JPS62166583A - Distributed feedback semiconductor laser device - Google Patents

Distributed feedback semiconductor laser device

Info

Publication number
JPS62166583A
JPS62166583A JP61009464A JP946486A JPS62166583A JP S62166583 A JPS62166583 A JP S62166583A JP 61009464 A JP61009464 A JP 61009464A JP 946486 A JP946486 A JP 946486A JP S62166583 A JPS62166583 A JP S62166583A
Authority
JP
Japan
Prior art keywords
layer
type
guide
forming
semiconductor laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61009464A
Other languages
Japanese (ja)
Inventor
Shoji Hirata
照二 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP61009464A priority Critical patent/JPS62166583A/en
Publication of JPS62166583A publication Critical patent/JPS62166583A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To readily manufacture, to strongly couple and to sufficiently oscillate a distributed feedback semiconductor laser device by providing an active layer and a guide layer, a substance layer distributed to present periodically in the guide layer and a clad layer. CONSTITUTION:An N-type Al0.3Ga0.7As layer 2 for forming a first clad layer, a GaAs layer 3 for forming an active layer, a P-type Al0.15Ga0.85As layer 4 for forming a guide layer and a P-type Al0.3Ga0.7As layer 5 are sequentially epitaxially grown on an N-type GaAs substrate 1. Then, the layers 5, 4 are selectively etched until the layer 4 is partly exposed and becomes in thickness the same as that of the layer 5 to form a triangular uneven surface 6. Then, a P-type Al0.15Ga0.85As layer 7 is epitaxially grown in thickness corresponding to approx. 1/2 of the depth of the surface 6, and a P-type Al0.3Ga0.7As layer 8 for forming a second clad layer is eventually epitaxially grown on the layer 7.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、周期構造によって帰還が起こりレーザ発振が
行われる分布帰還型半導体レーザに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a distributed feedback semiconductor laser in which feedback occurs through a periodic structure and laser oscillation is performed.

〔発明の概要〕[Summary of the invention]

本発明は、上記の様な分布帰還型半導体レーザにおいて
、活性層に沿って周期的に現れる所定の物質層をガイド
層中に配すると共に、クラッド層の一部を所定の物質層
の周期に対応させてこの所定の物質層の間に介在させる
ことによって、製造が容易であるにも拘らず光との結合
が強く十分な発振を行い得る様にしたものである。
The present invention provides a distributed feedback semiconductor laser as described above, in which a predetermined material layer that appears periodically along the active layer is disposed in the guide layer, and a part of the cladding layer is arranged at a period of the predetermined material layer. By correspondingly interposing the material between the predetermined material layers, it is possible to easily manufacture the material, yet to have a strong coupling with light and to perform sufficient oscillation.

〔従来の技術〕[Conventional technology]

分布帰還型(distributed feedbac
k)半導体レーザ(以下DFBレーザという)は、単−
縦モード発振を実現し得るレーザとして期待されている
distributed feedback type
k) Semiconductor laser (hereinafter referred to as DFB laser) is a single-
It is expected to be a laser that can achieve longitudinal mode oscillation.

このDFBレーザにおいては、ブラッグ反射によって光
を分布的に帰還させるための回折格子として、凹凸が一
様に形成されている1次または2次の回折格子が従来か
ら用いられている。
In this DFB laser, a first-order or second-order diffraction grating in which unevenness is uniformly formed has been conventionally used as a diffraction grating for returning light in a distributed manner by Bragg reflection.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

これらのうち1次回折格子は、光との結合(カップリン
グ)が強いために、有効な分布帰還が得られるが、回折
格子のピッチ八が小さいために、容易にしかも再現性良
く作製することが困難である。
Among these, the first-order diffraction grating has a strong coupling with light, so effective distributed feedback can be obtained, but since the pitch of the diffraction grating is small, it is difficult to fabricate it easily and with good reproducibility. is difficult.

また第2図に示す様な2次回折格子は、光との結合が1
次回折格子に比べて絶対量として小さい。
In addition, the second-order diffraction grating shown in Figure 2 has only one coupling with light.
The absolute amount is smaller than that of the second order diffraction grating.

このために、この様な2次回折格子を用いたDFBレー
ザでは、安定した十分な強さの発振を得ることは難しい
For this reason, it is difficult to obtain stable and sufficiently strong oscillation with a DFB laser using such a second-order diffraction grating.

