JPS62171912A - Production of silicon tetrachloride - Google Patents

Production of silicon tetrachloride

Info

Publication number
JPS62171912A
JPS62171912A JP1459286A JP1459286A JPS62171912A JP S62171912 A JPS62171912 A JP S62171912A JP 1459286 A JP1459286 A JP 1459286A JP 1459286 A JP1459286 A JP 1459286A JP S62171912 A JPS62171912 A JP S62171912A
Authority
JP
Japan
Prior art keywords
silicon
raw material
mixture
ash
leaves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1459286A
Other languages
Japanese (ja)
Other versions
JPH0357048B2 (en
Inventor
Takeshi Okuya
猛 奥谷
Yoshinori Nakada
善徳 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP1459286A priority Critical patent/JPS62171912A/en
Publication of JPS62171912A publication Critical patent/JPS62171912A/en
Publication of JPH0357048B2 publication Critical patent/JPH0357048B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Silicon Compounds (AREA)

Abstract

PURPOSE:To produce silicon tetrachloride in high yield, by chlorinating a mixture of a carbonization product of silicon accumulated biomass with a siliceous raw material. CONSTITUTION:A mixture of a carbonization product of a silicon accumulated biomass, e.g. chaff, rice straw, etc., with a siliceous raw material, e.g. quartzite, etc., is chlorinated. The silicon accumulated biomass means a plant containing silica or parts thereof, e.g. leaves, stems, etc., and includes chaff of rice plant, wheat or barley, etc., leaves of bamboo grass, leaves or stems, etc., of corn or scouring rush. The siliceous raw material means a silicon-containing inorganic material and examples thereof include various kinds of ash containing silicon, e.g. burned ash of the silicon accumulated biomass, quartz sand, etc., in addition to the quartzite. The reaction temperature of the above-mentioned mixture with the chlorine is 400-1,100 deg.C. Any methods for fixed bed, moving bed, etc., may be applied to the reaction.

Description

【発明の詳細な説明】 のである。[Detailed description of the invention] It is.

〔従来技術〕[Prior art]

四塩化ケイ素(SiCQ4)は、種々の有機ケイ素化合
物の合成原料として使用される他に、また微細シリカ、
高純度人工石英、窒化ケイ素、炭化ケイ素などの合成原
料どして使用される。四塩化ケイ素の既存の製造方法に
は、次の3つがある。
Silicon tetrachloride (SiCQ4) is used as a raw material for the synthesis of various organosilicon compounds, as well as fine silica,
It is used as a synthetic raw material for high-purity artificial quartz, silicon nitride, silicon carbide, etc. There are three existing methods for producing silicon tetrachloride:

(1)金属ケイ素粉末をHCβにより塩素化し、トリク
ロロシランを製造する工程で、副産物として四塩化ケイ
素を生成する方法。(2)フェロシリコン、炭化ケイ素
などと塩素と反応させる方法。(3)ケイ石等のケイ酸
質原料と炭素との混合物を塩素と反応させる方法。
(1) A method in which silicon tetrachloride is produced as a by-product in the process of producing trichlorosilane by chlorinating metallic silicon powder with HCβ. (2) A method of reacting ferrosilicon, silicon carbide, etc. with chlorine. (3) A method in which a mixture of siliceous raw materials such as silica stone and carbon is reacted with chlorine.

(1)の方法では、トリクロロシランの製造工程トこお
ける副産物として得られるために、四塩化ケイ素は、ト
リクロロシランの需要量に左右される。
In method (1), silicon tetrachloride is obtained as a by-product during the trichlorosilane manufacturing process, and therefore silicon tetrachloride depends on the amount of trichlorosilane demanded.

