JP2013014446A - Method for producing silicon tetrachloride - Google Patents

Method for producing silicon tetrachloride Download PDF

Info

Publication number
JP2013014446A
JP2013014446A JP2011146440A JP2011146440A JP2013014446A JP 2013014446 A JP2013014446 A JP 2013014446A JP 2011146440 A JP2011146440 A JP 2011146440A JP 2011146440 A JP2011146440 A JP 2011146440A JP 2013014446 A JP2013014446 A JP 2013014446A
Authority
JP
Japan
Prior art keywords
silica
reaction
residue
decomposition treatment
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011146440A
Other languages
Japanese (ja)
Other versions
JP5522125B2 (en
Inventor
Masao Niwa
正雄 丹羽
Shinrin To
新林 屠
Katsuhiko Matsuo
克彦 松尾
Hiroshi Suzuki
浩 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toagosei Co Ltd
Original Assignee
Toagosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toagosei Co Ltd filed Critical Toagosei Co Ltd
Priority to JP2011146440A priority Critical patent/JP5522125B2/en
Publication of JP2013014446A publication Critical patent/JP2013014446A/en
Application granted granted Critical
Publication of JP5522125B2 publication Critical patent/JP5522125B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method by which high purity silicon tetrachloride can be inexpensively produced using, as a raw material, decomposition residue obtained by heat treatment, chemical or biological treatment or the like of silica-containing plants.SOLUTION: Metallic silicon of 1.0-4.8 mm in nominal dimension of a JIS standard sieve is added to decomposition residue having a carbon to silica mass ratio of 0.2-2.0 obtained by heating silica-containing plants in an amount of 10-40 pts.mass relative to 100 pts.mass of silica in the decomposition residue and chlorination reaction is performed, whereby silicon tetrachloride can be produced with a high silica reaction rate without requiring excess energy supply from the outside.

Description

本発明は、半導体や太陽電池、各種ケイ素化合物などの原料として、工業的に広く用いられている四塩化ケイ素を、植物等のバイオ由来原料から効率よく製造する方法に関し、省エネルギー,省資源の方法で高純度の四塩化ケイ素を得られるものである。   The present invention relates to a method for efficiently producing silicon tetrachloride, which is widely used industrially as a raw material for semiconductors, solar cells, various silicon compounds, and the like, from bio-derived raw materials such as plants. In this way, high-purity silicon tetrachloride can be obtained.

従来、工業的な四塩化ケイ素の製造方法としては、反応が300℃以上の比較的低温で行えることから、金属ケイ素と塩化水素とを反応させる方法が主流となっているが、その原料となる工業用の金属ケイ素はアーク還元炉中でケイ石を炭素還元して製造されており、製造に多量の電力を消費することから、1960年代より、金属ケイ素の代わりにSiO2(以下シリカと呼ぶ)をケイ素原料として四塩化ケイ素を得る方法が種々検討されてきた。一方、省エネルギー、省資源の観点から、植物原料、特にもみ殻や稲わらには多量のシリカが含まれていることが着目され、もみ殻や稲わらの炭化、燃焼といった加熱処理により得られるシリカを主成分とする加熱残分を原料として、四塩化ケイ素を製造する方法も研究されるようになってきた。 Conventionally, as an industrial method for producing silicon tetrachloride, since the reaction can be carried out at a relatively low temperature of 300 ° C. or higher, a method of reacting metal silicon with hydrogen chloride has become the mainstream, which is the raw material. Industrial metal silicon is manufactured by carbon reduction of silica in an arc reduction furnace, and consumes a large amount of electric power for production. From the 1960s, instead of metal silicon, SiO 2 (hereinafter referred to as silica) is used. Various methods for obtaining silicon tetrachloride using silicon as a silicon raw material have been studied. On the other hand, from the viewpoint of energy saving and resource saving, plant raw materials, especially rice husks and rice straw, are noted to contain a large amount of silica. Silica obtained by heat treatment such as carbonization and combustion of rice husks and rice straw. Research has also been made on methods for producing silicon tetrachloride using as a raw material a heating residue containing as a main component.

特許文献1には、もみ殻を例示するケイ酸植物の炭化物と炭素質物質の混合物を400〜1100℃で塩素と反応させる方法が開示されている。しかし、特許文献1と同一発明者、出願人により同時期に出願された特許文献2には、ケイ酸質物質と炭素質物質との混合物を塩素と反応させる方法は、1000℃以下では反応速度が遅く、大型装置では熱の供給の問題があることも開示されている。その解決法として特許文献2および3には、シリカと炭素質物質の混合物にエネルギー供給体として、少量の金属ケイ素を加えて塩素と反応させる方法が開示されている。金属ケイ素を塩素化させると四塩化ケイ素が得られるとともに、大きな反応熱が生じる。この熱によって、シリカと炭素質物質の混合物と塩素との反応に必要な昇温顕熱や反応吸熱を補うことで、高温を維持するための電力コストを抑えることが可能である。   Patent Document 1 discloses a method of reacting a mixture of a carbide of a silicic acid plant and a carbonaceous material exemplified by rice husk with chlorine at 400 to 1100 ° C. However, in Patent Document 2 filed at the same time by the same inventor and applicant as Patent Document 1, a method of reacting a mixture of a siliceous substance and a carbonaceous substance with chlorine is a reaction rate at 1000 ° C. or lower. However, it is also disclosed that a large apparatus has a problem of supplying heat. As a solution, Patent Documents 2 and 3 disclose a method in which a small amount of metallic silicon is added to a mixture of silica and a carbonaceous substance as an energy supplier and reacted with chlorine. Chlorination of metallic silicon gives silicon tetrachloride and generates a large heat of reaction. With this heat, it is possible to suppress the power cost for maintaining the high temperature by supplementing the temperature rise sensible heat and reaction endotherm necessary for the reaction of the mixture of silica and carbonaceous material with chlorine.

特許文献2には、ケイ酸質物質と炭素質物質を塩素と反応させて四塩化ケイ素を製造する際に金属ケイ素を併用する方法が記載されているが、固体原料としてはすべて粒径100μm以下の微粒子であることが好ましいことが開示されている。そして特許文献2のすべての実施例においては、原料に粒径100μm以下のミクロシリカ、金属ケイ素、コークス粉末が用いられて、反応器を外部から加熱保持しながら反応を行ったことが記載されているが、この際に金属ケイ素はいずれも100%反応して消費されたのに対して、ミクロシリカの反応率は12.0〜28.0%と低いものであった。   Patent Document 2 describes a method in which metal silicon is used in combination when silicon tetrachloride is produced by reacting a siliceous substance and a carbonaceous substance with chlorine, but all of the solid raw materials have a particle size of 100 μm or less. It is disclosed that the fine particles are preferable. In all Examples of Patent Document 2, it is described that microsilica having a particle size of 100 μm or less, metal silicon, and coke powder are used as raw materials, and the reaction was performed while the reactor was heated and held from the outside. However, at this time, metal silicon was 100% reacted and consumed, whereas the reaction rate of microsilica was as low as 12.0 to 28.0%.

すなわち、ケイ酸質物質と炭素質物質とに、塩素と反応させて四塩化ケイ素を製造する際に、金属ケイ素を併用して金属ケイ素の反応熱を利用する方法が知られていたが、実際には相変わらず反応器の加熱を継続しなければならなかったうえ、金属ケイ素の塩素化反応だけが優先して進行してしまい、ケイ酸質物質の反応率が低く、未反応のまま残ってしまうという問題があった。反応器中に微粒子のケイ酸質物質が残ってしまうと、その処理には手間がかかるため、大幅なコスト増となってしまう問題がある。   In other words, when producing silicon tetrachloride by reacting a siliceous substance and a carbonaceous substance with chlorine, a method of utilizing the reaction heat of metal silicon in combination with metal silicon has been known. In addition, the reactor had to be heated as usual, and only the chlorination reaction of the metal silicon proceeded with priority, and the reaction rate of the siliceous substance was low and remained unreacted. There was a problem. If the fine silicic acid substance remains in the reactor, there is a problem that the treatment is time-consuming and the cost is greatly increased.

一方、特許文献3には、特許文献2とほぼ同じ構成でありながら、外部加熱を止めても、反応が自発的に1050℃で継続し、使用したシリカを基準として、95%未満の反応率が得られた実施例が記載されている。特許文献2の実施例との違いは、100μm以下のミクロシリカの代わりにもみ殻灰を用いたこと、100μm以下のコークスの代わりに比表面積20m2/gの煤を用いたこと、100μm以下の金属ケイ素の代わりに0.8mm未満の金属シリコンダストを用いたことであり、その粒径範囲で最も細かいダストが目的に対して最も好適であることの記載がある。 On the other hand, in Patent Document 3, the reaction is spontaneously continued at 1050 ° C. even when external heating is stopped, although the structure is almost the same as Patent Document 2, and the reaction rate is less than 95% based on the silica used. The examples from which are obtained are described. The difference from the example of Patent Document 2 is that rice husk ash was used instead of 100 μm or less of microsilica, that a cocoon having a specific surface area of 20 m 2 / g was used instead of 100 μm or less of coke, and that of 100 μm or less. There is a description that metal silicon dust of less than 0.8 mm is used instead of metal silicon, and that the finest dust in the particle size range is most suitable for the purpose.

特許文献3の明細書には、使用される塩素がほぼ無水でなければならない(10ppm未満)との記載があるが、特殊な処理をしない限り、塩素の水分を20ppm以下にすることは難しいことが知られている。また、煤はカーボンブラックとも呼ばれ、一般的に数十nmの粒径を有する超微粒子であって活性が高いことが知られているから、特許文献3の方法は、微粒子で比表面積の大きな原料や、高度に脱水した塩素を用いることによって反応率を高める方法であると考えることができる。しかしながらこのような原料や塩素は高価で入手しにくいものであり、工業的な生産には不向きであった。   The specification of Patent Document 3 states that the chlorine used should be almost anhydrous (less than 10 ppm), but it is difficult to reduce the moisture of chlorine to 20 ppm or less unless special treatment is performed. It has been known. In addition, soot is also called carbon black, and is generally known as an ultrafine particle having a particle size of several tens of nanometers and high activity. Thus, the method of Patent Document 3 is a fine particle and has a large specific surface area. It can be considered that the reaction rate is increased by using raw materials or highly dehydrated chlorine. However, such raw materials and chlorine are expensive and difficult to obtain, and are not suitable for industrial production.