〔問題点を解決するための手段〕[Means for solving problems]

本発明による分布帰還型半導体レーザは、活性層及びこ
の活性層3及びこの活性層3に対接しているガイド層4
.7と、このガイド層4.7中で前記活性層3に沿って
周期的に現れる様にこのガイド層4.7中に配されてお
りこのガイド層4.7よりも屈折率が低い物質層5aと
、前記ガイド層4.7に対接すると共に前記物質層5a
の周期に対応して一部がこの物質層5aの間に介在して
いるクラッド層8とを夫々具備している。
The distributed feedback semiconductor laser according to the present invention includes an active layer, this active layer 3, and a guide layer 4 that is in contact with this active layer 3.
.. 7, and a material layer having a lower refractive index than this guide layer 4.7, which is arranged in this guide layer 4.7 so as to appear periodically along the active layer 3 in this guide layer 4.7. 5a, facing the guide layer 4.7 and the material layer 5a.
A cladding layer 8 is provided, a portion of which is interposed between the material layers 5a, corresponding to the period of .

〔作用〕[Effect]

本発明による分布帰還型半導体レーザは、ガイドN4.
7よりも屈折率の低い物質層5aが活性層3に沿って周
期的に現れると共に、クラッド層8の一部が物質層5a
の周期に対応してこの物質層5aの間に介在しているの
で、実効的に物質層5aの周期の半分の周期を有する周
期構造が形成されていることになる。
The distributed feedback semiconductor laser according to the present invention has a guide N4.
A material layer 5a having a refractive index lower than 7 appears periodically along the active layer 3, and a part of the cladding layer 8 forms the material layer 5a.
Since it is interposed between the material layers 5a corresponding to the period of , a periodic structure having a period that is effectively half the period of the material layer 5a is formed.

〔実施例〕〔Example〕

以下、AlGaAs/GaAsヘテロ構造のDFBレー
ザに適用した本発明の一実施例を第1図を参照しながら
説明する。
Hereinafter, an embodiment of the present invention applied to a DFB laser having an AlGaAs/GaAs heterostructure will be described with reference to FIG.

この実施例の半導体レーザを製造するためには、第1A
図に示す様に、まずn−GaAs基板1上に第1のクラ
ッド層を構成するnAlo、3 Gaa、、As層2、
活性層を構成するGaAs層3、ガイド層を構成するp
−八lo、 +5Gao、 asAs層4及びp  A
10.3 Gao、。
In order to manufacture the semiconductor laser of this example, the first A
As shown in the figure, first, an nAlo, 3 Gaa, As layer 2, which constitutes a first cladding layer, is formed on an n-GaAs substrate 1.
GaAs layer 3 constituting the active layer, p constituting the guide layer
-8 lo, +5 Gao, asAs layer 4 and p A
10.3 Gao,.

As層5を、MBE法またはMOCVD法によって順次
にエピタキシャル成長させる。なおp−AI。、3Ga
、、7As層5の厚さは、後述の凹凸6の高さの略半分
とする。
The As layer 5 is epitaxially grown in sequence by MBE or MOCVD. Note that p-AI. ,3Ga
,,7 The thickness of the As layer 5 is approximately half the height of the unevenness 6, which will be described later.

次に、第2図に示した様な2次回折格子の作製方法とし
て知られているホログラフィック露光法によって、p 
 Alo、+5Gao、esAS層4が部分的に露出し
更にp −AI。、、 Ga、、、 As層5の厚さと
略同じ深さとなるまで、p −A1.、、 Gao、t
 As層5及びp−AI。、 +5Gao、 esAs
層4を選択的にエツチングする。
Next, p
Alo, +5Gao, esAS layer 4 is partially exposed and further p-AI. ,, Ga, , p-A1. until the depth becomes approximately the same as the thickness of the As layer 5. ,, Gao,t
As layer 5 and p-AI. , +5Gao, esAs
Selectively etch layer 4.

すると、第1B図に示す様に、p −AIo、3 Ga
o、tAs層5とp  AIo、+5Gao、os八S
層4との界面を中心線とする三角波状凹凸6が形成され
る。
Then, as shown in Figure 1B, p -AIo, 3 Ga
o, tAs layer 5 and p AIo, +5Gao, os8S
Triangular wave-like unevenness 6 is formed with the center line at the interface with layer 4.

なお、第2図に示した様な2次回折格子は、半導体基板
とエツチング液とが有している異方性(結晶面依存性)
のために、ある程度の露光強度分布であれば、自己整合
的に再現性よく作製され得る。
Note that the second-order diffraction lattice as shown in Figure 2 is based on the anisotropy (crystal plane dependence) that the semiconductor substrate and the etching solution have.
Therefore, if the exposure intensity distribution is to a certain extent, it can be produced in a self-aligned manner with good reproducibility.

次に第1C図に示す様に、p−八10.1sGao、 
85八SN7を凹凸6の深さの半分の厚さ程度までエピ
タキシャル成長させて、凹凸6を被覆する。このとき、
MBE法またはMOCVD法を用いると、凹凸6の形状
を保存しながらpAlo、+5Gao、asAs層7を
エピタキシャル成長させることができる。
Next, as shown in Fig. 1C, p-810.1sGao,
858SN7 is epitaxially grown to a thickness that is approximately half the depth of the unevenness 6 to cover the unevenness 6. At this time,
By using the MBE method or the MOCVD method, the pAlo, +5Gao, and asAs layers 7 can be epitaxially grown while preserving the shape of the unevenness 6.