さらに、原料である金属ケイ素を製造するには、ケイ石
を電気炉で2000℃以上で還元するために、多量の電
気が必要であり、原料価格が高いものとなる。(2)の
方法では、フェロシリコン、炭化ケイ素製造に多量の電
力を必要とするため、原料価格が高い。(3)の方法で
は、原料価格は低いが、ケイ石と炭素の混合物と塩素と
の反応性が低く、本発明者らは、四塩化ケイ素を製造す
るための従来技術の内、原料価格が安い、ケイ石と炭素
との混合物を塩素化させる方法において、そのプロ雰囲
気などで炭化処理して得られた処理生成物に、ケイ石や
、ケイ素集積バイオマスを燃焼処理した後に得られた灰
分等のケイ酸質原料を適当量混合し、これを塩素化する
ことにより、高収率で四塩化ケイ素を製造し得ることを
見出し、本発明を完成するに到った。
Furthermore, in order to produce metallic silicon, which is a raw material, a large amount of electricity is required to reduce silica stone at 2000° C. or higher in an electric furnace, resulting in high raw material costs. Method (2) requires a large amount of electricity to produce ferrosilicon and silicon carbide, so the raw material cost is high. In method (3), the raw material cost is low, but the reactivity of the mixture of silica stone and carbon with chlorine is low, and the present inventors found that among the conventional techniques for producing silicon tetrachloride, the raw material cost is low. In an inexpensive method of chlorinating a mixture of silica stone and carbon, ash etc. obtained after combustion treatment of silica stone and silicon-accumulating biomass are added to the treated product obtained by carbonization treatment in a professional atmosphere. The inventors have discovered that silicon tetrachloride can be produced in high yield by mixing appropriate amounts of siliceous raw materials and chlorinating the mixture, and have completed the present invention.

本発明でいうケイ素集積バイオマスとは、シリカ分を含
む植物(ケイ素集積植物)、又はその葉、茎等の部分を
意味し、稲、麦などのもみがらやワラ、笹の葉、トウモ
ロコシ、とくさの葉や茎などが包含される。また、ケイ
酸質原料とは、ケイ素を含む無機物質を意味し、ケイ石
の他、ケイ素集積バイオマスの燃焼灰等のケイ素整含む
各種灰分。
The silicon-accumulating biomass used in the present invention refers to plants containing silica (silicon-accumulating plants), or their leaves, stems, etc. Includes leaves and stems. In addition, siliceous raw materials refer to inorganic substances containing silicon, including silica and various ash containing silicon, such as combustion ash of silicon-accumulating biomass.

ケイ砂等が挙げられる。Examples include silica sand.

従来の様に、ケイ酸質原料中のSiOZを塩素化する場
合、コークス、木炭などの炭素質物質をケイ酸質原料の
粉末と混合し、塩素ガスで塩素化処理に供するが、この
場合、炭素質物質の表面積、細孔分布などの物理特性、
及び、この炭素質物質と塩素との化学吸着(化学反応性
)などの化学特性が、塩素化反応性に大きな影響を及ぼ
す。本発明者らは、従来用いられている。コークス、木
炭などの炭素質物質のかわりに、ケイ素集積バイオマス
を不活性ガス雰囲気中などで炭化処理して得られた炭化
処理生成物を用いた結果、活性炭などの炭素質物質を用
いる場合よりも、Si02から5iCQ4への%のSi
02が含まれている。本発明者らは、この灰分を天然鉱
物であるケイ石と同様に、ケイ素集積バイオマスの炭化
処理生成物と混合し、塩素化反応を行った場合、他の炭
素質物質を用いる場合−3= よりも、SiCρ4への転化率が飛躍的に改善されるこ
とも見出した。
Conventionally, when chlorinating SiOZ in silicic raw materials, carbonaceous substances such as coke and charcoal are mixed with powder of silicic raw materials and subjected to chlorination treatment with chlorine gas, but in this case, Physical properties such as surface area and pore distribution of carbonaceous materials,
Furthermore, chemical properties such as chemical adsorption (chemical reactivity) between this carbonaceous material and chlorine have a large influence on chlorination reactivity. The inventors used conventional methods. As a result of using a carbonized product obtained by carbonizing silicon-accumulated biomass in an inert gas atmosphere instead of carbonaceous substances such as coke and charcoal, , %Si from Si02 to 5iCQ4
02 is included. The present inventors found that when this ash was mixed with the carbonization product of silicon-integrated biomass and subjected to a chlorination reaction in the same way as the natural mineral silica stone, when other carbonaceous materials were used -3= It was also found that the conversion rate to SiCρ4 was dramatically improved.

