JPS62166582A - Distributed feedback semiconductor laser device and manufacture thereof - Google Patents

Distributed feedback semiconductor laser device and manufacture thereof

Info

Publication number
JPS62166582A
JPS62166582A JP61009463A JP946386A JPS62166582A JP S62166582 A JPS62166582 A JP S62166582A JP 61009463 A JP61009463 A JP 61009463A JP 946386 A JP946386 A JP 946386A JP S62166582 A JPS62166582 A JP S62166582A
Authority
JP
Japan
Prior art keywords
layer
forming
cladding layer
type
diffraction grating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61009463A
Other languages
Japanese (ja)
Inventor
Shoji Hirata
照二 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP61009463A priority Critical patent/JPS62166582A/en
Publication of JPS62166582A publication Critical patent/JPS62166582A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To obtain a sufficient oscillation in a distributed feedback semiconductor laser device by forming sequentially a first clad layer, an active layer and a second clad layer on a semiconductor substrate and a diffraction grating in the second layer to enhance a carrier enclosure efficiency. CONSTITUTION:An N-type Al0.3Ga0.7As layer 2 for forming a first clad layer, a GaAs layer 3 for forming an active layer, a P-type Al0.3Ga0.7As layer 4 for forming a second clad layer and a P-type Al0.15Ga0.85As layer 5 are sequentially epitaxially grown on an N-type GaAs substrate 1. Then, the layers 5, 4 are selectively etched until the layer 4 is partly exposed and becomes in thickness the same as that of the layer 5 to form a triangular uneven surface 6. Then, a P-type Al0.3Ga0.7As layer 7 for forming a third clad layer is epitaxially grown to cover the surface 6. Thus, a DFB layer having a secondary diffraction grating 8 with a P-type Al0.15Ga0.85As layer 5a is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本願の発明は、周期構造によって帰還が起こりレーザ発
振が行われる分布帰還型半導体レーザ及びその製造方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a distributed feedback semiconductor laser in which feedback occurs through a periodic structure and laser oscillation is performed, and a method for manufacturing the same.

〔発明の概要〕[Summary of the invention]

本願の第1発明は、上記の様な分布帰還型半導体レーザ
において、回折格子をクラッド層内に配することによっ
て、十分な発振が得られる様にしたものである。
The first invention of the present application is such that sufficient oscillation can be obtained by arranging a diffraction grating in the cladding layer in the distributed feedback semiconductor laser as described above.

また本願の第2発明は、上記の様な分布帰還型半導体レ
ーザの製造方法において、クラッド層上に所定の物質層
を形成し、これらの物質層とクラッド層とを選択的にエ
ツチングして周期的な凹凸を形成し、この凹凸上に更に
クラッド層を形成し、2つのクラッド層を1つの新たな
りラッド層とすることによって、製造を容易に行うこと
ができる様にしたものである。
Further, a second invention of the present application provides a method for manufacturing a distributed feedback semiconductor laser as described above, in which a predetermined material layer is formed on the cladding layer, and the material layer and the cladding layer are selectively etched to form a periodic pattern. By forming irregularities, forming a cladding layer on the irregularities, and forming two cladding layers into one new cladding layer, manufacturing can be easily performed.

〔従来の技術〕[Conventional technology]

分布帰還型(distributed feedbac
k)半導体レーザ(以下DFBレーザという)は、単−
縦モード発振を実現し得るレーザとして期待されている
distributed feedback type
k) Semiconductor laser (hereinafter referred to as DFB laser) is a single-
It is expected to be a laser that can achieve longitudinal mode oscillation.

このDFBレーザにおいては、従来は、活性層とクラッ
ド層との間に更にガイド層を形成すると共にこのガイド
層に回折格子を形成し、この回折格子によるブラッグ反
射によって光を分布的に帰還させていた。
Conventionally, in this DFB laser, a guide layer is further formed between the active layer and the cladding layer, a diffraction grating is formed in this guide layer, and light is distributed back by Bragg reflection by this diffraction grating. Ta.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところが上述の様な従来のDFBレーザでは、クラッド
層が活性層に接していないためにキャリアの閉じ込め効
率が低く、十分な発振を行うことができなかった。
However, in the conventional DFB laser as described above, the carrier confinement efficiency is low because the cladding layer is not in contact with the active layer, and sufficient oscillation cannot be performed.

