -carbon oxide, A mixture with a carbon-containing compound such as hydrocarbon, carbon chloride, or chlorinated hydrocarbon is used, and the combination and type thereof are not particularly limited. Therefore, in the reaction system, carbon is not in a solid state but in a gaseous state combined with chlorine or in C01CH
SiO in the sample to be supplied as a gas such as 4
The contact with 2 is better than with solid carbon. Furthermore, the inventors' research has shown that when a conventional solid consisting of a mixture of Si02 and carbon is brought into contact with pure chlorine gas to perform a chlorination reaction, the chlorine does not directly react with Si02, but instead reacts with chlorine. It was found that the carbon reacted to form carbon chloride, which reacted with SiO2.

これらの事実より、SiO2の塩素化反応では。Based on these facts, in the chlorination reaction of SiO2.

従来法であるSiO2と固体の炭素の混合物を純塩素ガ
スで反応させる方法より、炭化塩素など炭素分が塩素と
結合した気体状態の含塩素炭素化合物又は塩素と、−酸
化炭素、炭化水素などの含炭素化合物とのガス混合物を
直接SiO2と反応させる方が効率的であることが見出
された。
Rather than the conventional method of reacting a mixture of SiO2 and solid carbon with pure chlorine gas, it is possible to combine gaseous chlorine-containing carbon compounds such as chlorine carbide with chlorine, or chlorine, and carbon oxides, hydrocarbons, etc. It has been found that it is more efficient to react the gas mixture with the carbon-containing compound directly with the SiO2.

塩素化に供するケイ酸バイオマスの処理方法としては、
燃焼処理及び炭化処理の二つの方法が採用できる。ケイ
酸バイオマスを燃焼処理する場合、炭素は全< Si0
2中に含まれていないが、本発明では、含塩素炭素化合
物、又は塩素と含炭素化合物との混合物を塩素化剤とし
て用いるために、Si02の四塩化ケイ素への転化率は
、従来法のSiO2と炭素混合物に、純塩素ガスを作用
させる場合の転化率よりも高い値を示した。
As a treatment method for silicic acid biomass for chlorination,
Two methods can be adopted: combustion treatment and carbonization treatment. When silicic acid biomass is burned, the carbon is total < Si0
Although not included in 2, in the present invention, a chlorine-containing carbon compound or a mixture of chlorine and a carbon-containing compound is used as a chlorinating agent, so the conversion rate of Si02 to silicon tetrachloride is lower than that of the conventional method. The conversion rate was higher than that obtained when pure chlorine gas was applied to a mixture of SiO2 and carbon.

ケイ酸バイオマスに対して炭化処理を施す場合。When performing carbonization treatment on silicic acid biomass.

ケイ酸バイオマスの完全燃焼を回避して熱処理を行えば
よく、その際の熱処理温度は、通常200〜1100℃
である。また、この場合、熱処理雰囲気としては種々の
ものが用いられるが、一般には不活性雰囲気又は還元性
雰囲気が採用され、例えば、窒素、アルゴン、水素、−
酸化炭素、スチーム、燃焼廃ガス等が単独又は混合物の
形で用いられ、また、低温度の熱処理では空気等を用い
ることができる。このような炭化処理によって、ケイ酸
バイオマス中の有機物は炭化され、ケイ素分と炭素分を
含む炭化処理生成物が得られる。この場合、炭化条件を
調節することにより、シリカ分と炭素分との混合比を調
節することができる。炭化処理生成物中に含まれるケイ
素分と炭素は、同一の生体系中の物質に由来するため、
そのケイ素分と炭素の混合性は分子次元で混ざり合って
いるものと推定でき、しかも、各々超微粒子である。従
って、前記炭化処理生成物は表面積、細孔分布などの物
理特性等において、塩素化反応性に非常に富む物質であ
るものと考えられる。これらの点より1本発明の場合、
塩素化温度、反応時間を、従来のSiOzと固体炭素の
混合物を用いる塩素化の場合よりも、著しく低く、かつ
短くすることが可能である。
It is sufficient to perform heat treatment while avoiding complete combustion of silicic acid biomass, and the heat treatment temperature at that time is usually 200 to 1100°C.
It is. In this case, various heat treatment atmospheres can be used, but generally an inert atmosphere or a reducing atmosphere is used, such as nitrogen, argon, hydrogen, -
Carbon oxide, steam, combustion waste gas, etc. can be used alone or in the form of a mixture, and air etc. can be used in low temperature heat treatment. By such carbonization treatment, the organic matter in the silicic acid biomass is carbonized, and a carbonization treatment product containing silicon and carbon components is obtained. In this case, the mixing ratio of silica and carbon can be adjusted by adjusting the carbonization conditions. The silicon content and carbon contained in the carbonization product are derived from substances in the same biological system, so
It can be assumed that the silicon content and carbon are mixed on a molecular level, and moreover, each is an ultrafine particle. Therefore, the carbonized product is considered to be a substance that is highly chlorinated in terms of physical properties such as surface area and pore distribution. From these points, in the case of the present invention,
The chlorination temperature and reaction time can be significantly lower and shorter than in conventional chlorinations using mixtures of SiOz and solid carbon.