で炭化させたものが好適である。Carbonized carbon is preferred.

ケイ素集積バイオマスの炭化物中のケイ酸分、及び炭素
分は、使用する原料によって異なるが、稲のもみがらの
場合、ケイ酸分(SiO□)が30〜50重量%、炭素
分(C)が50〜70重量%であり、その炭素分は塩素
化反応に対し、非常に高活性な状態で存在している。
The silicic acid content and carbon content in the carbide of silicon-accumulating biomass vary depending on the raw material used, but in the case of rice husk, the silicic acid content (SiO□) is 30 to 50% by weight, and the carbon content (C) is 30 to 50% by weight. The carbon content is 50 to 70% by weight, and the carbon content exists in a highly active state for the chlorination reaction.

上記のケイ素集積バイオマスの炭化物の存在下で塩素化
されるケイ酸質原料において、それに含まれるSiO2
の形態は、無定形、クリストバライト、トリジマイト、
石英でもよいが、好ましくは無定形のSi02である。
In the siliceous raw material that is chlorinated in the presence of carbide of the silicon-integrated biomass, the SiO2 contained therein
The forms are amorphous, cristobalite, tridymite,
Although quartz may be used, amorphous Si02 is preferable.

ケイ素集積バイオマスを燃焼させて灰分を得る場合、そ
の燃焼温度は500〜1100℃の範囲で、また燃焼形
式は、流動床、固室床など何でも良い。高温での燃焼で
は、灰分中のSi02は結晶化するので、好ましくは6
00℃〜900℃未満の温度が最適である。
When ash is obtained by burning silicon-integrated biomass, the combustion temperature is in the range of 500 to 1100°C, and any combustion type may be used, such as a fluidized bed or a fixed chamber bed. In high-temperature combustion, Si02 in the ash crystallizes, so it is preferable to
Temperatures between 00°C and less than 900°C are optimal.

ケイ素集積バイオマスの炭化物と、ケイ酸質原料の混合
方法としては、湿式、乾式のいずれでも良く、あらゆる
方法が適用できる。
The method of mixing the carbide of silicon-integrated biomass and the silicic raw material may be wet or dry, and any method can be applied.

以上の混合物と塩素との反応温度は、400〜1100
℃、好ましくは600〜1000℃が最適である。また
、その反応は、固定床、流動床などいずれの方式でも一
ンの加熱は、外部加熱でも良いが、適切な処理量を用い
ることにより塩素化反応による発熱を利用することがで
き、反応温度のコントロールは容易である。
The reaction temperature of the above mixture and chlorine is 400 to 1100
℃, preferably 600 to 1000℃ is optimum. In addition, the reaction can be carried out in either fixed bed or fluidized bed, and external heating may be used, but by using an appropriate amount of treatment, the heat generated by the chlorination reaction can be utilized, and the reaction temperature is easy to control.

本発明で使用する塩素ガスは、純塩素あるいは酸素を含
まない不活性ガスなどで希釈した塩素であってもよい。
The chlorine gas used in the present invention may be pure chlorine or chlorine diluted with an inert gas containing no oxygen.

の転化率が高い」二に、ケイ素集積バイオマスである、
もみがら、稲わらなどは廃棄物であり、これらを有効に
利用できるため、四塩化ケイ素を経済的に製造すること
ができる。
Second, it is silicon-integrated biomass.
Rice husks, rice straw, etc. are waste materials, and since they can be used effectively, silicon tetrachloride can be produced economically.

〔実施例〕〔Example〕

次に本発明を実施例によりさらに詳細に説明する。 Next, the present invention will be explained in more detail with reference to Examples.

実施例1 もみがら1gをアルミナ製磁製ボー1へに入れ、内径3
c+nの石英製反応管が設置されている横型電気炉内で
窒素気流中で加熱処理した。反応管内を窒素ガスで十分
置換し、その後、ffoom Q /mj、nで流し、
13.3℃/rn i、nの昇温速度で700℃まで昇
温した後、2時間保持し、386mgの炭化物を得た。
Example 1 Put 1 g of rice husks into an alumina porcelain bowl 1, with an inner diameter of 3
Heat treatment was carried out in a nitrogen stream in a horizontal electric furnace equipped with a c+n quartz reaction tube. The inside of the reaction tube was sufficiently replaced with nitrogen gas, and then flowed at ffoom Q /mj,n,
The temperature was raised to 700°C at a heating rate of 13.3°C/rn i,n and held for 2 hours to obtain 386 mg of carbide.