〔問題点を解決するための手段〕[Means for solving problems]

本願の第1発明による分布帰還型半導体レーザは、半導
体基板1上に順次に配されている第1のクラッドN2、
活性層3及び第2のクラッド層4.7と、この第2のク
ラッド層4.7内に配されている回折格子8とを夫々具
備している。
The distributed feedback semiconductor laser according to the first invention of the present application includes a first cladding N2, which is sequentially arranged on a semiconductor substrate 1;
They each include an active layer 3, a second cladding layer 4.7, and a diffraction grating 8 disposed within the second cladding layer 4.7.

また本願の第2発明による分布帰還型半導体レーザの製
造方法は、半導体基板1上に第1のクラッド層2、活性
層3及び第2のクラッド層4を順次に形成する工程と、
前記第2のクラッド層4上に所定の物質層5を形成する
工程と、前記物質層5と前記第2のクラッド層4とを選
択的にエツチングすることによってこれらの表面に周期
的な凹凸6を形成する工程と、前記凹凸6上に第3のク
ラッド層7を形成する工程とを夫々具備している。
Further, the method for manufacturing a distributed feedback semiconductor laser according to the second invention of the present application includes the steps of sequentially forming a first cladding layer 2, an active layer 3, and a second cladding layer 4 on a semiconductor substrate 1;
By forming a predetermined material layer 5 on the second cladding layer 4 and selectively etching the material layer 5 and the second cladding layer 4, periodic irregularities 6 are formed on the surfaces thereof. and a step of forming a third cladding layer 7 on the unevenness 6, respectively.

〔作用〕[Effect]

本願の第1発明による分布帰還型半導体レーザでは、活
性層3の両側に第1及び第2のクラッド層2及び4.7
が配されているので、キャリアの閉じ込め効率が高い。
In the distributed feedback semiconductor laser according to the first invention of the present application, first and second cladding layers 2 and 4.7 are provided on both sides of the active layer 3.
is arranged, so the carrier confinement efficiency is high.

また本願の第2発明による分布帰還型半導体レーザの製
造方法では、第2のクラッド層4と第3のクラッド層7
とが新たな第2のクラッド層4.7となり、選択的にエ
ツチングされて周期的な凹凸6を形成された所定の物質
層5が新たな第2のクラッド層4.7内に配され、この
物質層5が回折格子8となる。
Further, in the method for manufacturing a distributed feedback semiconductor laser according to the second invention of the present application, the second cladding layer 4 and the third cladding layer 7
becomes a new second cladding layer 4.7, a predetermined material layer 5 selectively etched to form periodic irregularities 6 is disposed within the new second cladding layer 4.7, This material layer 5 becomes a diffraction grating 8.

〔実施例〕〔Example〕

以下、A lGaAs / GaAs ヘテロ構造のD
FBレーザに適用した本願の発明の一実施例を第1図を
参照しながら説明する。
Below, D of AlGaAs/GaAs heterostructure
An embodiment of the present invention applied to an FB laser will be described with reference to FIG.

この実施例では、第1A図に示す様に、まずn−GaA
s基板1上に第1のクラッド層を構成するn−八10.
3 Gao、t As層2、活性層を構成するGaAs
層3、第2のクラッド層を構成するp−Δ1゜、1Ga
0.7As層4及びpAIo、+5Gao、8BAs層
5を、MBE法またはMOCVD法によって順次にエピ
タキシャル成長させる。なおp−八io、 +5Gao
、 85AS層5の厚さは、後述の凹凸6の高さの略半
分とする。
In this example, as shown in FIG. 1A, first, n-GaA
n-8 10. constituting the first cladding layer on the s-substrate 1;
3 Gao, t As layer 2, GaAs constituting the active layer
Layer 3, p-Δ1°, 1Ga constituting the second cladding layer
The 0.7As layer 4 and the pAIo, +5Gao, and 8BAs layers 5 are epitaxially grown in sequence by MBE or MOCVD. Furthermore, p-8io, +5Gao
, 85The thickness of the AS layer 5 is approximately half the height of the unevenness 6, which will be described later.