本発明においては、四塩化ケイ素は、ガス状の生成物と
して得られるが、この四塩化ケイ素は、精留により容易
に高純度のものとすることができる。例えば、もみがら
を800℃で流動燃焼した場合、得られる灰分の組成(
%)は、一般的に、SiO2: 96.65、C: 0
.96、p2o5:0.12、K2O及びNa 20 
: 0.80. Cao : 0.46、MnO: 0
.10. MgO:0.08、Fe 203 : 0.
15、Al2O3:0.59である。従って、もみがら
や稲わらを塩素化処理した場合、ケイ素分の他、リン、
鉄、及びアルミニウムが揮発性塩化物となり、その他の
ものは反応残渣中に残留する。そして、得られた揮発性
塩化物は各々沸点が異なるため、精密蒸留により、容易
に高純度の四塩化ケイ素を分離回収することができる。
In the present invention, silicon tetrachloride is obtained as a gaseous product, but this silicon tetrachloride can be easily made to a high purity by rectification. For example, when rice husk is fluidized at 800℃, the resulting ash composition (
%) is generally SiO2: 96.65, C: 0
.. 96, p2o5: 0.12, K2O and Na20
: 0.80. Cao: 0.46, MnO: 0
.. 10. MgO: 0.08, Fe203: 0.
15, Al2O3: 0.59. Therefore, when rice husk or rice straw is chlorinated, in addition to silicon content, phosphorus and
Iron and aluminum become volatile chlorides, others remain in the reaction residue. Since the obtained volatile chlorides have different boiling points, high purity silicon tetrachloride can be easily separated and recovered by precision distillation.

〔効  果〕〔effect〕

本発明で原料として用いている稲、麦のもみがら及びわ
らなどのケイ酸バイオマスは、シリカ鉱物資源であるケ
イ石、ケイ砂等とは異なり、毎年、稲作、麦作などによ
り得ることができ、しかも農業廃棄物でもあるため、そ
の原料供給には特に問題はなく、その上、本発明により
得られる四塩化ケイ素は、精密蒸留により容易に高純度
のものとすることができるので、本発明の方法は、将来
にわたって有効なケイ素製品製造技術ということができ
る。
Silicic acid biomass such as rice and wheat chaff and straw used as raw materials in the present invention can be obtained every year through rice cultivation, wheat cultivation, etc., unlike silica mineral resources such as silica stone and silica sand. Moreover, since it is agricultural waste, there is no particular problem in supplying the raw material. Furthermore, the silicon tetrachloride obtained by the present invention can be easily made to a high purity by precision distillation. The method can be said to be a silicon product manufacturing technology that will be effective in the future.

〔実施例〕 次に1本発明を実施例によりさらに詳細に説明する。〔Example〕 Next, the present invention will be explained in more detail with reference to examples.

実施例 もみがらを、窒素気流中において、900’Cで1時間
炭化処理を施して、炭化処理生成物を得た。このものは
、SiO2換算で37.5重量%のケイ素を含有した。
Example Rice hulls were carbonized at 900'C for 1 hour in a nitrogen stream to obtain a carbonized product. This contained 37.5% by weight silicon, calculated as SiO2.

次に、この炭化処理生成物を、四塩化炭素気流中で、6
00〜900℃で5〜180分間塩素化処理を行った。
Next, this carbonized product was heated in a carbon tetrachloride stream with 6
Chlorination treatment was performed at 00 to 900°C for 5 to 180 minutes.