すなわち、ケイ酸質物質と炭素質物質を塩素と反応させて四塩化ケイ素を製造する際に金属ケイ素を併用する方法は知られており、高価で特殊な原料を用いて高い反応率を得る方法が知られていたが、通常の工業原料を用いた場合、ケイ酸質物質の反応率は必ずしも良好ではなく、金属ケイ素だけが反応してしまう問題があったため、安価な工業原料を用いても高い反応率の得られる四塩化ケイ素の製造方法が求められていた。   In other words, a method of using metal silicon together in producing silicon tetrachloride by reacting a siliceous material and a carbonaceous material with chlorine is known, and a method of obtaining a high reaction rate using an expensive and special raw material. However, when ordinary industrial raw materials were used, the reaction rate of siliceous substances was not always good, and there was a problem that only metal silicon reacted. There has been a demand for a method for producing silicon tetrachloride which can provide a high reaction rate.

特開昭58−55330号公報JP 58-55330 A 特開昭58−167419号公報JP 58-167419 A 特表2009−542561号公報Special table 2009-542561 特開昭62−252311号公報Japanese Patent Laid-Open No. 62-252311

本発明の課題は、シリカを含む植物を加熱処理や化学、生物学的処理などをして得られる分解処理残分を原料として、安価に高純度の四塩化ケイ素を製造できる方法を提供することである。   An object of the present invention is to provide a method capable of producing high-purity silicon tetrachloride at a low cost from a decomposition treatment residue obtained by subjecting a plant containing silica to heat treatment, chemical treatment, biological treatment, or the like as a raw material. It is.

(1)本発明者らは、シリカを含む植物を分解処理して得られる、炭素/シリカの質量比が0.2以上2.0以下である分解処理残分に、JIS標準篩の呼び寸法で1.0mm以上4.8mm以下の金属ケイ素を、分解処理残分中のシリカ100質量部に対して、10〜40質量部加えて塩素化反応を行うことにより、外部からの余分なエネルギー供給の必要がなく、高いシリカ反応率で四塩化ケイ素が製造できることを見出した。 (1) The present inventors added the nominal size of the JIS standard sieve to the decomposition treatment residue having a carbon / silica mass ratio of 0.2 to 2.0, which is obtained by decomposing a plant containing silica. Excess energy supply from outside by adding 10 to 40 parts by mass of metal silicon of 1.0 mm to 4.8 mm with 100 parts by mass of silica in the decomposition treatment residue. It was found that silicon tetrachloride can be produced with a high silica reaction rate.

本発明はまた、以下(2)〜(5)に記載の発明も含む。
(2)分解処理残分中のシリカの100質量部に対して、反応触媒としてのカリウム化合物を、カリウム量として0.1〜20質量部用いる上記(1)に記載の四塩化ケイ素の製造方法。
(3)分解処理残分と金属ケイ素との混合物を、バインダーを用いて造粒し、JIS標準篩による粒径範囲が1.0mm以上8.0mm以下の造粒物として反応させる、上記(1)または(2)に記載の四塩化ケイ素の製造方法。
(4)分解処理残分と金属ケイ素との造粒物を、反応中の反応器に供給することにより、反応を継続して行う、上記(3)に記載の四塩化ケイ素の製造方法。
(5)分解処理残分と金属ケイ素との造粒物を、縦型反応器の上部から供給し、下部から反応残渣を抜き出しながら、反応を継続して行う、上記(4)に記載の四塩化ケイ素の製造方法。
The present invention also includes the inventions described in (2) to (5) below.
(2) The method for producing silicon tetrachloride according to the above (1), wherein a potassium compound as a reaction catalyst is used in an amount of 0.1 to 20 parts by mass with respect to 100 parts by mass of silica in the decomposition treatment residue. .
(3) The mixture of the decomposition treatment residue and metal silicon is granulated using a binder and reacted as a granulated product having a particle size range of 1.0 mm or more and 8.0 mm or less by a JIS standard sieve (1) ) Or the method for producing silicon tetrachloride according to (2).
(4) The method for producing silicon tetrachloride according to (3), wherein the reaction is continued by supplying a granulated product of the decomposition treatment residue and metal silicon to the reactor during the reaction.
(5) The granulated product of the decomposition treatment residue and metal silicon is supplied from the upper part of the vertical reactor, and the reaction is continued while extracting the reaction residue from the lower part. A method for producing silicon chloride.

本発明の四塩化ケイ素製造方法では、従来廃棄物となっていた植物等の分解処理残分を原料にして、安価に四塩化ケイ素を製造することができる。   In the method for producing silicon tetrachloride according to the present invention, silicon tetrachloride can be produced at low cost by using a decomposition residue of a plant or the like that has conventionally been a waste as a raw material.

以下、本発明を詳しく説明する
本発明において、シリカを含む植物を分解処理して得られる分解処理残分とは、シリカを含む植物の炭化、燃焼、化学的、生物学的、物理的分解処理などにより得られるものを意味し、炭化物、焼却灰を含み、好ましくは、シリカ分を20質量%以上含有する物質を指す。シリカを含む植物としては、稲、麦、トウモロコシ、笹、とくさなどのケイ素集積植物が挙げられ、その葉や茎、もみ殻などを用いるのが好ましく、さらに好ましくは稲、麦のもみ殻と稲わら、麦わらである。
Hereinafter, the present invention will be described in detail. In the present invention, the decomposition treatment residue obtained by decomposing a plant containing silica is carbonization, combustion, chemical, biological, physical decomposition treatment of the plant containing silica. Means a substance containing carbides and incinerated ash, and preferably containing 20% by mass or more of silica. Examples of the plant containing silica include silicon-accumulating plants such as rice, wheat, corn, straw, and tokusa, and leaves, stems, rice husks, etc. are preferably used, and rice, wheat husks and rice are more preferable. Straw, wheat straw.

化学的分解処理とは、例えば酸、アルカリを用いた加水分解処理が挙げられ、生物学的分解処理とは、例えばケイ素集積植物からバイオエタノールを製造する際の糖化や発酵といった処理が挙げられる。また、物理的分解処理とは、細断や破砕といった処理が挙げられる。   The chemical decomposition treatment includes, for example, a hydrolysis treatment using an acid and an alkali, and the biological decomposition treatment includes, for example, a treatment such as saccharification and fermentation when producing bioethanol from a silicon-accumulated plant. In addition, the physical decomposition process includes processes such as shredding and crushing.

炭化、または、燃焼するときの方法には特に限定はないが、炭化物は、好ましくは300℃から1200℃の範囲で、植物等を、酸素の少ない雰囲気で加熱することにより得ることができ、一方、燃焼灰は、植物等に酸素を供給しながら燃やすことで得られる。いずれの場合も得られる分解処理残分中のシリカは非晶質で、炭素分や微量の無機塩分を含む。炭化物の場合、炭素の含有量を多くするように炭化を行えば、分解処理残分の2−4割が炭素となるようにできるので、加熱条件によって分解処理残分中の炭素量をコントロールすることができるし、焼却する場合でも供給酸素量や燃焼温度等をコントロールすることによって分解処理残分中の炭素量をコントロールすることができる。そして、本発明においては、分解処理残分中の炭素量が、分解処理残分中のシリカの含有量に対して炭素/シリカの質量比で0.2〜2.0であることが必須であり、好ましくは0.3〜1.5、さらに好ましくは0.4〜1.0である。本発明の製造方法において、原料となる分解処理残分中の炭素/シリカの質量比がこの範囲内にあるときは、シリカの反応性が高くなり、効率よく反応が進行して原料を無駄なく消費することができる。   There is no particular limitation on the method for carbonization or combustion, but the carbide can be obtained by heating a plant or the like in an atmosphere with less oxygen, preferably in the range of 300 ° C to 1200 ° C. Combustion ash is obtained by burning while supplying oxygen to plants and the like. In any case, the silica in the decomposition treatment residue obtained is amorphous and contains carbon and a trace amount of inorganic salt. In the case of carbide, if carbonization is performed so as to increase the carbon content, 20 to 40% of the decomposition treatment residue can be made carbon, so the amount of carbon in the decomposition treatment residue is controlled by heating conditions. Even in the case of incineration, the amount of carbon in the residue of the decomposition treatment can be controlled by controlling the amount of oxygen supplied and the combustion temperature. In the present invention, it is essential that the carbon content in the decomposition treatment residue is 0.2 to 2.0 in terms of the mass ratio of carbon / silica with respect to the silica content in the decomposition treatment residue. Yes, preferably 0.3 to 1.5, more preferably 0.4 to 1.0. In the production method of the present invention, when the mass ratio of carbon / silica in the decomposition treatment residue that is a raw material is within this range, the reactivity of silica increases, and the reaction proceeds efficiently and the raw material is not wasted. Can be consumed.

化学的分解処理や生物学的分解処理、物理的分解処理、炭化または燃焼処理を組み合わせて行うこともでき、処理を組み合わせておこなうときは、組み合わせたすべての分解処理を行った後のものを本発明における分解処理残分と呼び、シリカ、炭素等の分量を決定するための基準とする。分解処理を組み合わせたもののうち、生物学的分解処理と炭化または燃焼処理を含むものは、エネルギー的に有利で反応性の高い分解処理残分を得ることができるので好ましい。さらに好ましいのは、生物学的分解処理をした後で炭化処理をした分解処理残分である。   Chemical decomposition treatment, biological decomposition treatment, physical decomposition treatment, carbonization or combustion treatment can also be performed in combination, and when combined treatment is performed after all combined decomposition treatments are performed. It is called the decomposition treatment residue in the invention, and is used as a standard for determining the amount of silica, carbon and the like. Among the combinations of the decomposition treatments, those including a biological decomposition treatment and carbonization or combustion treatment are preferable because a decomposition treatment residue having high energy and advantageous reactivity can be obtained. Further preferred is a decomposition treatment residue obtained by performing carbonization treatment after biological decomposition treatment.