次に、第3図に示す様な通常の2次回折格子の作製方法
として知られているホログラフインク露光法によって、
pAlo、i Gao、7 As層4が部分的に露出し
更にp−八Io、 + 5Gao、 5sAs層5の厚
さと略同じ深さとなるまで、pAlo、+5Gao、e
sAs層5及びp−AI。、3Ga、、、 As層4を
選択的にエツチングする。
Next, using the holographic ink exposure method, which is known as a normal method for producing second-order diffraction gratings as shown in Figure 3,
pAlo,i Gao,7 As layer 4 is partially exposed and further p-8Io, +5Gao,5s pAlo,+5Gao,e is removed until the As layer 4 reaches a depth approximately equal to the thickness of p-8Io, +5Gao,5sAs layer 5.
sAs layer 5 and p-AI. , 3Ga, , As layer 4 is selectively etched.

すると、第1B図に示す様に、p−へ1o、 + 5G
ao、 asAs層5とp−八I。、3 Ga(、、)
As層4との界面を中心線とする三角波状凹凸6が形成
される。
Then, as shown in Figure 1B, 1o to p-, + 5G
ao, asAs layer 5 and p-8I. , 3 Ga(,,)
Triangular wave-like unevenness 6 is formed with the center line at the interface with the As layer 4.

なお、第3図に示した様な形状の2次回折格子は、半導
体基板とエツチング液とが有している異方性(結晶面依
存性)のために、ある程度の露光強度分布であれば、自
己整合的に再現性よく作製され得る。
Note that the second-order diffraction grating with the shape shown in Fig. 3 will not work if the exposure intensity distribution is to a certain extent due to the anisotropy (crystal plane dependence) of the semiconductor substrate and the etching solution. , can be produced in a self-consistent and reproducible manner.

次に再びMBE法またはMOCVD法によって、第1C
図に示す様に、第3のクラッド層を構成すルp−AI。
Next, the first C
As shown in the figure, p-AI constitutes the third cladding layer.

、3 Ga、、、 As層7をエピタキシャル成長させ
て凹凸6を被覆する。
, 3 Ga, , As layer 7 is epitaxially grown to cover the unevenness 6 .

すると、p−八10. :l Gao、7へS層4と7
とが新たな第2のクラッド層となり、既述のエツチング
時に残された断面三角形のp  Alo、+5Gao、
as^S層5aが、新たな第2のクラッド層4.7内に
配される。
Then p-810. :l Gao, S layer 4 and 7 to 7
becomes a new second cladding layer, and p Alo, +5Gao, which has a triangular cross section left during the etching described above,
The as^S layer 5a is arranged in the new second cladding layer 4.7.

ところが、第1C図に示す構成は第4図に示す2次回折
格子と実質的に同じ周期構造を有しており、pAlo、
+5Gao、esAs層5aによる2次回折格子8を有
するDFBレーザが製造されたことになる。
However, the configuration shown in FIG. 1C has substantially the same periodic structure as the second-order diffraction grating shown in FIG.
This means that a DFB laser having a second-order diffraction grating 8 made of +5 Gao and esAs layers 5a has been manufactured.

以上の様な本実施例によれば1次フーリエ成分が最大で
光との結合が強い第4図に示した2次回折格子と実質的
に同じ周期構造である2次回折格子8を有するDFBレ
ーザを、1次フーリエ成分がOで光との結合は弱いが形
状の均−性及び再現性の良好な作製が可能である第3図
に示した2次回折格子と同様な方法によって製造するこ
とができる。従って本実施例によるDFBレーザは、形
状の均−性及び再現性が良好であるにも拘わらず、十分
な発振を得ることができる。
According to this embodiment as described above, the DFB has the second-order diffraction grating 8 having the periodic structure substantially the same as the second-order diffraction grating shown in FIG. 4, which has the maximum first-order Fourier component and strong coupling with light. The laser is manufactured by the same method as the second-order diffraction grating shown in Fig. 3, which has a first-order Fourier component of O and has weak coupling with light, but can be manufactured with good shape uniformity and reproducibility. be able to. Therefore, the DFB laser according to this embodiment can obtain sufficient oscillation even though the shape uniformity and reproducibility are good.

また、三角波状凹凸6の高さはp−AI。、 I 5G
ao、asAs層5の膜厚によって制御され得るが、上
述の実施例は膜厚の精密制御が可能なMB2法またはM
OCVD法を用いているので、2次回折格子8の凹凸の
高さの制御性も良好である。従ってこのことによっても
、上述の実施例によるDFBレーザは形状の均−性及び
再現性が良好である。
Moreover, the height of the triangular wave-like unevenness 6 is p-AI. , I5G
The thickness of the ao and asAs layer 5 can be controlled by the thickness of the layer 5, but in the above embodiment, the MB2 method or M
Since the OCVD method is used, the height of the unevenness of the second-order diffraction grating 8 can be easily controlled. Therefore, also due to this fact, the DFB laser according to the above embodiment has good shape uniformity and reproducibility.