すると、pAlo、+5Gao、esAS層4と7とが
新たなガイド層4.7となり、既述のエツチング時に残
された断面三角形のp−へ1o、3Gao、7As層5
aが、新たなガイド層4.7中でGaAs層3に沿って
周期的に現れる様にこの新たなガイド層4.7中に配さ
れる。
Then, pAlo, +5Gao, esAS layers 4 and 7 become new guide layers 4.7, and 1o, 3Gao, 7As layer 5 is added to p-, which has a triangular cross section left during the etching described above.
a are arranged in this new guide layer 4.7 in such a way that they appear periodically along the GaAs layer 3 in the new guide layer 4.7.

最後に、第1C図に示す様に、pAIo、+5Ga0゜
esAs層7上に第2のクラッド層を構成するp−AI
。、3Ga、、、 As層8をエピタキシャル成長させ
る。
Finally, as shown in FIG.
. , 3Ga, , As layer 8 is epitaxially grown.

すると、pAlo、+5Gao、BsAS層7には凹凸
6の形状が保存されているので、p−AI。、3Gao
、7 As層8の一部がpAlo、3Gao、7As層
5aの周期に対応してこのp−^IQ、3 Gao、t
 As層5aの間に介在する。
Then, since the shape of the unevenness 6 is preserved in the pAlo, +5Gao, and BsAS layers 7, it is p-AI. ,3Gao
, 7 A part of the As layer 8 is p-^IQ, 3 Gao, t corresponding to the period of the pAlo, 3 Gao, 7 As layer 5a.
It is interposed between the As layers 5a.

以上の様な本実施例のDFBレーザでは、第2図に示し
た様な2次回折格子の作製方法と同じ方法を用いている
にも拘らず、第1C図から明らかな様に、実効的に1次
回折格子の周期つまり2次回折格子の周期の半分の周期
を有する周期構造が形成されている。
In the DFB laser of this embodiment as described above, although the same method as that of the second-order diffraction grating shown in FIG. 2 is used, as is clear from FIG. 1C, the effective A periodic structure having a period half the period of the first-order diffraction grating, that is, the period of the second-order diffraction grating, is formed.

三角波状凹凸6の高さはp−^10.3 Gao、 A
ss層5膜厚によって制御され得るが、上述の実施例の
製造方法は膜厚の精密制御が可能なMBE法またはMO
CVD法を用いているので、周期構造の制御性は良好で
ある。従って上述の実施例のDFBレーザは、形状の均
−性及び再現性が良好である。
The height of the triangular wave-like unevenness 6 is p-^10.3 Gao, A
The thickness of the ss layer 5 can be controlled by the thickness of the ss layer 5, but the manufacturing method of the above embodiment is based on the MBE method or the MO method, which allows precise control of the film thickness.
Since the CVD method is used, the controllability of the periodic structure is good. Therefore, the DFB laser of the above embodiment has good shape uniformity and reproducibility.

なお、上述の実施例においてはガイド層を構成するpA
lo、+5Gao、asAS層4上にp −AIo、3
 Gao、。
In addition, in the above-mentioned embodiment, pA constituting the guide layer
lo, +5 Gao, p -AIo, 3 on asAS layer 4
Gao,.

^S層5を形成したが、第1B図に示した様な三角波状
凹凸6をエツチングによって形成することができる物質
であればこのpAIo、3 Gao、t Ass層5代
わりに他の物質層を用いてもよく、例えばAt組成の異
なるAlGaAs層を用いてもよい。
Although the ^S layer 5 was formed, another material layer could be used in place of this pAIo, 3 Gao, t Ass layer 5 if it was made of a material that could form the triangular wave-like unevenness 6 as shown in FIG. 1B by etching. For example, AlGaAs layers having different At compositions may be used.

また、上述の実施例は本発明をAlGaAs / Ga
Asヘテロ構造のDFBレーザに適用したものであるが
、本発明は他の構造のDFBレーザにも適用することが
できる。
Moreover, the above-mentioned embodiments also demonstrate the present invention in AlGaAs/Ga
Although the present invention is applied to a DFB laser having an As heterostructure, the present invention can also be applied to DFB lasers having other structures.

〔発明の効果〕〔Effect of the invention〕

本発明による分布帰還型半導体レーザでは、実効的に物
質層の周期の半分の周期を有する周期構造が形成されて
いるので、製造が容易であるにも拘らず光との結合が強
く十分な発振を行い得る。
In the distributed feedback semiconductor laser according to the present invention, a periodic structure having a period that is effectively half the period of the material layer is formed, so although it is easy to manufacture, the coupling with light is strong and sufficient oscillation is achieved. can be done.

【図面の簡単な説明】[Brief explanation of drawings]

第1A図〜第1C図は本発明の一実施例によるDFBレ
ーザの製造方法を工程順に示す断面図、第2図は2次回
折格子の断面図である。 なお、図面に用いた符号において、 3−−−−−−−−・・−・−−−−−G a A s
層4 、 7−−−−−−・−p  Alo、 + 5
Gao、 15As層5 a 、 8−=−p  Al
o、 3 Gao、 TAS層である。
FIGS. 1A to 1C are cross-sectional views showing step by step a method for manufacturing a DFB laser according to an embodiment of the present invention, and FIG. 2 is a cross-sectional view of a second-order diffraction grating. In addition, in the symbols used in the drawings,
Layer 4, 7-------・-p Alo, +5
Gao, 15As layer 5a, 8-=-p Al
o, 3 Gao, TAS layer.

Claims (1)

【特許請求の範囲】 活性層及びこの活性層に対接しているガイド層と、 このガイド層中で前記活性層に沿って周期的に現れる様
にこのガイド層中に配されておりこのガイド層よりも屈
折率が低い物質層と、 前記ガイド層に対接すると共に前記物質層の周期に対応
して一部がこの物質層の間に介在しているクラッド層と
を夫々具備する分布帰還型半導体レーザ。
[Claims] An active layer, a guide layer in contact with the active layer, and a guide layer arranged in the guide layer so as to appear periodically along the active layer in the guide layer. A distributed feedback semiconductor comprising: a material layer having a refractive index lower than that of the material layer; and a cladding layer that is in contact with the guide layer and that is partially interposed between the material layers in a manner corresponding to the period of the material layer. laser.
JP61009464A 1986-01-20 1986-01-20 Distributed feedback semiconductor laser device Pending JPS62166583A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61009464A JPS62166583A (en) 1986-01-20 1986-01-20 Distributed feedback semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61009464A JPS62166583A (en) 1986-01-20 1986-01-20 Distributed feedback semiconductor laser device

Publications (1)

Publication Number Publication Date
JPS62166583A true JPS62166583A (en) 1987-07-23

Family

ID=11720993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61009464A Pending JPS62166583A (en) 1986-01-20 1986-01-20 Distributed feedback semiconductor laser device

Country Status (1)

Country Link
JP (1) JPS62166583A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6477191B1 (en) 1999-04-09 2002-11-05 Mitsui Chemicals, Inc. Semiconductor laser device, semiconductor laser module, rare-earth-element-doped optical fiber amplifier and fiber laser
JP2011199040A (en) * 2010-03-19 2011-10-06 Fujitsu Ltd Optical semiconductor device and method for manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6477191B1 (en) 1999-04-09 2002-11-05 Mitsui Chemicals, Inc. Semiconductor laser device, semiconductor laser module, rare-earth-element-doped optical fiber amplifier and fiber laser
JP2011199040A (en) * 2010-03-19 2011-10-06 Fujitsu Ltd Optical semiconductor device and method for manufacturing the same

Similar Documents

Publication Publication Date Title
JP2752423B2 (en) Method for diffusing Zn into compound semiconductor
JPH07122816A (en) Semiconductor quantum well type laser and its preparation
JPH0211027B2 (en)
JPH10229246A (en) Ridge semiconductor laser diode and its manufacturing method
JPS62166583A (en) Distributed feedback semiconductor laser device
JP2836822B2 (en) Method for manufacturing waveguide type semiconductor optical device
JP2564813B2 (en) A (1) GaInP semiconductor light emitting device
JPS59100583A (en) Semiconductor laser device
JPH0552676B2 (en)
JPH03238813A (en) Epitaxial growth method
JPS61184894A (en) Semiconductor optical element
JPS62166582A (en) Distributed feedback semiconductor laser device and manufacture thereof
JP2000244067A (en) Semiconductor laser element and its manufacture
JPS63255986A (en) Distributed reflection semiconductor laser element
JP2810518B2 (en) Semiconductor laser device and method of manufacturing the same
JPH01293686A (en) Manufacture of semiconductor laser element
JPS63151094A (en) Semiconductor laser device
JPH05167192A (en) Manufacture of semiconductor laser
JPS6123386A (en) Semiconductor laser
JP4024319B2 (en) Semiconductor light emitting device
JPH046889A (en) Semiconductor laser device
JPH1140885A (en) Semiconductor laser device
JPH01215087A (en) Semiconductor light emitting device
JPH0579194B2 (en)
JPH05235477A (en) Manufacture of semiconductor element