分解処理残分を塩素化反応に供する前に、炭素化合物を添加して炭素/シリカの質量比を調整することもできる。添加してもよい炭素化合物としては炭素を含むものならば何でもよい。分解処理残分に添加する炭素分として好ましいものは活性炭、石油コークス、石炭などである。分解処理を行う前に炭素化合物を添加することもできる。ただし、本発明における分解処理残分とは、シリカを含む植物を分解処理して得られたものであり、それ以外に添加した分の炭素は、分解処理残分の炭素/シリカの質量比の規定には含めない。   Before subjecting the decomposition treatment residue to the chlorination reaction, a carbon compound can be added to adjust the mass ratio of carbon / silica. Any carbon compound may be added as long as it contains carbon. Preferable carbon content added to the decomposition treatment residue is activated carbon, petroleum coke, coal or the like. A carbon compound can be added before the decomposition treatment. However, the decomposition treatment residue in the present invention is obtained by decomposition treatment of a plant containing silica, and the amount of carbon added in addition thereto is the mass ratio of carbon / silica of the decomposition treatment residue. Not included in the rules.

なお、分解処理残分中のシリカ分の決定方法は、分解処理残分を湿式化学分解して、ケイ素含有量をICP等の分光学的方法で測定する方法が確実であり、含有炭素量については、酸素中で加熱分解したときの発生二酸化炭素量から測定するCHN元素分析と呼ばれる方法なども用いることができるし、固体のまま蛍光X線分析によって定量分析することも可能である。金属ケイ素を添加した後で測定した場合にはシリカ分と金属ケイ素の区別が難しくなるから、添加しないものを同じ条件で分解処理して、含まれるシリカ分と炭素分とを測定し、後添加した金属ケイ素や炭素化合物については配合量を濃度寄与分として計算で除いても良い。ケイ素集積植物と呼ばれる植物の糖化残渣や炭化物等においては、炭素とシリカが成分の多くを占めるので、例えば空気中または窒素中で加熱して重量変化を測定するTG/DTAと呼ばれる熱重量分析で、空気中と窒素中とで1000℃まで昇温する間に減少した重量差を炭素分し、空気中で1000℃加熱後に残留した重量をシリカ分としても大きな誤差はなく、簡便な測定法として用いることができる。   In addition, the determination method of the silica content in the decomposition treatment residue is a method in which the decomposition treatment residue is subjected to wet chemical decomposition and the silicon content is measured by a spectroscopic method such as ICP. In addition, a method called CHN elemental analysis, which is measured from the amount of carbon dioxide generated when thermally decomposed in oxygen, can be used, and quantitative analysis can also be performed by fluorescent X-ray analysis in a solid state. When it is measured after adding metallic silicon, it becomes difficult to distinguish between silica and metallic silicon, so decompose the non-added material under the same conditions, measure the silica content and carbon content, and add afterwards. For the metallic silicon and carbon compounds, the compounding amount may be excluded as a concentration contribution. In saccharification residues and carbides of plants called silicon-accumulated plants, carbon and silica occupy most of the components. For example, in thermogravimetric analysis called TG / DTA which measures weight change by heating in air or nitrogen As a simple measurement method, there is no large error even if the weight difference decreased during heating up to 1000 ° C in air and nitrogen, and the weight remaining after heating in air at 1000 ° C is silica. Can be used.

本発明において、シリカを含む植物あるいはその分解処理物を炭化または燃焼して分解処理残分とする場合の方法としては、公知の方法を用いることができ、炭化物や燃焼灰はサイクロンやバグフィルター、電気集塵機などの公知の方法で採取でき、焼却の排熱を各種用途に利用することもできる。   In the present invention, as a method for carbonizing or burning a plant containing silica or its decomposition product to obtain a decomposition treatment residue, a known method can be used, and the carbide and combustion ash may be a cyclone, a bag filter, It can be collected by a known method such as an electric dust collector, and the exhaust heat of incineration can be used for various purposes.

本発明においては、分解処理残分中のシリカと塩素との反応性を向上させるために、反応触媒を加えることができる。反応触媒として好ましいのはカリウム化合物であり、カリウム化合物としては、炭酸カリウム、塩化カリウム、炭酸水素カリウム、水酸化カリウム、硝酸カリウム、硫酸カリウム、酢酸カリウム、シュウ酸カリウム、ギ酸カリウムなどを挙げることができる。この中で特に好ましいのは塩化カリウムである。   In the present invention, a reaction catalyst can be added in order to improve the reactivity between silica and chlorine in the decomposition treatment residue. Preferred as the reaction catalyst is a potassium compound. Examples of the potassium compound include potassium carbonate, potassium chloride, potassium hydrogen carbonate, potassium hydroxide, potassium nitrate, potassium sulfate, potassium acetate, potassium oxalate, and potassium formate. . Of these, potassium chloride is particularly preferred.

カリウム化合物を用いる場合の添加割合は、分解処理残分中のシリカ100質量部に対し、カリウム量として0.1〜20質量部、好ましくは0.5〜15質量部の範囲である。添加量が少ない場合は、効果がなく、多すぎる場合は、反応後に残渣として残る量が増えるため有利ではない。   The addition ratio in the case of using a potassium compound is 0.1-20 mass parts as a potassium amount with respect to 100 mass parts of silica in a decomposition-processing residue, Preferably it is the range of 0.5-15 mass parts. If the amount added is small, there is no effect, and if it is too large, the amount remaining as a residue after the reaction increases, which is not advantageous.

本発明において、分解処理残分中のシリカと塩素との反応で、より高いシリカの反応率を求めるためには、JIS標準篩の呼び寸法で1.0mm以上4.8mm以下の金属ケイ素を用いることが必須である。そして、分解処理残分の粒度については、微粒子であればあるほど反応活性が高くなるので好ましいが、あまり細かくすることは困難であるので、好ましくは0.1μ以上500μm以下、さらに好ましくは0.5μ以上100μm以下である。   In the present invention, in order to obtain a higher reaction rate of silica by the reaction of silica and chlorine in the decomposition residue, metal silicon having a nominal size of JIS standard sieve of 1.0 mm to 4.8 mm is used. It is essential. As for the particle size of the decomposition treatment residue, the finer the particles, the higher the reaction activity, which is preferable. However, since it is difficult to make the particles finer, it is preferably 0.1 μm or more and 500 μm or less, more preferably 0. 5 μm or more and 100 μm or less.

上記の粒径を有する金属ケイ素や分解処理残分を得る方法としては、何でもよいが、微粉砕に用いる機器としては特に限定は無く、たとえば、ジェットミル、ピンミル、ボールミル、擂潰機等の粉砕装置を使用し、乾式或いは溶媒共存下の湿式条件により実施できる。   Any method may be used as a method for obtaining metallic silicon having the above particle diameter and the decomposition treatment residue, but there are no particular limitations on the equipment used for fine grinding, for example, jet mill, pin mill, ball mill, crusher, etc. Using an apparatus, it can be carried out dry or under wet conditions in the presence of a solvent.

一般的に微粒子の粒径とは、例えば顕微鏡や電子顕微鏡などの装置で拡大した粒子の径を計測することによる測定する方法や、レーザー式粒度分布計、コールターカウンターなどの各種測定装置で測定することができるが、測定原理によって得られる値には差がある。また、標準篩を用いて粒度分布を定義するのも簡便な方法であるが、他の方法を用いた場合でも、標準粒子を用いて測定値を関連付けることによって定義を互換することができる。また、分解処理残分と金属ケイ素との造粒物となった後からでも、分析電顕やEPMA(電子線マイクロアナライザ)などの装置を用いて、観察している粒子がいずれの成分かを分別して粒径測定をすることもできる。   In general, the particle size of the fine particles is measured by measuring the diameter of the enlarged particles with a device such as a microscope or an electron microscope, or by various measuring devices such as a laser particle size distribution meter or a Coulter counter. However, there are differences in the values obtained by the measurement principle. In addition, it is a simple method to define the particle size distribution using a standard sieve, but even when other methods are used, the definitions can be interchanged by associating the measurement values using standard particles. In addition, even after it has become a granulated product of the decomposition residue and metal silicon, use an analytical electron microscope or EPMA (electron beam microanalyzer) to determine which component is the particle being observed. The particle size can also be measured by fractionation.

分解処理残分とカリウム化合物を併用する場合は、混合してから用いるのが好ましく、さらに好ましくは水などの溶剤を加えて混合してから粉砕を行い、微粉化して用いることであり、加熱分解処理を行う前にあらかじめ混合することも好ましい。あらかじめ混合する好ましい理由は、分解処理残分中のシリカの塩素化反応の効率が向上するからである。混合には、リボンミキサーやヘンシェルミキサーなどのシェアのかかりにくいミキサーでも用いることができるが、さらに好ましくはボールミルや擂潰機などのように粒子にシェアのかかるミキサーであり、混合と共に粒子同士がしっかりと付着して、反応効率が上昇する効果がある。   When the decomposition treatment residue and potassium compound are used in combination, it is preferably used after mixing, and more preferably, after adding a solvent such as water and mixing, pulverization, pulverization and use are performed. It is also preferable to mix in advance before processing. The reason for pre-mixing is that the efficiency of the chlorination reaction of silica in the decomposition treatment residue is improved. For mixing, it is possible to use a mixer such as a ribbon mixer or a Henschel mixer that is difficult to share, but more preferable is a mixer that shares a particle such as a ball mill or a crusher. It has the effect of increasing the reaction efficiency.