この炭化物中には、SiO2が45.2wt%含まれて
いた。次に同じ反応器を用い、もみがら1gを空気中で
800℃、1時間燃焼させ、白色の灰を得た。この灰中
のSiO2は95.8wt%であった。以」二の炭化物
と灰をアルミナ製乳鉢で100meshに粉砕後、等重
量づつアルミナ製乳鉢で十分混合した。得られた混合物
(Si02含有率: 70.0%)の54.3mgを精
秤し、石英ガラス製バスケットに充填し、石英スプリン
グ製熱天秤中に設置した。この混合物は900℃までア
ルゴンガス中で昇温、保持し、その後アルゴンガスを塩
素ガスに切り換え、塩素ガス中で1時間保持し、その間
の熱重量変化を測定した。この場合、アルゴンガス及び
塩素ガスの流量は1.00+++Ω/mj口であった。
This carbide contained 45.2 wt% of SiO2. Next, using the same reactor, 1 g of rice husks was burned in air at 800° C. for 1 hour to obtain white ash. SiO2 in this ash was 95.8 wt%. The following two carbides and ash were ground to 100 mesh in an alumina mortar, and then thoroughly mixed in equal weight portions in an alumina mortar. 54.3 mg of the obtained mixture (Si02 content: 70.0%) was accurately weighed, filled into a quartz glass basket, and placed in a quartz spring thermobalance. This mixture was heated to 900° C. and held in argon gas, then the argon gas was changed to chlorine gas, and the mixture was held in chlorine gas for 1 hour, and the thermogravimetric change during that time was measured. In this case, the flow rates of argon gas and chlorine gas were 1.00++Ω/mj.

1時間の反応後、直ちに塩素ガスをアルゴンガスに切り
換え降温した。反応後の試料重量は1.6.9mgであ
った。反応後の試料の炭素量を空気中での赤熱による減
量で測定し、SiOZ量をHFとの反応による減量で測
定し、反応率を次式によりB:反応後の試料中のSj、
02重量 なお、SjCΩ4生成の確認は、熱天秤出口のガスを水
に吹き込みSj、02ゲルの生成により行った。
After 1 hour of reaction, the chlorine gas was immediately replaced with argon gas and the temperature was lowered. The sample weight after reaction was 1.6.9 mg. The amount of carbon in the sample after reaction was measured by the weight loss due to red heat in air, and the amount of SiOZ was measured by the weight loss due to reaction with HF, and the reaction rate was calculated using the following formula: B: Sj in the sample after reaction,
02 weight The production of SjCΩ4 was confirmed by blowing the gas at the outlet of the thermobalance into water to produce Sj,02 gel.

以」二の結果、試料中のSiO2の5jCQ4への転化
率は65.9%であった。
As a result of the above, the conversion rate of SiO2 to 5jCQ4 in the sample was 65.9%.

比較例1〜3 次に、実施例1で示した炭化物のみ、及び灰のみの塩素
化実験を行った。手順は実施例1と同じである。また、
灰に表面積1220♂/gの市販活性炭(110°C1
24時間真空乾燥)を等重量混合した試料(Sj02含
有率:49.0wt%)についても塩素化実験32.6
%であった。
Comparative Examples 1 to 3 Next, chlorination experiments were conducted using only the carbide shown in Example 1 and only the ash. The procedure is the same as in Example 1. Also,
Commercially available activated carbon (110°C1) with a surface area of 1220♂/g was added to the ash.
The chlorination experiment was also performed on a sample (Sj02 content: 49.0 wt%) in which equal weights of Sj02 (vacuum dried for 24 hours) were mixed.
%Met.