また、上述の実施例においては第2のクラッド層を構成
するp、  AIo、3 Gao、7As層4上にp−
Alo、 r 5Gao、 asAs層5を形成したが
、第1B図に示した様な三角波状凹凸6をエツチングに
よって形成することができる物質であればごのp −A
I。15Ga。、5sAs層5の代わりに他の物質層を
用いてもよく、例えばA1組成の異なるAlGaAs層
を用いてもよい。
In addition, in the above-mentioned embodiment, p-
Although the Alo, r5Gao, and asAs layers 5 were formed, any material that can form the triangular wave-like unevenness 6 as shown in FIG. 1B by etching may be used.
I. 15Ga. , 5sAs layer 5 may be replaced by another material layer, for example, an AlGaAs layer having a different Al composition.

更にまた、上述の実施例においては2次回折格子8を有
するDFBレーザに本願の発明を適用したが、例えば第
2図に示す様な3次回折格子やより高次の回折格子を有
するDFBレーザにも本願の発明を適用することができ
る。また、AlGaAs/GaAsヘテロ構造以外のD
FBレーザに本願の発明を適用することも可能である。
Furthermore, in the above-described embodiments, the invention of the present application is applied to a DFB laser having a second-order diffraction grating 8, but for example, a DFB laser having a third-order diffraction grating or a higher-order diffraction grating as shown in FIG. The invention of the present application can also be applied to. In addition, D other than AlGaAs/GaAs heterostructure
It is also possible to apply the invention of the present application to an FB laser.

(発明の効果〕 本願の第1発明による分布帰還型半導体レーザでは、キ
ャリアの閉じ込め効率が高いので、十分な発振が得られ
る。
(Effects of the Invention) In the distributed feedback semiconductor laser according to the first invention of the present application, sufficient oscillation can be obtained because the carrier confinement efficiency is high.

また本願の第2発明による分布帰還型半導体レーザの製
造方法では、第3のクラッド層を形成することによって
新たな第2のクラッド層内に回折格子が自動的に配され
、しかも選択的なエツチングによる凹凸の形成は従来か
らの手法によって行われ得るので、本願の第1発明によ
る分布帰還型半導体レーザが容易に製造される。
Further, in the method for manufacturing a distributed feedback semiconductor laser according to the second invention of the present application, by forming the third cladding layer, a diffraction grating is automatically arranged in the new second cladding layer, and selective etching is also performed. Since the unevenness can be formed by a conventional method, the distributed feedback semiconductor laser according to the first invention of the present application can be easily manufactured.

【図面の簡単な説明】[Brief explanation of drawings]

第1A図〜第1C図は本願の発明の一実施例によるDF
Bレーザの製造方法を工程順に示す断面図、第2図は3
次回折格子の断面図、第3図は1次フーリエ成分が0で
ある2次回折格子の断面図、第4図は1次フーリエ成分
が最大である2次回折格子の断面図である。 なお、図面に用いた符号において、 1−−−−−−−−− n −GaAs基板2−−−−
−−−−−−−−−n   Alo、xGao、を八S
 層3−・−・−−−−−−−−・−G a A s層
4.1’−”’−’pAlo、:+Gao、7As層5
−−−−−−−−−−−−−− p−へ1o、 + 5
Gao、a5As層6・・・−−−−−−−−・・−・
−三角波状凹凸8−−−−−・−・・−−−−−−−−
2次回折格子である。
1A to 1C are DFs according to an embodiment of the invention of the present application.
A cross-sectional view showing the manufacturing method of the B laser in the order of steps, Figure 2 is 3.
FIG. 3 is a cross-sectional view of a second-order diffraction grating in which the first-order Fourier component is 0, and FIG. 4 is a cross-sectional view of the second-order diffraction grating in which the first-order Fourier component is maximum. In addition, in the reference numerals used in the drawings, 1----------- n -GaAs substrate 2----
----------n Alo, xGao, 8S
Layer 3-----------Ga As layer 4.1'-"'-'pAlo, :+Gao, 7As layer 5
−−−−−−−−−−−−− 1o to p-, + 5
Gao, a5As layer 6...---------...
−Triangular wave-like unevenness 8−−−−−・−・・−−−−−−−−
This is a second-order diffraction grating.