金属ケイ素は、一般工業用途の金属ケイ素を用いることができる。金属ケイ素には、1.0〜4.8mm、好ましくは2.0〜3.4mmの粒径範囲のものを用いるのが望ましい。一般的に、金属ケイ素は粉砕、分級によって粉体を採取する製造方法がとられており、分級には、気流分級や、粉砕と同時に分級を行う方法など、多くの方法が知られているが、好ましくは過大、過小の粒子をカットする篩分機能を有する分級方法によって粒度が決められたものであり、さらに好ましくは中心粒径から正規分布に近い分布を有する金属ケイ素である。各種分級方法により得られた金属ケイ素の粒度分布は、例えばJIS Z8801−1982に定める標準篩によって篩分することによって、粒径範囲を規定することができ、または、光学顕微鏡などの拡大方法によって粒子の大きさを計測して確かめることができる。本発明では、JIS標準篩の呼び寸法を粒径範囲として用いる。すなわち、呼び寸法2.0mmの篩上で、なおかつ呼び寸法3.4mmの篩下となる粒子を粒径2.0以上3.4mm以下の粒子と呼ぶ。なお、JIS呼び寸法は3.35mm、4.75mmのように小数点以下第2位まで規定されているが、本発明では簡単のために、3.4mm、4.8mm等と呼ぶ。   Metallic silicon for general industrial use can be used as metallic silicon. It is desirable to use metal silicon having a particle size range of 1.0 to 4.8 mm, preferably 2.0 to 3.4 mm. In general, metal silicon has been produced by a method of collecting powder by pulverization and classification, and many methods are known for classification, such as airflow classification and classification simultaneously with pulverization. The particle size is preferably determined by a classification method having a sieving function for cutting oversized and undersized particles, and more preferably metal silicon having a distribution close to the normal distribution from the center particle size. The particle size distribution of the metallic silicon obtained by various classification methods can be specified by, for example, sieving with a standard sieve defined in JIS Z8801-1982, or the particle size range can be defined by an enlargement method such as an optical microscope. Can be measured and confirmed. In the present invention, the nominal size of the JIS standard sieve is used as the particle size range. That is, particles that are on a sieve having a nominal size of 2.0 mm and that are under the sieve having a nominal size of 3.4 mm are referred to as particles having a particle size of 2.0 to 3.4 mm. The JIS nominal size is specified to the second decimal place, such as 3.35 mm and 4.75 mm, but in the present invention, it is called 3.4 mm, 4.8 mm, etc. for simplicity.

粒径が1mmより小さい金属ケイ素は、表面積が大きく反応性が高いため、金属ケイ素がより多くの塩素を消費して、分解処理残分中のシリカが相対的に少ない塩素しか消費できず、反応率が下がってしまううえ、金属ケイ素が短期間に消費されてしまうので、その後は反応器内の温度が下降する傾向が表れる。一方、粒径が4.8mmより大きい場合は、表面積が小さく反応性が低いため反応熱のみで十分な反応温度が得られず、シリカの反応率が上がらない可能性がある。   Metallic silicon particles with a particle size smaller than 1 mm have a large surface area and high reactivity, so that metal silicon consumes more chlorine, and the silica in the decomposition residue can consume relatively less chlorine. Since the rate is lowered and the metal silicon is consumed in a short time, the temperature in the reactor tends to decrease thereafter. On the other hand, when the particle size is larger than 4.8 mm, since the surface area is small and the reactivity is low, a sufficient reaction temperature cannot be obtained only by reaction heat, and the reaction rate of silica may not increase.

また、本発明で用いる金属ケイ素は、粒径範囲が1mm以上4.8mm以下であることを必須とするが、この数値範囲以外の粒子が少しでも含まれると実施できないわけではなく、この数値範囲以外の過大、過小の金属ケイ素粒子が、好ましくは金属ケイ素全体の10質量%以下、さらに好ましくは5質量%以下含まれていても実施することができる。   The metal silicon used in the present invention is required to have a particle size range of 1 mm or more and 4.8 mm or less. However, if any particles other than this numerical range are included, it cannot be implemented. The present invention can be carried out even if the excessive and excessively small metal silicon particles other than are preferably contained in an amount of 10% by mass or less, more preferably 5% by mass or less of the entire metal silicon.

金属ケイ素の使用量は分解処理残分中のシリカ100質量部に対して、10〜40質量部の範囲、好ましくは、15〜35質量部の範囲である。使用量が少ない場合は、発熱量が小さく反応温度が不足するため、外部加熱が必要となってしまう。一方、多い場合は、発熱量が大きく反応温度が必要以上に高くなるし、金属ケイ素の製造にかけるエネルギーを考えると、金属ケイ素を必要以上に多く用いることは省エネルギーの目的に合致しない。   The amount of metal silicon used is in the range of 10 to 40 parts by mass, preferably in the range of 15 to 35 parts by mass with respect to 100 parts by mass of silica in the decomposition treatment residue. When the amount used is small, the heating value is small and the reaction temperature is insufficient, so that external heating is required. On the other hand, when the amount is large, the calorific value is large and the reaction temperature becomes unnecessarily high. Considering the energy required for the production of metal silicon, the use of metal silicon more than necessary does not meet the purpose of energy saving.

分解処理残分と金属ケイ素を含む原料を成型して造粒物にする際には、好ましくはバインダーを使用することができる。その理由は、造粒が効率的にできることと、造粒物の搬送の際の粉化を防ぐことができるためである。バインダーとしては、水、ポリエチレングリコール、でんぷん、ゼラチン、糖蜜、セルロース、水ガラス、シリカゾルなどを挙げることができる。   When the raw material containing the decomposition treatment residue and metal silicon is molded into a granulated product, a binder can be preferably used. The reason is that granulation can be performed efficiently and pulverization during the conveyance of the granulated product can be prevented. Examples of the binder include water, polyethylene glycol, starch, gelatin, molasses, cellulose, water glass, and silica sol.

分解処理残分と金属ケイ素とを含む原料を混合する場合には、構成成分をそのまま混合して用いても良いが、分解処理残分とカリウム化合物を併用するときには、分解処理残分とカリウム化合物をいったんよく混合してから粉砕し、その後、金属ケイ素と共に造粒することが好ましい。   When mixing the raw material containing the decomposition treatment residue and metal silicon, the constituent components may be mixed as they are, but when the decomposition treatment residue and the potassium compound are used in combination, the decomposition treatment residue and the potassium compound are used. Is preferably mixed well and then pulverized, and then granulated with metal silicon.

分解処理残分と金属ケイ素とを含む原料を造粒するときの、造粒粒子の粒径は、小さい方が塩素と反応しやすくなるが、金属ケイ素の粒径下限を下回ることはできない。そこで、好ましくはJIS標準篩の呼び寸法で1.0mm以上8.0mm以下、すなわち、呼び寸法1.0mmのJIS標準篩の篩上であり、8.0mmの篩下となる粒径範囲を有するものである。さらに好ましくは2.0mm以上4.8mm以下である。   When the raw material containing the decomposition treatment residue and the metal silicon is granulated, the smaller the particle size of the granulated particles, the more easily it reacts with chlorine, but it cannot fall below the lower limit of the particle size of the metal silicon. Accordingly, the nominal size of the JIS standard sieve is preferably 1.0 mm or more and 8.0 mm or less, that is, on the sieve of the JIS standard sieve having a nominal size of 1.0 mm, and has a particle size range that is below the sieve of 8.0 mm. Is. More preferably, it is 2.0 mm or more and 4.8 mm or less.

本発明を実施するに当たり原料中に水分が存在すると、四塩化ケイ素の加水分解で生成したシリカによる配管の閉塞や、四塩化ケイ素収率の低下などの問題がある。そのため、金属ケイ素と分解処理残分を含む原料は、塩素と反応させる前に加熱脱水処理をして使用するのが好ましい。加熱脱水処理法としては、例えば空気中や真空中、あるいはアルゴン、ヘリウム、窒素などの不活性ガス雰囲気下に、150〜900℃で0.5〜24時間程度加熱して脱水する方法が例示でき、さらに好ましくは400〜600℃である。   When water is present in the raw material for carrying out the present invention, there are problems such as blockage of piping due to silica produced by hydrolysis of silicon tetrachloride and a decrease in the yield of silicon tetrachloride. Therefore, it is preferable to use the raw material containing metal silicon and the decomposition treatment residue after heat dehydration before reacting with chlorine. Examples of the heat dehydration method include dehydration by heating at 150 to 900 ° C. for about 0.5 to 24 hours in air, vacuum, or an inert gas atmosphere such as argon, helium, and nitrogen. More preferably, it is 400-600 degreeC.

また、この加熱脱水処理は、炭化または燃焼処理を兼ねていても良い。すなわち、いったん植物に化学的分解処理や生物学的分解処理、物理的分解処理、炭化または燃焼処理などを行ったものを粉砕や混合、造粒などの各工程に供した後に本加熱脱水処理を行うようにすれば、炭化処理と加熱脱水処理を同時に行うことができるため効率的である。加熱脱水処理が炭化処理を兼ねる場合は、アルゴン、ヘリウム、窒素などの不活性ガス雰囲気下に、150〜900℃で0.5〜24時間程度加熱する方法が例示でき、さらに好ましくは400〜600℃である。   Moreover, this heat dehydration process may serve as carbonization or a combustion process. In other words, once a plant has been subjected to chemical decomposition treatment, biological decomposition treatment, physical decomposition treatment, carbonization or combustion treatment, etc., it is subjected to each step of pulverization, mixing, granulation, etc., and then this heat dehydration treatment is performed. This is efficient because the carbonization process and the heat dehydration process can be performed at the same time. When the heat dehydration treatment also serves as the carbonization treatment, a method of heating at 150 to 900 ° C. for about 0.5 to 24 hours in an inert gas atmosphere such as argon, helium, nitrogen, etc. can be exemplified, and more preferably 400 to 600. ° C.

塩素との反応は、分解処理残分と金属ケイ素を含む混合物と、塩素とを十分に接触させることができればよく、固定床、流動床、移動床などで行うことができる。また、塩素は好ましくは純度98質量%以上のものを、そのまま使用しても、アルゴン、ヘリウム、窒素などの不活性ガスで希釈して使用してもよい。反応器内の圧力も任意に設定できる。   The reaction with chlorine may be carried out in a fixed bed, a fluidized bed, a moving bed or the like as long as the mixture containing the decomposition treatment residue and metal silicon can be sufficiently brought into contact with chlorine. Chlorine preferably having a purity of 98% by mass or more may be used as it is, or diluted with an inert gas such as argon, helium or nitrogen. The pressure in the reactor can also be set arbitrarily.