なお、実施例1のもみがら炭化物ともみがら灰の等重量
混合物のもみがら灰中に含まれるSiO2の5iCQ4
への転化率を求めてみると、63.1%であった。この
転化率の値は、炭素物質として活性炭を用いる場合の転
化率(32,6%)と比べ、高い値であり、ケイ酸質原
料を塩素化する場合のもみがら炭化物の触媒効果が明か
である。
In addition, 5iCQ4 of SiO2 contained in the rice husk ash of the equal weight mixture of rice husk carbide and rice husk ash in Example 1
The conversion rate was found to be 63.1%. This conversion rate is higher than the conversion rate (32.6%) when activated carbon is used as the carbon material, and the catalytic effect of rice husk charcoal when chlorinating siliceous raw materials is clear. be.

実施例2 次に、もみがら灰のかわりに、純度97.7%、粒度1
00megh以下の天然けい砂を用いて塩素化実験を行
った。実験方法は、実施例1と同じである。
Example 2 Next, instead of rice husk ash, purity 97.7% and particle size 1
A chlorination experiment was conducted using natural silica sand of 00 megh or less. The experimental method was the same as in Example 1.

天然けい砂のみ、及び天然けい砂と活性炭の等量混合物
中のSiO,2の5iCQ4への転化率はどちらも0%
であったが、天然けい砂ともみがら炭化物の等重量混合
物では27.9%であり、この内の天然けい砕中のSj
o 2のSj、CQ4への転化率は5.7%であった。
The conversion rate of SiO,2 to 5iCQ4 in natural silica sand alone and in a mixture of equal amounts of natural silica sand and activated carbon is both 0%.
However, in an equal weight mixture of natural silica sand and rice husk carbide, it was 27.9%, and of this, Sj in the natural silica
The conversion rate of o2 to Sj and CQ4 was 5.7%.

この値から、もみがら炭化物がケイ酸質原料の塩素化反
応に対して触媒効果を示すことは明らかである。
From this value, it is clear that rice husk carbide exhibits a catalytic effect on the chlorination reaction of siliceous raw materials.

次に、以上の実験結果を次表にまとめて示す。Next, the above experimental results are summarized in the following table.

手続補正書(自発) 昭和61年2月21日 南午庁長官 宇賀 連部 殿 1、事件の表示   昭和61年特許願第014592
号2、発明の名称   四塩化ケイ素の製造方法3、補
正をする者 事件との関係  特許出願人 住所 東京都千代田区霞が関1丁目3番1号氏名 (1
14) D眼着−等々カ達 8、補正の内容 第8頁、第18行目 1反応率=□X100(%)」 に補正する。
Procedural amendment (spontaneous) February 21, 1985 Director-General of Nango Agency Uga Renbu Tono 1, Indication of the case Patent application No. 014592 of 1985
No. 2, Title of the invention Process for producing silicon tetrachloride 3, Relationship to the case of the person making the amendment Patent applicant address 1-3-1 Kasumigaseki, Chiyoda-ku, Tokyo Name (1)
14) D eyewear - etc. 8, Correction details Page 8, line 18 1 Reaction rate = □X100 (%)''.

Claims (1)

【特許請求の範囲】[Claims] (1)ケイ素集積バイオマスの炭化処理生成物とケイ酸
質原料との混合物を塩素化することを特徴とする四塩化
ケイ素の製造方法。
(1) A method for producing silicon tetrachloride, which comprises chlorinating a mixture of a carbonization product of silicon-integrated biomass and a siliceous raw material.
JP1459286A 1986-01-24 1986-01-24 Production of silicon tetrachloride Granted JPS62171912A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1459286A JPS62171912A (en) 1986-01-24 1986-01-24 Production of silicon tetrachloride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1459286A JPS62171912A (en) 1986-01-24 1986-01-24 Production of silicon tetrachloride

Publications (2)

Publication Number Publication Date
JPS62171912A true JPS62171912A (en) 1987-07-28
JPH0357048B2 JPH0357048B2 (en) 1991-08-30

Family

ID=11865439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1459286A Granted JPS62171912A (en) 1986-01-24 1986-01-24 Production of silicon tetrachloride

Country Status (1)

Country Link
JP (1) JPS62171912A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5129127A (en) * 1990-05-18 1992-07-14 Yoshida Kogyo K. K. Slide fastener stringer
WO2011036897A1 (en) * 2009-09-25 2011-03-31 Jx日鉱日石エネルギー株式会社 Method for manufacturing silicon tetrachloride and method for manufacturing silicon for use in a solar cell
WO2011036898A1 (en) * 2009-09-25 2011-03-31 Jx日鉱日石エネルギー株式会社 Process for production of silicon tetrachloride
JP2011068518A (en) * 2009-09-25 2011-04-07 Jx Nippon Oil & Energy Corp Method for producing silicon tetrachloride
JP2011068520A (en) * 2009-09-25 2011-04-07 Jx Nippon Oil & Energy Corp Method for producing silicon for solar cell
JP2012171843A (en) * 2011-02-23 2012-09-10 Toagosei Co Ltd Method for producing silicon tetrachloride
JP2013014446A (en) * 2011-06-30 2013-01-24 Toagosei Co Ltd Method for producing silicon tetrachloride

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5129127A (en) * 1990-05-18 1992-07-14 Yoshida Kogyo K. K. Slide fastener stringer
WO2011036897A1 (en) * 2009-09-25 2011-03-31 Jx日鉱日石エネルギー株式会社 Method for manufacturing silicon tetrachloride and method for manufacturing silicon for use in a solar cell
WO2011036898A1 (en) * 2009-09-25 2011-03-31 Jx日鉱日石エネルギー株式会社 Process for production of silicon tetrachloride
JP2011068518A (en) * 2009-09-25 2011-04-07 Jx Nippon Oil & Energy Corp Method for producing silicon tetrachloride
JP2011068520A (en) * 2009-09-25 2011-04-07 Jx Nippon Oil & Energy Corp Method for producing silicon for solar cell
JP2011068519A (en) * 2009-09-25 2011-04-07 Jx Nippon Oil & Energy Corp Method for producing silicon tetrachloride
US20120230901A1 (en) * 2009-09-25 2012-09-13 Jx Nippon Oil & Energy Corporation Process for production of silicon tetrachloride
JP2012171843A (en) * 2011-02-23 2012-09-10 Toagosei Co Ltd Method for producing silicon tetrachloride
JP2013014446A (en) * 2011-06-30 2013-01-24 Toagosei Co Ltd Method for producing silicon tetrachloride

Also Published As

Publication number Publication date
JPH0357048B2 (en) 1991-08-30

Similar Documents

Publication Publication Date Title
JP5696108B2 (en) High purity silicon-containing product
US20100008841A1 (en) Method for the Manufacture of Silicon Tetrachloride
WO2018006694A1 (en) Method for producing silicon tetrachloride
JP2007532468A5 (en)
US4368180A (en) Method for producing powder of α-silicon nitride
JPS62171912A (en) Production of silicon tetrachloride
JP2012500173A (en) Production of silicon by reacting silicon oxide and silicon carbide optionally in the presence of a second carbon source
JPH0472765B2 (en)
JP2001089125A (en) Porous silica granule, its production and production of synthetic quartz glass powder using the porous silica granule
JPS61117111A (en) Manufacture of metal silicon for light-generating-electric industry
JP2011006316A (en) Method of manufacturing metal silicon
JPS5855330A (en) Manufacture of silicon tetrachloride
JPS62252311A (en) Production of silicon tetrachloride
JPS599516B2 (en) Method for manufacturing silicon carbide whiskers
JPS58120599A (en) Production of beta-silicon carbide whisker
NO147968B (en) ELECTRIC TEETH
JPH0357047B2 (en)
JP2005522508A (en) Process for the production of halosilanes under microwave energy excitation
JPH01249617A (en) Burned chaff ash composition and its production
JPH01249620A (en) Production of silicon tetrachloride
JP4297578B2 (en) Method for producing opaque quartz glass
CN107601512A (en) A kind of production method of compound and silicon tetrachloride
JPS5899116A (en) Manufacture of silicon tetrachloride
JPH01234317A (en) Production of silicon tetrachloride
JPS60260419A (en) Manufacture of silane

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term