Claims (1)

【特許請求の範囲】 1、半導体基板上に順次に配されている第1のクラッド
層、活性層及び第2のクラッド層と、この第2のクラッ
ド層内に配されている回折格子とを夫々具備する分布帰
還型半導体レーザ。 2、半導体基板上に第1のクラッド層、活性層及び第2
のクラッド層を順次に形成する工程と、前記第2のクラ
ッド層上に所定の物質層を形成する工程と、 前記物質層と前記第2のクラッド層とを選択的にエッチ
ングすることによってこれらの表面に周期的な凹凸を形
成する工程と、 前記凹凸上に第3のクラッド層を形成する工程とを夫々
具備する分布帰還型半導体レーザの製造方法。
[Claims] 1. A first cladding layer, an active layer, and a second cladding layer that are sequentially arranged on a semiconductor substrate, and a diffraction grating that is arranged in the second cladding layer. Distributed feedback semiconductor laser equipped with each. 2. A first cladding layer, an active layer and a second cladding layer on a semiconductor substrate.
forming a predetermined material layer on the second cladding layer; and selectively etching the material layer and the second cladding layer. A method for manufacturing a distributed feedback semiconductor laser, comprising the steps of: forming periodic irregularities on a surface; and forming a third cladding layer on the irregularities.
JP61009463A 1986-01-20 1986-01-20 Distributed feedback semiconductor laser device and manufacture thereof Pending JPS62166582A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61009463A JPS62166582A (en) 1986-01-20 1986-01-20 Distributed feedback semiconductor laser device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61009463A JPS62166582A (en) 1986-01-20 1986-01-20 Distributed feedback semiconductor laser device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS62166582A true JPS62166582A (en) 1987-07-23

Family

ID=11720969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61009463A Pending JPS62166582A (en) 1986-01-20 1986-01-20 Distributed feedback semiconductor laser device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS62166582A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63213383A (en) * 1987-02-27 1988-09-06 Mitsubishi Electric Corp Semiconductor laser
US5363399A (en) * 1991-11-21 1994-11-08 Mitsubishi Denki Kabushiki Kaisha Semiconductor distributed-feedback laser device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63213383A (en) * 1987-02-27 1988-09-06 Mitsubishi Electric Corp Semiconductor laser
US5363399A (en) * 1991-11-21 1994-11-08 Mitsubishi Denki Kabushiki Kaisha Semiconductor distributed-feedback laser device

Similar Documents

Publication Publication Date Title
CA1105598A (en) Semiconductor laser device
US5045499A (en) Method of manufacturing a distributed brass reflector type semiconductor laser
US5292685A (en) Method for producing a distributed feedback semiconductor laser device
JP2502949B2 (en) Semiconductor quantum well laser and method of manufacturing the same
JPS6180882A (en) Semiconductor laser device
US4716132A (en) Method of manufacturing a distributed feedback type semiconductor device
GB1500590A (en) Semiconductor laser device and a method for fabricating the same
US5303255A (en) Distributed feedback semiconductor laser device and a method of producing the same
JPS62166582A (en) Distributed feedback semiconductor laser device and manufacture thereof
KR19990030322A (en) Manufacturing Method of Optical Semiconductor Device
JPS61222189A (en) Semiconductor laser
JPS62173786A (en) Distributed feedback type semiconductor laser
JPS63213383A (en) Semiconductor laser
JP2852663B2 (en) Semiconductor laser device and method of manufacturing the same
JP3215477B2 (en) Semiconductor distributed feedback laser device
JPS62166583A (en) Distributed feedback semiconductor laser device
JP3274710B2 (en) Distributed feedback semiconductor laser device and method of manufacturing distributed feedback semiconductor laser device
JPS62150794A (en) Distributed-feedback type semiconductor laser
JPS62199085A (en) Semiconductor laser
JPS63263788A (en) Semiconductor laser
JPS61220389A (en) Integrated type semiconductor laser
JPS61184894A (en) Semiconductor optical element
JPS63151094A (en) Semiconductor laser device
JP2810518B2 (en) Semiconductor laser device and method of manufacturing the same
JPH04356001A (en) Production of diffraction grating