塩素との反応を開始させる際の温度は、300〜500℃とするのが好ましい。分解処理残分と金属ケイ素を含む混合物を昇温させる方法としては、予め加熱してから反応器へ添加するのもよく、また、予め加熱した気体を反応器に流し、昇温させるのもよい。   The temperature at which the reaction with chlorine is started is preferably 300 to 500 ° C. As a method of raising the temperature of the mixture containing the decomposition residue and metal silicon, it may be preheated and then added to the reactor, or a preheated gas may be flowed into the reactor to raise the temperature. .

反応が一旦開始されれば、金属ケイ素の塩素化反応により反応熱が発生し、反応器を断熱材により保温断熱しておけば、外部から反応器への熱供給を必須としないで、反応を継続させることができる。断熱材として、一般的に高温で耐熱できる保温材であれば特に限定は無く、例えば、セラミックスウールや石英ファイバーウールのようなものを利用することができる。   Once the reaction is started, heat of reaction is generated by the chlorination reaction of metal silicon, and if the reactor is kept warm and insulated with a heat insulating material, the reaction can be carried out without requiring heat supply to the reactor from the outside. Can continue. The heat insulating material is not particularly limited as long as it is generally a heat insulating material that can be heat-resistant at a high temperature, and for example, ceramic wool or quartz fiber wool can be used.

反応はバッチ式運転で行ってもよいが、原料の供給と反応済み残渣の排出とを間欠的に実施する連続運転で行うことが好ましい。その理由は、熱エネルギーの利用効率や、シリカの反応率が高くなるためである。   The reaction may be performed in a batch operation, but it is preferable to perform the reaction in a continuous operation in which the supply of the raw material and the discharge of the reacted residue are performed intermittently. The reason is that the utilization efficiency of thermal energy and the reaction rate of silica are increased.

反応を終えた後には、未反応のシリカや、カリウム化合物を用いた場合はカリウム化合物などが反応残渣として反応器に残る。それらは、例えば反応器下部に設置される出口から所定時間間隔で開閉できるボール弁等の開閉機構により排出することができる。排出のためには、反応器全体、または一部に振動を加えることができる機構を反応器に備えることが好ましい。排出された反応残渣は、触媒の代わりにフレッシュな分解処理残分に混ぜて再利用することが可能である。その際は、反応器上部に設置される入口から反応器に供給されることが好ましい。   After the reaction is completed, unreacted silica, or a potassium compound when a potassium compound is used, remains in the reactor as a reaction residue. They can be discharged, for example, by an opening / closing mechanism such as a ball valve that can be opened and closed at predetermined time intervals from an outlet installed at the bottom of the reactor. For discharging, it is preferable to provide the reactor with a mechanism capable of applying vibration to the entire reactor or a part of the reactor. The discharged reaction residue can be reused by mixing it with a fresh decomposition residue instead of the catalyst. In that case, it is preferable to supply to a reactor from the inlet installed in the reactor upper part.

<作用>
本発明において、最も高い効果が得られるのは、篩分法の粒径が1mm以上4.8mm以下である金属ケイ素を、分解処理残分とカリウム化合物の混合物が被覆層となって覆い、1.0mm以上8.0mm以下の粒径となった造粒物の形態である。この場合、被覆層を通過した塩素が金属ケイ素表面で発熱反応を起こすため、金属ケイ素と被覆層の界面は高温になり、さらにカリウム化合物の触媒作用によって分解処理残分中のシリカは迅速に塩素と反応する。そして、造粒物は、ほとんど反応し尽くすまでその形態を保っているので、粒子間のガス流通も良好であるが、ほとんど反応し尽くしたときはわずかな微粉の反応残渣となって造粒物の間からこぼれ落ちる。このため、連続化のための特別な装置を用いなくても、反応器上部から新たな造粒物を追加し、反応器下部から反応残渣を抜き出すことにより容易に長時間連続の反応を実施することができる。
<Action>
In the present invention, the highest effect is obtained by covering the metal silicon having a sieving particle size of 1 mm or more and 4.8 mm or less with a mixture of the decomposition treatment residue and the potassium compound as a coating layer. It is a form of a granulated product having a particle size of 0.0 mm or more and 8.0 mm or less. In this case, since the chlorine passing through the coating layer causes an exothermic reaction on the surface of the metal silicon, the interface between the metal silicon and the coating layer becomes high temperature, and further, the silica in the decomposition treatment residue is rapidly chlorinated by the catalytic action of the potassium compound. React with. And since the granulated product keeps its form until it almost reacts, the gas flow between the particles is good, but when it almost reacts, it becomes a slightly fine reaction residue. Spills from between. For this reason, even if it does not use the special apparatus for continuation, a new granulated material is added from the upper part of the reactor, and the reaction residue is easily extracted from the lower part of the reactor to carry out the continuous reaction easily for a long time. be able to.

以下、本発明を実施例により具体的に説明する。但し、本発明は、この実施例に何ら限定されるものではない。なお、特に断りのない%は質量%である。金属ケイ素および金属ケイ素を含む造粒物については、JISZ8801−1982に定める標準ふるいによって篩い分けた粒子を用いた。「0.3mmより小」とは呼び寸法0.3mmの篩下、「4.8mmより大」とは、呼び寸法4.75mmの標準篩の篩上を意味する。   Hereinafter, the present invention will be specifically described by way of examples. However, the present invention is not limited to this embodiment. Unless otherwise specified,% is mass%. For the granulated material containing metallic silicon and metallic silicon, particles sieved by a standard sieve defined in JISZ8801-1982 were used. “Less than 0.3 mm” means below a sieve with a nominal size of 0.3 mm, and “greater than 4.8 mm” means above a standard sieve with a nominal size of 4.75 mm.

<実施例1>
国産米の稲わらからのバイオエタノール製造の際に排出された、スラリー状の糖化・発酵残渣を、遠心分離により固液分離した後、固形分に同量の脱イオン水を加えて再度遠心分離して固形分を水洗し、固形分を140℃で乾燥して乾燥固形分を得た。乾燥固形分の110gに塩化カリウムを5.9g(カリウム量としては3.1g)となるように加え、固形分重量に対して2.0倍の脱イオン水を加え、ジルコニアボールを入れてボールミルで60時間粉砕した。粉砕後のスラリーを140℃で2時間乾燥して得られた乾燥物を再度粉砕した。乾燥粉砕後の粉末116gに対し、粒径2.0〜3.4mmの金属ケイ素を10.5gとなるように加え、バインダーとして1.2質量%デンプン水/メタノール混合溶液(水:メタノール=50質量%:50質量%)を10g加えて、転動造粒機で造粒物とし、JIS標準篩の呼び寸法2.0mmの篩上で、なおかつ4.8mmの篩下を採取して粒径2.0〜4.8mmの造粒物とした。過大、過小の造粒物は破砕して再度転動造粒機で造粒物とし、過大、過小の造粒物がほとんどなくなるまでこの操作を繰り返した。仕込みに対する収率は99質量%以上だった。これを窒素流通下500℃で6時間乾燥して炭化及び加熱脱水処理させて造粒された分解処理残分75.8gを得た。TG/DTA分析により、空気中と窒素中で1000℃まで加熱した結果から、造粒物中の炭素量を19.2gと算出し、空気中1000℃の加熱残分から金属ケイ素の添加分10.5gを除いてシリカ量を40.1gと算出し、炭素/シリカの質量比を0.48と決定した。また、シリカ100質量部に対する塩化カリウムの添加量はカリウムとして7.6質量部と算出された。なお、実施例1における、分解処理残分中のシリカ100質量部に対する金属ケイ素の添加量は26.2質量部と算出された。
<Example 1>
The slurry-like saccharification / fermentation residue discharged during the production of bioethanol from domestic rice straw is solid-liquid separated by centrifugation, then the same amount of deionized water is added to the solid, and then centrifuged again The solid content was washed with water, and the solid content was dried at 140 ° C. to obtain a dry solid content. To 110 g of dry solids, add 5.9 g of potassium chloride (potassium amount is 3.1 g), add deionized water 2.0 times the weight of solids, add zirconia balls, and add ball mill For 60 hours. The dried product obtained by drying the pulverized slurry at 140 ° C. for 2 hours was pulverized again. To 116 g of the powder after dry pulverization, metal silicon having a particle size of 2.0 to 3.4 mm is added to 10.5 g, and a 1.2 mass% starch water / methanol mixed solution (water: methanol = 50 as a binder). 10% (mass%: 50 mass%) is added to form a granulated product with a rolling granulator, and the particle size is obtained by collecting the sieve under a JIS standard sieve having a nominal size of 2.0 mm and under a sieve of 4.8 mm. The granulated product was 2.0 to 4.8 mm. Oversized and undersized granulated materials were crushed and again made into granules with a rolling granulator, and this operation was repeated until there were almost no oversized and undersized granulated materials. The yield based on the charge was 99% by mass or more. This was dried at 500 ° C. for 6 hours under a nitrogen flow, and carbonized and heat-dehydrated to obtain a granulated decomposition residue 75.8 g. From the result of heating to 1000 ° C. in air and nitrogen by TG / DTA analysis, the amount of carbon in the granulated product was calculated to be 19.2 g, and the amount of metal silicon added from the heating residue at 1000 ° C. in air was 10. Excluding 5 g, the amount of silica was calculated to be 40.1 g, and the mass ratio of carbon / silica was determined to be 0.48. Moreover, the addition amount of potassium chloride with respect to 100 mass parts of silica was computed with 7.6 mass parts as potassium. In Example 1, the amount of metal silicon added to 100 parts by mass of silica in the decomposition treatment residue was calculated to be 26.2 parts by mass.

造粒された分解処理残分75.8gを200mlの石英製反応器に充填し、反応器に断熱材として厚さ1.0cmとなるように石英ファイバーウールを巻いた。それを断熱性のよい下部開口のルツボ型ヒーター内に挿入し、ヒーターとの隙間には石英ファイバーウールを詰めた。反応器下部の開口部から窒素を流通させながら、反応器を外部から加熱し、反応器内温を420℃まで昇温させた。昇温後、外部加熱と窒素を止め、塩素を400ml/分で流通させて反応を行った。内温は1140℃まで上昇した後、徐々に低下した。内温が800℃を下回った時点で塩素の流通を止めた。その際の塩素の流通時間は、1.0時間であった。   The granulated residue 75.8 g was filled in a 200 ml quartz reactor, and quartz fiber wool was wound around the reactor so as to have a thickness of 1.0 cm as a heat insulating material. It was inserted into a crucible heater with a lower opening with good thermal insulation, and quartz fiber wool was packed in the gap with the heater. The reactor was heated from outside while flowing nitrogen through the opening at the bottom of the reactor, and the reactor internal temperature was raised to 420 ° C. After the temperature rise, external heating and nitrogen were stopped, and the reaction was carried out by circulating chlorine at 400 ml / min. The internal temperature rose to 1140 ° C. and then gradually decreased. When the internal temperature dropped below 800 ° C, the circulation of chlorine was stopped. The circulation time of chlorine at that time was 1.0 hour.