この塩素化処理におけるケイ素分の5iC14への転化
率を、反応温度との関連で表−1に示す。また、比較の
ために、もみがら炭化処理物の塩素化実験で、塩素化剤
として純塩素ガスを用いた結果を表−2に示した。
The conversion rate of silicon to 5iC14 in this chlorination treatment is shown in Table 1 in relation to the reaction temperature. For comparison, Table 2 shows the results of a chlorination experiment of carbonized rice husks using pure chlorine gas as the chlorination agent.

さらに、比較のために、市販のSi02と炭素との重量
比1:1の混合物及びSiCの塩素化を純塩素ガスを用
いて行い、その結果をそれぞれ表−3及び表−4に示す
。表−1〜表−4に示した反応結果かられかるように、
本発明により、もみがらを原料として用い、その中に含
まれているケイ素分を5iC14へ転化する方が、他の
原料を用いる場合よりも、大きな転化率を得ることがで
き、さらに、塩素化剤として純塩素ガスを用いるよりも
四塩化炭素を用いる方が大きな転化率を得ることができ
る。また1本発明によりもみがら中のシリカ分を塩素化
する場合には、反応がはやく、goo’c及び900°
Cでは、5分間径度ですでに180分の転化率と同程度
の転化率を得ることができる。これに対し、900℃、
10分間の条件では、SiO2/炭素混合物は1重量%
及びSiCは10重量%の転化率を示したにすぎなかっ
た。
Furthermore, for comparison, chlorination of a commercially available mixture of Si02 and carbon at a weight ratio of 1:1 and SiC was performed using pure chlorine gas, and the results are shown in Tables 3 and 4, respectively. As can be seen from the reaction results shown in Tables 1 to 4,
According to the present invention, by using rice husks as a raw material and converting the silicon contained therein into 5iC14, a higher conversion rate can be obtained than when using other raw materials, and furthermore, it is possible to obtain a higher conversion rate than when using other raw materials. A higher conversion rate can be obtained by using carbon tetrachloride as an agent than by using pure chlorine gas. In addition, when the silica content in rice husks is chlorinated according to the present invention, the reaction is rapid,
With C, a conversion rate comparable to that obtained in 180 minutes can already be obtained in 5 minutes. On the other hand, 900℃,
At the 10 minute condition, the SiO2/carbon mixture was 1% by weight.
and SiC showed a conversion rate of only 10% by weight.

表−1 表−2 表−3 表−4 特許出願人 工業技術院長 等 々 力   達指定代
理人 工業技術院北海道工業開発試験所長後藤藤太部
Table-1 Table-2 Table-3 Table-4 Patent applicant: Director of the Agency of Industrial Science and Technology, etc. Designated agent: Director of Hokkaido Industrial Development Testing Institute, Agency of Industrial Science and Technology, Goto Totabe

Claims (2)

【特許請求の範囲】[Claims] (1)ケイ酸バイオマスを燃焼処理し、得られた灰分を
、400〜1100℃で含塩素炭素化合物又は塩素と含
炭素化合物の混合物と反応させることを特徴とする四塩
化ケイ素の製造方法。
(1) A method for producing silicon tetrachloride, which comprises burning silicic acid biomass and reacting the obtained ash with a chlorine-containing carbon compound or a mixture of chlorine and a carbon-containing compound at 400 to 1100°C.
(2)ケイ酸バイオマスを炭化処理した後、得られた炭
化処理生成物を、400〜1100℃で含塩素炭素化合
物又は塩素と含炭素化合物の混合物と反応させることを
特徴とする四塩化ケイ素の製造方法。
(2) After carbonizing silicic acid biomass, the resulting carbonized product is reacted with a chlorine-containing carbon compound or a mixture of chlorine and carbon-containing compound at 400 to 1100°C. Production method.
JP15486185A 1985-07-12 1985-07-12 Production of silicon tetrachloride Granted JPS6217012A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15486185A JPS6217012A (en) 1985-07-12 1985-07-12 Production of silicon tetrachloride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15486185A JPS6217012A (en) 1985-07-12 1985-07-12 Production of silicon tetrachloride

Publications (2)

Publication Number Publication Date
JPS6217012A true JPS6217012A (en) 1987-01-26
JPH0357047B2 JPH0357047B2 (en) 1991-08-30

Family

ID=15593516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15486185A Granted JPS6217012A (en) 1985-07-12 1985-07-12 Production of silicon tetrachloride

Country Status (1)

Country Link
JP (1) JPS6217012A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0302604A2 (en) * 1987-07-29 1989-02-08 Director-General Of The Agency Of Industrial Science And Technology Process for the production of silicon tetrachloride
US7588745B2 (en) 2004-04-13 2009-09-15 Si Options, Llc Silicon-containing products
US7638108B2 (en) 2004-04-13 2009-12-29 Si Options, Llc High purity silicon-containing products
US20120230901A1 (en) * 2009-09-25 2012-09-13 Jx Nippon Oil & Energy Corporation Process for production of silicon tetrachloride
US8470279B2 (en) 2004-04-13 2013-06-25 Si Options, Llc High purity silicon-containing products and method of manufacture
CN107673359A (en) * 2017-11-02 2018-02-09 成都蜀菱科技发展有限公司 The preparation method and method for controlling reaction temperature of a kind of silicon tetrachloride

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0302604A2 (en) * 1987-07-29 1989-02-08 Director-General Of The Agency Of Industrial Science And Technology Process for the production of silicon tetrachloride
US7588745B2 (en) 2004-04-13 2009-09-15 Si Options, Llc Silicon-containing products
US7638108B2 (en) 2004-04-13 2009-12-29 Si Options, Llc High purity silicon-containing products
US8048822B2 (en) 2004-04-13 2011-11-01 Si Options, Llc Method for making silicon-containing products
US8470279B2 (en) 2004-04-13 2013-06-25 Si Options, Llc High purity silicon-containing products and method of manufacture
US20120230901A1 (en) * 2009-09-25 2012-09-13 Jx Nippon Oil & Energy Corporation Process for production of silicon tetrachloride
CN107673359A (en) * 2017-11-02 2018-02-09 成都蜀菱科技发展有限公司 The preparation method and method for controlling reaction temperature of a kind of silicon tetrachloride
CN107673359B (en) * 2017-11-02 2020-03-31 成都蜀菱科技发展有限公司 Preparation method and reaction temperature control method of silicon tetrachloride

Also Published As

Publication number Publication date
JPH0357047B2 (en) 1991-08-30

Similar Documents

Publication Publication Date Title
TWI602780B (en) Process for workup of chlorosilanes or chlorosilane mixtures contaminated with carbon compounds
US20100008841A1 (en) Method for the Manufacture of Silicon Tetrachloride
WO2018006694A1 (en) Method for producing silicon tetrachloride
US2943918A (en) Process for manufacturing dense, extra pure silicon
US20110150741A1 (en) Production of silicon by reacting silicon oxide and silicon carbide, optionally in the presence of a second carbon source
KR101222303B1 (en) Process for recycling high-boiling compounds within an integrated chlorosilane system
JPS5917046B2 (en) Method for producing intermediate products for producing silicon and/or silicon carbide
EP0302604B1 (en) Process for the production of silicon tetrachloride
EP0015422A1 (en) Method for producing powder of alpha-silicon nitride
JPH01110721A (en) Carbon content minimization of semiconductor material
JPS6217012A (en) Production of silicon tetrachloride
JPH0791049B2 (en) Polymer trichlorosilane conversion method in the production of polycrystalline silicon.
JPS599516B2 (en) Method for manufacturing silicon carbide whiskers
US1866731A (en) Process for producing anhydrous aluminum chloride
JPS62241812A (en) Manufacture of silicon nitride
JPS62171912A (en) Production of silicon tetrachloride
JPS62252311A (en) Production of silicon tetrachloride
RU2637690C1 (en) Method of producing chlorosilanes from amorphous silica to produce high purity silicon
JPH0643247B2 (en) Rice husk combustion ash composition and method for producing the same
CA2075466C (en) Method of producing silicon and an electric-arc low-shaft furnace and briquette for carrying out the process
JPS6144804B2 (en)
JPH01234317A (en) Production of silicon tetrachloride
US20130243683A1 (en) Method for the production of high-purity silicon
JP2013151379A (en) Method for producing silicon tetrachloride
JPS6011218A (en) Manufacture of fine silica

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term