反応器上部からの生成ガスを、冷媒により冷却して捕集し139gの四塩化ケイ素を得た。また、反応器中の反応済み残渣を水中に入れて撹拌し、比重差によって先に沈降する固形分を金属ケイ素として回収し、それを乾燥して残存金属ケイ素量として重量を測定し、そこから金属ケイ素の反応率を求めた。一方、シリカの反応率は、全四塩化ケイ素量から金属ケイ素由来の四塩化ケイ素の量を差し引き、その差分をシリカ由来の四塩化ケイ素量としてそこから算出した。金属ケイ素の反応率は96.4%で、シリカの反応率は67.9%であった。   The product gas from the upper part of the reactor was collected by cooling with a refrigerant to obtain 139 g of silicon tetrachloride. In addition, the reacted residue in the reactor is put into water and stirred, and the solid content that settles first due to the difference in specific gravity is recovered as metal silicon, and dried to measure the weight as the amount of residual metal silicon. The reaction rate of metallic silicon was determined. On the other hand, the reaction rate of silica was calculated by subtracting the amount of silicon tetrachloride derived from metal silicon from the total amount of silicon tetrachloride and calculating the difference as the amount of silicon tetrachloride derived from silica. The reaction rate of metal silicon was 96.4%, and the reaction rate of silica was 67.9%.

<実施例2>
乾燥固形分の110gに対して石油生コークスを12.1g添加した以外は、実施例1と同様にしてボールミルで60時間粉砕した。粉砕乾燥後の粉末128gに対し、実施例1と同様に造粒、炭化及び加熱脱水処理を行い、造粒された分解処理残分87.4gを得た。造粒物中の炭素/シリカの質量比は0.77であった。
造粒された分解処理残分を200mlの石英製反応器に充填し、実施例1と同じ条件で反応させた。その際の内温は、1060℃まで上昇した。また、四塩化ケイ素の収量は134gであり、塩素流通時間は1.3時間であった。金属ケイ素の反応率は97.4%で、シリカの反応率は63.6%であった。
<Example 2>
A ball mill was used for 60 hours in the same manner as in Example 1 except that 12.1 g of petroleum raw coke was added to 110 g of dry solids. Granulation, carbonization, and heat dehydration treatment were performed on 128 g of the pulverized and dried powder in the same manner as in Example 1 to obtain 87.4 g of granulated decomposition residue. The mass ratio of carbon / silica in the granulated product was 0.77.
The granulated decomposition residue was charged into a 200 ml quartz reactor and reacted under the same conditions as in Example 1. The internal temperature at that time rose to 1060 ° C. The yield of silicon tetrachloride was 134 g, and the chlorine circulation time was 1.3 hours. The reaction rate of metal silicon was 97.4%, and the reaction rate of silica was 63.6%.

<実施例3>
粉砕後のスラリーを140℃で乾燥して得られた乾燥物を粉砕するところまでは実施例1と同様にして、得られた乾燥物を窒素流通下500℃で6時間加熱し、炭化及び加熱脱水処理して得た分解処理残分65.3gに対し、粒径2.0〜3.4mmの金属ケイ素を10.5g(シリカ100質量部に対し26.2質量部)となるようにし、卓上ミキサー(オスターブレンダー)で物理的によく混合し、造粒はしないで粉のまま200mlの石英製反応器に充填し、実施例1と同じ条件で反応させた。その際の内温は、1010℃まで上昇した。塩素流通時間は1.0時間であった。金属ケイ素の反応率は87.0%で、シリカ分の反応率は54.6%であった。
<Example 3>
In the same manner as in Example 1 until the dried product obtained by drying the pulverized slurry at 140 ° C. is pulverized, the obtained dried product is heated at 500 ° C. for 6 hours under nitrogen flow, and carbonized and heated. With respect to 65.3 g of the decomposition treatment residue obtained by the dehydration treatment, 10.5 g of metal silicon having a particle size of 2.0 to 3.4 mm (26.2 parts by mass with respect to 100 parts by mass of silica) is obtained. The mixture was physically well mixed with a tabletop mixer (Oster blender), and the mixture was charged in a 200 ml quartz reactor without being granulated and reacted under the same conditions as in Example 1. The internal temperature at that time rose to 1010 ° C. The chlorine circulation time was 1.0 hour. The reaction rate of metal silicon was 87.0%, and the reaction rate of silica content was 54.6%.

<実施例4>
塩化カリウムを添加しなかったほかは実施例1と同じことを実施して、造粒された分解処理残分を200mlの石英製反応器に充填し、実施例1と同じ条件で反応させた。その際の内温は、1050℃まで上昇した。塩素流通時間は0.9時間で、金属ケイ素の反応率は83.4%で、シリカの反応率は54.1%であった。
<Example 4>
The same procedure as in Example 1 was performed except that potassium chloride was not added, and the granulated decomposition residue was charged into a 200 ml quartz reactor and reacted under the same conditions as in Example 1. The internal temperature at that time rose to 1050 ° C. The chlorine circulation time was 0.9 hours, the reaction rate of metal silicon was 83.4%, and the reaction rate of silica was 54.1%.

<実施例5>
実施例1と同様にして調整した造粒された分解処理残分114gを200mlの石英製反応器に充填し、実施例1と同様の条件と方法で反応を開始させた。開始から1.0時間後以降に265g分の造粒物を30分間に26.5gの供給速度で反応器上部から供給し、それに伴い開始から2.0時間後以降に反応済みの残渣を、30分間に6.5gの排出速度で反応器下部から排出した。内温が800℃を下回った時点で塩素の流通を止めた。塩素流通時間は6.0時間で、金属ケイ素の反応率は99.0%で、分解処理残分中のシリカの反応率は71.6%であった。造粒物を供給しながら行う連続反応では、バッチ反応よりも優れたシリカの反応率が得られた。
<Example 5>
A 200 ml quartz reactor was charged with 114 g of the granulated decomposition residue prepared in the same manner as in Example 1, and the reaction was started under the same conditions and method as in Example 1. After 1.0 hour from the start, 265 g of granulated material is fed from the top of the reactor at a feed rate of 26.5 g in 30 minutes, and accordingly, the reacted residue after 2.0 hours from the start, Discharge from the bottom of the reactor at a discharge rate of 6.5 g in 30 minutes. When the internal temperature dropped below 800 ° C, the circulation of chlorine was stopped. The chlorine circulation time was 6.0 hours, the reaction rate of metallic silicon was 99.0%, and the reaction rate of silica in the decomposition treatment residue was 71.6%. In the continuous reaction performed while supplying the granulated product, a silica reaction rate superior to the batch reaction was obtained.

<比較例1>
金属ケイ素の粒径を0.3mmより小とした以外は、実施例4と同様の条件で反応を行った。その際の内温は、1090℃まで上昇した。塩素の流通時間は0.9時間であり、計算により得られた金属ケイ素の反応率は95.9%で、シリカの反応率は30.7%であった。
<Comparative Example 1>
The reaction was carried out under the same conditions as in Example 4 except that the particle size of metal silicon was smaller than 0.3 mm. The internal temperature at that time rose to 1090 ° C. The circulation time of chlorine was 0.9 hours, the reaction rate of metal silicon obtained by calculation was 95.9%, and the reaction rate of silica was 30.7%.

<比較例2>
金属ケイ素の粒径を0.3mmより小とした以外は、実施例1と同様の条件で反応を行った。その際の内温は、1100℃まで上昇した。反応時間は0.9時間であり、金属ケイ素の反応率は96.3%で、シリカの反応率は31.4%であった。
<Comparative example 2>
The reaction was carried out under the same conditions as in Example 1 except that the particle size of metal silicon was smaller than 0.3 mm. The internal temperature at that time rose to 1100 ° C. The reaction time was 0.9 hours, the reaction rate of metal silicon was 96.3%, and the reaction rate of silica was 31.4%.

<比較例3>
金属ケイ素の粒径を4.8mmより大とし、造粒物の粒径を4.8〜8.0mmとした以外は、実施例1と同様の条件で反応を行った。その際の内温は、860℃まで上昇した。反応時間は0.7時間であり、金属ケイ素の反応率は83.8%で、シリカの反応率は33.9%であった。
<Comparative Example 3>
The reaction was carried out under the same conditions as in Example 1 except that the particle size of the metal silicon was larger than 4.8 mm and the particle size of the granulated product was 4.8 to 8.0 mm. The internal temperature at that time rose to 860 ° C. The reaction time was 0.7 hours, the reaction rate of metal silicon was 83.8%, and the reaction rate of silica was 33.9%.

<比較例4>
粉砕後のスラリーを140℃で乾燥して得られた乾燥物を粉砕するところまでは実施例1と同様にして、乾燥粉砕後の粉末116gに対し、粒径2.0〜3.4mmの金属ケイ素を1.2gとなるように加えた他は実施例1と同じようにして反応を行った。反応器内温を420℃まで昇温させて、反応を始めたが、反応器内温は830℃までしか上昇せず、0.1時間で800℃を下回ったので反応を終了した。金属ケイ素の反応率は34.0%で、分解処理残分中のシリカの反応率は4.3%であった。なお、造粒された分解処理残分中のシリカ100質量部に対する金属ケイ素の添加量は3.0質量部と算出された。
<Comparative example 4>
A metal having a particle size of 2.0 to 3.4 mm is used in the same manner as in Example 1 until the dried product obtained by drying the pulverized slurry at 140 ° C. is used in the same manner as in Example 1. The reaction was carried out in the same manner as in Example 1 except that silicon was added to 1.2 g. The reaction was started by raising the reactor internal temperature to 420 ° C., but the reactor internal temperature only increased to 830 ° C., and the reaction was terminated because it dropped below 800 ° C. in 0.1 hour. The reaction rate of metallic silicon was 34.0%, and the reaction rate of silica in the decomposition treatment residue was 4.3%. In addition, the addition amount of the metal silicon with respect to 100 mass parts of silica in the granulated decomposition treatment residue was calculated with 3.0 mass parts.

<比較例5>
粉砕後のスラリーを140℃で乾燥して得られた乾燥物を粉砕するところまでは実施例1と同様にして、乾燥粉砕後の粉末116gに対し、粒径2.0〜3.4mmの金属ケイ素を20.1gとなるように加えた他は実施例1と同じようにして反応を行った。反応器内温を420℃まで昇温させて反応を始めたが、反応器内温は急上昇していき、1250℃を超えても上昇が見られたため、塩素の供給を中止して反応を停止した。金属ケイ素と、分解処理残分中のシリカの反応率は測定しなかった。なお、造粒された分解処理残分中のシリカ100質量部に対する金属ケイ素の添加量は50.0質量部と算出された。
<Comparative Example 5>
A metal having a particle size of 2.0 to 3.4 mm is used in the same manner as in Example 1 until the dried product obtained by drying the pulverized slurry at 140 ° C. is used in the same manner as in Example 1. The reaction was conducted in the same manner as in Example 1 except that silicon was added to 20.1 g. The reaction was started by raising the reactor internal temperature to 420 ° C, but the reactor internal temperature rapidly increased and was observed to rise even when the temperature exceeded 1250 ° C. did. The reaction rate of metallic silicon and silica in the decomposition treatment residue was not measured. In addition, the addition amount of the metal silicon with respect to 100 mass parts of silica in the granulated decomposition processing residue was computed with 50.0 mass parts.

<比較例6>
国産米のもみ殻を強制エアー供給式焼却装置で燃焼させた際の灰を分解処理残分として用いた。TG/DTA分析により、エアー中と窒素中で1000℃まで加熱して減量を調べた結果、もみ殻灰中のシリカは96.0質量%、炭素は4.0質量wt%であったので、分解処理残分中の炭素/シリカの質量比は0.04であった。そこで、もみ殻灰41.8gに対して17.6gの生コークスと、塩化カリウム5.9g(カリウム量としては3.1g)を加え、固形分重量に対して2.0倍の脱イオン水を加え、ジルコニアボールを入れてボールミルで60時間粉砕した。粉砕後のスラリーを140℃で2時間乾燥して得られた乾燥物を再度粉砕した。乾燥粉砕後の粉末65.3gに対し、粒径2.0〜3.4mmの金属ケイ素を10.5gとなるように加え、バインダーとして1.2質量%デンプン水/メタノール混合溶液(水:メタノール=50質量%:50質量%)を10g加えて、転動造粒機で造粒物とし、JIS標準篩の呼び寸法2.0mmの篩上で、なおかつ4.8mmの篩下を採取して造粒物とした。過大、過小の造粒物は破砕して再度転動造粒機で造粒物とし、過大、過小の造粒物がほとんどなくなるまでこの操作を繰り返した。仕込みに対する収率は99wt%以上だった。これを窒素流通下140℃で2時間乾燥した。造粒された分解処理残分の炭素/シリカの質量比は0.48であった。
造粒された分解処理残分75.8gを200mlの石英製反応器に充填し、実施例1と同じ条件で反応させた。1010℃まで上昇した。塩素流通時間は1.0時間であった。金属ケイ素の反応率は87.3%で、シリカ分の反応率は49.7%であった。
実施例1〜5及び比較例1〜6の反応結果を表1に示す。なお、表1において、実施例2と比較例6の炭素/シリカ比は、後添加の炭素を含む数字である。
<Comparative Example 6>
Ash produced when domestic rice husks were burned in a forced air supply incinerator was used as the residue of the decomposition process. As a result of examining the weight loss by heating to 1000 ° C. in air and nitrogen by TG / DTA analysis, silica in rice husk ash was 96.0% by mass, carbon was 4.0% by mass, The mass ratio of carbon / silica in the decomposition treatment residue was 0.04. Therefore, 17.6 g of raw coke and 5.9 g of potassium chloride (3.1 g as the amount of potassium) are added to 41.8 g of rice husk ash, and deionized water 2.0 times the weight of the solid content. Was added, and zirconia balls were added and pulverized with a ball mill for 60 hours. The dried product obtained by drying the pulverized slurry at 140 ° C. for 2 hours was pulverized again. To 65.3 g of the powder after dry pulverization, metal silicon having a particle size of 2.0 to 3.4 mm is added to 10.5 g, and a 1.2 mass% starch water / methanol mixed solution (water: methanol as a binder). = 50% by mass: 50% by mass), and granulated with a tumbling granulator, and collected on a sieve with a nominal size of 2.0 mm of JIS standard sieve and 4.8 mm below the sieve. A granulated product was obtained. Oversized and undersized granulated materials were crushed and again made into granules with a rolling granulator, and this operation was repeated until there were almost no oversized and undersized granulated materials. The yield based on the charge was 99 wt% or more. This was dried at 140 ° C. for 2 hours under nitrogen flow. The mass ratio of carbon / silica of the granulated decomposition residue was 0.48.
The granulated decomposition residue 75.8 g was charged into a 200 ml quartz reactor and reacted under the same conditions as in Example 1. The temperature rose to 1010 ° C. The chlorine circulation time was 1.0 hour. The reaction rate of metal silicon was 87.3%, and the reaction rate of silica content was 49.7%.
Table 1 shows the reaction results of Examples 1 to 5 and Comparative Examples 1 to 6. In Table 1, the carbon / silica ratio of Example 2 and Comparative Example 6 is a number including post-added carbon.

Figure 2013014446
Figure 2013014446

実施例1と比較例6とを比較すると、炭素/シリカの質量比が0.2以上2.0以下の範囲から外れる、炭素分の少ない分解処理残分に、後添加によって分量としては同じになる炭素を加えた比較例6では、実施例1よりも劣るシリカ反応率しか得られないことわかった。この理由は、分解処理では元の植物の細胞分子レベルで共存していた炭素/シリカとの高い分散度が保持されているため、後添加で同量の炭素を後添加したものよりも高いシリカ反応率を与えることができるものとして理解できる。そうしてみると実施例1の分解処理残分に、さらに炭素を後添加した実施例2において、シリカ反応率がむしろ低下していることもこの理屈を裏付けていると考えることができる。   Comparing Example 1 and Comparative Example 6, when the carbon / silica mass ratio is out of the range of 0.2 or more and 2.0 or less, the decomposition treatment residue with a small amount of carbon is the same as the amount by post-addition. In the comparative example 6 which added carbon which becomes, it turned out that only the silica reaction rate inferior to Example 1 is obtained. This is because the decomposition treatment maintains a high degree of dispersion with the carbon / silica coexisting at the cell molecular level of the original plant, so the silica is higher than the one with the same amount of carbon added after the addition. It can be understood that the reaction rate can be given. As a result, it can be considered that this reason is supported by the fact that in Example 2 in which carbon was further added to the decomposition treatment residue of Example 1, the silica reaction rate was rather lowered.

実施例1と実施例3は添加した金属ケイ素の粒径範囲が同じであるが、造粒しない実施例3と比べて、造粒を行った実施例1の方が、金属ケイ素の反応率もシリカの反応率も高いという結果となった。これは、造粒された粒子間では塩素ガスの偏流が生じ難く、金属ケイ素と塩素との接触効率が良くなって、金属ケイ素の反応率が高くなったものと思われる。そして、同時に、金属ケイ素表面で発生する反応熱が大きくなり、反応時間も長くなったために、シリカも長時間高温で塩素化され、シリカの反応率が高くなったものと思われる。   Example 1 and Example 3 have the same particle size range of the added metal silicon, but compared to Example 3 in which granulation was not performed, Example 1 in which granulation was performed also had a metal silicon reaction rate. As a result, the reaction rate of silica was also high. This is probably because the drift of chlorine gas hardly occurs between the granulated particles, the contact efficiency between metal silicon and chlorine is improved, and the reaction rate of metal silicon is increased. At the same time, the reaction heat generated on the surface of the metal silicon is increased and the reaction time is increased, so that the silica is chlorinated at a high temperature for a long time, and the reaction rate of the silica is increased.

比較例4および5の結果は、金属ケイ素が多すぎればコントロールできないほど暴走し、また、少なすぎれば金属ケイ素のみが反応するだけでシリカ分の反応率は予想外に低いという結果をもたらすことを示した。このことから、本願発明の金属ケイ素の使用量には重要な意味があり、適切な範囲で用いれば反応は自律的に進行し、分解処理残分中のシリカの反応率が高くなるという、予想し得ない効果をもたらすことを示していると思われる。   The results of Comparative Examples 4 and 5 indicate that if there is too much metal silicon, it will run out of control, and if it is too little, only metal silicon will react and the reaction rate of silica will be unexpectedly low. Indicated. From this, the amount of metal silicon used in the present invention has an important meaning, and if used in an appropriate range, the reaction proceeds autonomously, and the reaction rate of silica in the decomposition treatment residue is expected to increase. It seems to show that it has an effect that cannot be done.

本発明の四塩化ケイ素の製造方法は、工業的に実施可能であり、シリカの反応率も高いことから、より安価な四塩化ケイ素を市場に供給することができる。


The method for producing silicon tetrachloride of the present invention is industrially feasible, and since the reaction rate of silica is high, cheaper silicon tetrachloride can be supplied to the market.


Claims (5)

シリカを含む植物を分解処理して得られる、炭素/シリカの質量比が0.2以上2.0以下である分解処理残分に、JIS標準篩の呼び寸法で1.0mm以上4.8mm以下の金属ケイ素を、分解処理残分中のシリカ100質量部に対して、10〜40質量部加えて塩素化反応を行う、四塩化ケイ素の製造方法。   In a decomposition treatment residue having a carbon / silica mass ratio of 0.2 or more and 2.0 or less obtained by decomposing a plant containing silica, a nominal size of a JIS standard sieve is 1.0 mm or more and 4.8 mm or less. A method for producing silicon tetrachloride, wherein 10 to 40 parts by mass of the metal silicon is added to 100 parts by mass of silica in the residue of the decomposition treatment, and a chlorination reaction is performed. 分解処理残分中のシリカの100質量部に対して、反応触媒としてのカリウム化合物を、カリウム量として0.1〜20質量部用いる請求項1に記載の四塩化ケイ素の製造方法。   The manufacturing method of the silicon tetrachloride of Claim 1 which uses 0.1-20 mass parts of potassium compounds as a reaction catalyst with respect to 100 mass parts of the silica in a decomposition process residue. 分解処理残分と金属ケイ素との混合物を、バインダーを用いて造粒し、JIS標準篩による粒径範囲が1.0mm以上8.0mm以下の造粒物として反応させる、請求項1または2に記載の四塩化ケイ素の製造方法。   The mixture of the decomposition treatment residue and metal silicon is granulated using a binder, and reacted as a granulated product having a particle size range of 1.0 mm or more and 8.0 mm or less by a JIS standard sieve. A method for producing silicon tetrachloride as described. 分解処理残分と金属ケイ素との造粒物を、反応中の反応器に供給することにより、反応を継続して行う、請求項3に記載の四塩化ケイ素の製造方法。   The method for producing silicon tetrachloride according to claim 3, wherein the reaction is continued by supplying a granulated product of the decomposition treatment residue and metal silicon to the reactor during the reaction. 分解処理残分と金属ケイ素との造粒物を、縦型反応器の上部から供給し、下部から反応残渣を抜き出しながら、反応を継続して行う、請求項4に記載の四塩化ケイ素の製造方法。   The production of silicon tetrachloride according to claim 4, wherein the granulated product of the decomposition treatment residue and metal silicon is supplied from the upper part of the vertical reactor and the reaction is continued while extracting the reaction residue from the lower part. Method.
JP2011146440A 2011-06-30 2011-06-30 Method for producing silicon tetrachloride Expired - Fee Related JP5522125B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011146440A JP5522125B2 (en) 2011-06-30 2011-06-30 Method for producing silicon tetrachloride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011146440A JP5522125B2 (en) 2011-06-30 2011-06-30 Method for producing silicon tetrachloride

Publications (2)

Publication Number Publication Date
JP2013014446A true JP2013014446A (en) 2013-01-24
JP5522125B2 JP5522125B2 (en) 2014-06-18

Family

ID=47687508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011146440A Expired - Fee Related JP5522125B2 (en) 2011-06-30 2011-06-30 Method for producing silicon tetrachloride

Country Status (1)

Country Link
JP (1) JP5522125B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7380151B2 (en) 2019-12-03 2023-11-15 栗田工業株式会社 Liquid level measuring device

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5659616A (en) * 1979-10-03 1981-05-23 Union Carbide Corp Manufacture of silicon tetrachloride
JPS5855329A (en) * 1981-09-29 1983-04-01 Ube Ind Ltd Manufacture of silicon tetrachloride
JPS5855330A (en) * 1981-09-30 1983-04-01 Ube Ind Ltd Manufacture of silicon tetrachloride
JPS58167419A (en) * 1982-03-25 1983-10-03 Ube Ind Ltd Preparation of silicon halide
JPS58217420A (en) * 1982-06-10 1983-12-17 Denki Kagaku Kogyo Kk Manufacture of silicon tetrachloride
JPS6021808A (en) * 1983-07-12 1985-02-04 Denki Kagaku Kogyo Kk Manufacture of silicon tetrachloride
JPS60112610A (en) * 1983-11-21 1985-06-19 Denki Kagaku Kogyo Kk Preparation of silicon tetrachloride
JPS60118622A (en) * 1983-11-29 1985-06-26 Denki Kagaku Kogyo Kk Production of silicon tetrachloride
JPS60118623A (en) * 1983-11-29 1985-06-26 Denki Kagaku Kogyo Kk Production of silicon tetrachloride
JPS62143813A (en) * 1985-12-17 1987-06-27 Jgc Corp Production of silicon tetrachloride
JPS62171912A (en) * 1986-01-24 1987-07-28 Agency Of Ind Science & Technol Production of silicon tetrachloride
JPS62252311A (en) * 1986-04-25 1987-11-04 Agency Of Ind Science & Technol Production of silicon tetrachloride
JPS6433011A (en) * 1987-07-29 1989-02-02 Agency Ind Science Techn Production of silicon tetrachloride
JPH01234317A (en) * 1988-03-15 1989-09-19 Idemitsu Kosan Co Ltd Production of silicon tetrachloride
JPH01249620A (en) * 1988-03-30 1989-10-04 Denki Kagaku Kogyo Kk Production of silicon tetrachloride
JPH01249621A (en) * 1988-03-30 1989-10-04 Denki Kagaku Kogyo Kk Production of silicon tetrachloride
JPH0218317A (en) * 1988-07-07 1990-01-22 Denki Kagaku Kogyo Kk Preparation of silicon tetrachloride
JP2009542561A (en) * 2006-05-09 2009-12-03 ノルスク・ヒドロ・アーエスアー Method for producing silicon tetrachloride
WO2011036898A1 (en) * 2009-09-25 2011-03-31 Jx日鉱日石エネルギー株式会社 Process for production of silicon tetrachloride
JP2012171843A (en) * 2011-02-23 2012-09-10 Toagosei Co Ltd Method for producing silicon tetrachloride

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5659616A (en) * 1979-10-03 1981-05-23 Union Carbide Corp Manufacture of silicon tetrachloride
JPS5855329A (en) * 1981-09-29 1983-04-01 Ube Ind Ltd Manufacture of silicon tetrachloride
JPS5855330A (en) * 1981-09-30 1983-04-01 Ube Ind Ltd Manufacture of silicon tetrachloride
JPS58167419A (en) * 1982-03-25 1983-10-03 Ube Ind Ltd Preparation of silicon halide
JPS58217420A (en) * 1982-06-10 1983-12-17 Denki Kagaku Kogyo Kk Manufacture of silicon tetrachloride
JPS6021808A (en) * 1983-07-12 1985-02-04 Denki Kagaku Kogyo Kk Manufacture of silicon tetrachloride
JPS60112610A (en) * 1983-11-21 1985-06-19 Denki Kagaku Kogyo Kk Preparation of silicon tetrachloride
JPS60118622A (en) * 1983-11-29 1985-06-26 Denki Kagaku Kogyo Kk Production of silicon tetrachloride
JPS60118623A (en) * 1983-11-29 1985-06-26 Denki Kagaku Kogyo Kk Production of silicon tetrachloride
JPS62143813A (en) * 1985-12-17 1987-06-27 Jgc Corp Production of silicon tetrachloride
JPS62171912A (en) * 1986-01-24 1987-07-28 Agency Of Ind Science & Technol Production of silicon tetrachloride
JPS62252311A (en) * 1986-04-25 1987-11-04 Agency Of Ind Science & Technol Production of silicon tetrachloride
JPS6433011A (en) * 1987-07-29 1989-02-02 Agency Ind Science Techn Production of silicon tetrachloride
JPH01234317A (en) * 1988-03-15 1989-09-19 Idemitsu Kosan Co Ltd Production of silicon tetrachloride
JPH01249620A (en) * 1988-03-30 1989-10-04 Denki Kagaku Kogyo Kk Production of silicon tetrachloride
JPH01249621A (en) * 1988-03-30 1989-10-04 Denki Kagaku Kogyo Kk Production of silicon tetrachloride
JPH0218317A (en) * 1988-07-07 1990-01-22 Denki Kagaku Kogyo Kk Preparation of silicon tetrachloride
JP2009542561A (en) * 2006-05-09 2009-12-03 ノルスク・ヒドロ・アーエスアー Method for producing silicon tetrachloride
WO2011036898A1 (en) * 2009-09-25 2011-03-31 Jx日鉱日石エネルギー株式会社 Process for production of silicon tetrachloride
JP2012171843A (en) * 2011-02-23 2012-09-10 Toagosei Co Ltd Method for producing silicon tetrachloride

Also Published As

Publication number Publication date
JP5522125B2 (en) 2014-06-18

Similar Documents

Publication Publication Date Title
CN108821292B (en) Method and device for producing silicon monoxide
KR102593874B1 (en) Method, device and system for producing silicon-containing products using silicon sludge, a by-product produced by cutting silicon with a diamond wire
JP5661103B2 (en) High purity silicon-containing product and production method
JP4436424B2 (en) Method for reforming tar-containing gas
US8048822B2 (en) Method for making silicon-containing products
JP5009419B2 (en) Method for producing catalyst for reforming tar-containing gas, method for reforming tar, and method for regenerating catalyst for reforming tar-containing gas
US20120261269A1 (en) Process for production of polysilicon and silicon tetrachloride
JP2007532468A5 (en)
WO2018006694A1 (en) Method for producing silicon tetrachloride
US7638108B2 (en) High purity silicon-containing products
CN105329940B (en) Method for preparing titanium tetrachloride from ultrafine-grained water quenching carbide slag
JP5527250B2 (en) Method for producing silicon tetrachloride
JP5522125B2 (en) Method for producing silicon tetrachloride
WO2011036898A1 (en) Process for production of silicon tetrachloride
JP2019107618A (en) Method for manufacturing modified fly ash, and apparatus for manufacturing modified fly ash
JP2020090429A (en) Manufacturing method and manufacturing apparatus of silicon
WO2013100048A1 (en) Titanium dioxide granules for use in production of titanium tetrachloride, and method for producing same
CN101673781A (en) Method for preparing solar cell polysilicon raw material from rice hulls
JPH0643247B2 (en) Rice husk combustion ash composition and method for producing the same
JP2013151379A (en) Method for producing silicon tetrachloride
WO2011095847A2 (en) The method of use of inorganic fractions from the sewage sludge containing transition metals
JP2017149620A (en) Apparatus for reforming waste gypsum and method for operating the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140311

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140324

R150 Certificate of patent or registration of utility model

Ref document number: 5522125

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees