JPS6216511B2 - - Google Patents
Info
- Publication number
- JPS6216511B2 JPS6216511B2 JP54074210A JP7421079A JPS6216511B2 JP S6216511 B2 JPS6216511 B2 JP S6216511B2 JP 54074210 A JP54074210 A JP 54074210A JP 7421079 A JP7421079 A JP 7421079A JP S6216511 B2 JPS6216511 B2 JP S6216511B2
- Authority
- JP
- Japan
- Prior art keywords
- carbon
- powder
- nickel
- paste
- gas diffusion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 59
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 51
- 238000000034 method Methods 0.000 claims description 27
- 229910052751 metal Inorganic materials 0.000 claims description 26
- 239000002184 metal Substances 0.000 claims description 26
- 238000005245 sintering Methods 0.000 claims description 17
- 238000009792 diffusion process Methods 0.000 claims description 16
- 238000004519 manufacturing process Methods 0.000 claims description 10
- 239000012298 atmosphere Substances 0.000 claims description 3
- 238000001035 drying Methods 0.000 claims 1
- 230000001590 oxidative effect Effects 0.000 claims 1
- 229910052799 carbon Inorganic materials 0.000 description 23
- 239000007789 gas Substances 0.000 description 19
- 239000003054 catalyst Substances 0.000 description 15
- 239000011162 core material Substances 0.000 description 15
- 229910052759 nickel Inorganic materials 0.000 description 14
- 239000000843 powder Substances 0.000 description 11
- 239000006229 carbon black Substances 0.000 description 7
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 6
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 239000003795 chemical substances by application Substances 0.000 description 6
- 238000002156 mixing Methods 0.000 description 6
- 239000000758 substrate Substances 0.000 description 6
- 238000004078 waterproofing Methods 0.000 description 6
- 239000007864 aqueous solution Substances 0.000 description 5
- 239000001257 hydrogen Substances 0.000 description 5
- 229910052739 hydrogen Inorganic materials 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 238000012856 packing Methods 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 238000010924 continuous production Methods 0.000 description 4
- 239000011812 mixed powder Substances 0.000 description 4
- 239000011148 porous material Substances 0.000 description 4
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 3
- 239000011149 active material Substances 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- 239000001768 carboxy methyl cellulose Substances 0.000 description 3
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 3
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 3
- 239000004020 conductor Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000003792 electrolyte Substances 0.000 description 3
- 239000000446 fuel Substances 0.000 description 3
- 229910052763 palladium Inorganic materials 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- 239000006230 acetylene black Substances 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000005868 electrolysis reaction Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 235000011121 sodium hydroxide Nutrition 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- -1 No. 5 Chemical compound 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 238000004026 adhesive bonding Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 229920002313 fluoropolymer Polymers 0.000 description 1
- 239000004811 fluoropolymer Substances 0.000 description 1
- 229910000474 mercury oxide Inorganic materials 0.000 description 1
- UKWHYYKOEPRTIC-UHFFFAOYSA-N mercury(ii) oxide Chemical compound [Hg]=O UKWHYYKOEPRTIC-UHFFFAOYSA-N 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- PIBWKRNGBLPSSY-UHFFFAOYSA-L palladium(II) chloride Chemical compound Cl[Pd]Cl PIBWKRNGBLPSSY-UHFFFAOYSA-L 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000003232 water-soluble binding agent Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Inert Electrodes (AREA)
Description
酸素ガスあるいは水素ガス等を電気化学的に反
応させてイオンにするガス拡散電極は、古くから
原理は発見され、空気電池、燃料電池等に開発さ
れ、電解への利用も考えられている。とくに、燃
料電池の研究でその特性は大幅に向上してきてい
る。 ガス拡散電極とは、ガスをイオンにするための
ものであるから、多孔性であるとともに導電材と
触媒、それに水溶液を電解液とする場合には防水
剤とからなつている。ガスはこの触媒と電解液と
が接した部分でイオンになるとされている。 このようなガス拡散電極では、とくに常温から
150℃程度の範囲で用いられるものが開発が進ん
でいるようであり、大別すると2種類の代表的な
方法が提案されている。その一つは、炭素電極で
あり、活性炭自身を触媒とするもので、古くから
空気電池にはこの構造の空気極が用いられてい
る。また、これに触媒を加えて電気化学反応を触
媒を加えた炭素層の部分で行なわせ、別に支持体
として焼結金属層を有するものもある。 他の一つは、金属を主とする粉末を焼結して多
孔体とし、触媒を加えたものであり、上述の炭素
極とともに燃料電池用などに用いられている。こ
の両者を比較した場合に、製法の上では炭素極が
すぐれているが、放電特性、とくに高放電特性の
点では金属を焼結したものが、導電性の点ですぐ
れていることから分極が少ない。 この焼結式多孔体には、従来集電体としてほゞ
中心部に金属の多孔体、たとえばスクリーン、エ
キスパンドメタル、孔あき板などが用いられ、さ
らに三次元構造をもつ発泡状金属多孔体を用いる
提案もある。 本発明は、このような発泡状金属多孔体を用い
たガス拡散電極において、とくに連続生産に適し
た方法であるとともに、食塩電解のように極めて
電流密度が大きく、しかも高温度のもとで使用す
るような用途にも適用できるように用途拡大が可
能なガス拡散電極の製造法を提供するものであ
る。 発泡状金属多孔体は、三次元構造を有している
ので、ニツケル粉末に活性炭あるいはアセチレン
ブラツクのようなカーボンブラツクを加えた混合
粉末を充てんすることはできるが、やはりスクリ
ーンや孔あき板等の二次元構造の多孔体を用いる
場合よりも困難であり、多量生産や大型電極を製
造する際には改良の余地を残していた。 そこで本発明では、すでにアルカリ電池用ニツ
ケル極等の製法として提案したように、まずニツ
ケル粉末と炭素をカルボキシメチルセルロースの
ような水溶性結着剤溶液によりペースト状とし、
これをすり込み治具により多孔体にすり込むので
ある。この方法により、炭素とニツケル粉末のよ
うに密度が極めて異なるものでも均一に多孔体に
充てんできることがわかつた。しかもこの発泡状
多孔体をフープ状にしておけば、このフープをペ
ースト中に浸せきし、この部分ですり込み操作を
加えられるので、連続的に充てんすることが可能
となり、これを乾燥後非酸化性雰囲気中で焼結す
ることにより、ガス拡散電極用の基体を連続的に
製造することが可能である。この後は触媒および
防水剤を添加すればよい。この触媒もたとえばイ
オン化傾向の差を利用して析出させ、さらに水洗
乾燥後、防水剤溶液に浸せきし、必要ならばその
後に熱処理をすればよいので、すべて連続工程が
可能になる。 本発明はこのように連続生産に適した方法であ
るとともに、大きな電極でも均一性よく製造でき
る。しかし、むしろ、高率放電で長寿命の電極に
することが大きな長所なのである。 すなわち、ニツケルと炭素の混合粉末の焼結体
自体が触媒の担体として、また導電体としてすぐ
れていることはすでに明らかであるが、発泡状金
属多孔体でこの焼結体が包まれるように存在して
いるので、単に包含されている炭素粉末が使用中
に脱落して性能劣化が生ずることが少なくなると
ともに、ペーストを含有させているのでこれが焼
結時に炭化してニツケル焼結体への炭素粉末の付
着力を向上させることになり、脱落による性能劣
化はさらに少なくなるのである。 また、ニツケル粉末と炭素の混合割合について
は、ニツケル粉末に対する活性炭の添加量が30重
量%程度、カーボンブラツクでは12%程度までは
多い方が寿命の点ではすぐれていることを見出し
ているが、粉末、充てん焼結法でしかも二次元構
造のスクリーン等の芯材の場合は、もともと炭素
は焼結には関与しないので多量に存在するとニツ
ケル粉末同志の接触が少なくなり、したがつてニ
ツケルの焼結が妨害されることになり、この傾向
が顕著となる。したがつて焼結体の強度が低下
し、また、活性炭あるいはカーボンブラツクなど
の加えられている炭素の脱落も多い。このような
原因で炭素の添加量は、活性炭で12%程度、カー
ボンブラツクでは6%程度が限度であつた。とこ
ろが粉末を充てんし焼結する方法でも、芯材を発
泡状金属にすることにより、芯材で焼結体を包含
する構造となるので、活性炭の場合には20%程度
にまで、カーボンブラツクでは8%程度にまで引
き上げることができる。 本発明では、芯材としては、このような三次元
構造の発泡状金属を用い、ニツケルと炭素の混合
粉末を結着剤溶液によりペーストにし、これを充
てんしているので、炭素の混合量をさらに増すこ
とが可能になつたのである。 芯材としてスクリーン、エキスパンドメタル、
パンチングメタル等を用い、これにカーボニルニ
ツケルをカルボキシメチルセルロース水溶液でペ
ーストにしたものを両面に塗着し、水素や水素と
窒素の混合ガス等の雰囲気中で焼結する方法が焼
結式アルカリ電池用の焼結基体の製法としてよく
知られ普及している。本発明は、この方法を改良
して、芯材として発泡メタルを用い、ペーストと
してニツケルと炭素の混合粉末に結着剤を加えた
ものを用いて、ガス拡散電極としてとくに高負荷
のもとで長寿命を可能にしたものである。 つまり、アルカリ電池用焼結基体の場合の、ペ
ーストを塗着し焼結する方法は、粉末を充てんし
焼結する方法に比べて連続生産に適しているので
採用されている。しかし、この場合は焼結後に活
物質を充てんする必要がある。ところが、ニツケ
ル粉末がペースト時にいつたんぬれてそれから乾
燥されるペースト式では充てん密度が大きくな
り、高多孔度になり難く、高多孔度にする努力は
払われているが、活物質充てんへの困難さが残さ
れ、活物質が表面に付着する問題点がある。しか
し、それでも連続生産のメリツトがあるので採用
される場合があるのである。 ところが、ニツケル粉末と炭素粉末を混合して
焼結し、これをガス拡散電極の基体として用い、
しかもその芯材として発泡状金属を用いる場合に
おいては、大きな負荷のもとでも長寿命の電極を
得ることが可能であることを見出したのである。 その理由としては、まず、ニツケル粉末と炭素
粉末の混合の均一性がよくなることがあげられ
る。つぎに、ペースト式では、少量ではあるが結
着剤が用いられるのでこれが焼結時に炭化して炭
素粉末の焼結体への付着力が若干でも増すのであ
る。また、アルカリ電池では問題となるニツケル
粉末同志の強固な焼結は、炭素粉末の包含力を増
して好ましい。したがつてこれらの効果が芯材に
三次元の発泡状金属を使用して骨格で焼結層を包
む効果に付加されるのである。したがつて同じペ
ースト式といつてもその効果は、アルカリ電池用
焼結基体の場合とはまつたく異なるのである。 ニツケル粉末に加える炭素粉末としては、活性
炭が好ましく、粉末充てんで芯材としてスクリー
ン等を用いた場合には12重量%程度が限度であ
り、これが同じく粉末充てんで芯材として発泡状
金属を用いることにより20%程度にまでなり、本
発明では30%程度まで可能になる。その他ではア
セチレンブラツクなどのカーボンブラツクがよ
く、この場合も乾式で二次元構造の芯材では6%
程度、発泡状金属では8%程度、これが、本発明
では10%程度までが可能になる。したがつて活性
炭とカーボンブラツクを混合して用いる場合には
その混合比にもよるが、20%程度までである。 なおここで用いる発泡状金属としては、ニツケ
ルがよく、多孔度は90〜96%程度、孔径50〜300
μ、厚さ1〜3mmが好ましい。 さらに、ニツケル粉末としては、カーボニルニ
ツケルが最も普通であり、充てん密度の大きい粉
末の場合には、炭素は多量に、逆に小さい粉末で
はそれよりもやゝ少量がよく、上述の炭素の添加
の上限は充てん密度が大きい場合に相当する。ま
た、炭素量の下限については、少量でも入れるだ
け効果はあるが、多量に加えるほど特性、寿命と
もよいので、活性炭では10%程度以上、カーボン
ブラツクでは6%程度以上がよい。 以下本発明の実施例を説明する。 市販のカーボニルニツケル(充てん密度2.4)
と炭素粉末とを第1表に示すような割合で混合
し、この混合物1Kgに対してカルボキシメチルセ
ルロースの2.8重量%水溶液を約24加えて十分
撹拌してペーストを得る。このなかを厚さ2mm、
多孔度94%、平均孔径150μの発泡状金属フープ
を通し、その表面をゴム板を往復運動させてすり
込むように充てんする。勿論充てんはどのような
方法で行なつてもよいが、発泡状金属体への充て
んはこの方法が最もすぐれている。 ついで発泡状ニツケルの両面に付着しているペ
ーストをスリツト間を通すことにより取り除き、
180℃で10分間乾燥し、その後水素気流中におい
て950℃で20分間焼結する。このようにして本発
明のガス拡散電極が得られる。その後は、たとえ
ば白金、パラジウム、銀などの公知の触媒を添加
し、最後に防水剤としてたとえばフツ素樹脂デイ
スパージヨンを含浸し、場合によつては熱処理す
る。 本実施例では、触媒としてパラジウムを2mg/
cm2の割合で添加した。その添加方法は、少量の塩
酸をブチルアルコールとアセトンとの容積比3:
1の混合物で希釈した液に塩化パラジウムを溶解
し、この溶液に上記電極を浸漬することにより、
パラジウムを析出させる方法によつた。この触媒
添加後、防水剤としてフツ素樹脂の水性デイスパ
ージヨン(樹脂分6重量%)を含浸し、これに含
まれている界面活性剤を除くために窒素雰囲気中
で250℃で30分間加熱処理した。その後所定の位
置にリード板を取り付け、さらにガス側となる面
に、多孔度約65%、厚さ0.2mm、孔径平均10μの
フツ素樹脂多孔体を100Kg/cm2の圧力で圧着し
た。 図面は、上記の焼結までの電極製造工程を示
す。 図において、1が発泡状金属のフープ、2はタ
ーンローラ、3が駆動用ローラ、4がニツケルと
炭素を主とするペースト、5はこれを撹拌してい
る棒である。この場合に芯材1にペーストを充て
んする方法は種々あるが、この図は最も好ましい
方法の例であつて、ゴムのような柔軟性のある板
6を用い、これを支持板7で支持し、杆8により
往復運動させることにより、板6で芯材1の表面
をこするようにしてペーストを芯材に充てんす
る。9は芯材の表面に付着したペーストを除くた
めのスリツト、10は乾燥器、11は雰囲気炉で
あり、水素あるいは水素と窒素の混合ガスを用い
る。このようにしてガス拡散電極基体を得て、一
般的にはこの後で公知の方法で触媒および防水剤
を添加する。なお、酸素極として用いる場合に
は、この基体中の炭素を触媒とすることも可能で
ある。 次に、上記実施例におけるニツケルと炭素の混
合割合を第1表のように種々変えて得た電極の性
能試験の結果を説明する。なお比較例として、ニ
ツケルと炭素との混合物をスクリーンとともに型
内に充てんし、焼結する方法で得た電極を用い
た。
応させてイオンにするガス拡散電極は、古くから
原理は発見され、空気電池、燃料電池等に開発さ
れ、電解への利用も考えられている。とくに、燃
料電池の研究でその特性は大幅に向上してきてい
る。 ガス拡散電極とは、ガスをイオンにするための
ものであるから、多孔性であるとともに導電材と
触媒、それに水溶液を電解液とする場合には防水
剤とからなつている。ガスはこの触媒と電解液と
が接した部分でイオンになるとされている。 このようなガス拡散電極では、とくに常温から
150℃程度の範囲で用いられるものが開発が進ん
でいるようであり、大別すると2種類の代表的な
方法が提案されている。その一つは、炭素電極で
あり、活性炭自身を触媒とするもので、古くから
空気電池にはこの構造の空気極が用いられてい
る。また、これに触媒を加えて電気化学反応を触
媒を加えた炭素層の部分で行なわせ、別に支持体
として焼結金属層を有するものもある。 他の一つは、金属を主とする粉末を焼結して多
孔体とし、触媒を加えたものであり、上述の炭素
極とともに燃料電池用などに用いられている。こ
の両者を比較した場合に、製法の上では炭素極が
すぐれているが、放電特性、とくに高放電特性の
点では金属を焼結したものが、導電性の点ですぐ
れていることから分極が少ない。 この焼結式多孔体には、従来集電体としてほゞ
中心部に金属の多孔体、たとえばスクリーン、エ
キスパンドメタル、孔あき板などが用いられ、さ
らに三次元構造をもつ発泡状金属多孔体を用いる
提案もある。 本発明は、このような発泡状金属多孔体を用い
たガス拡散電極において、とくに連続生産に適し
た方法であるとともに、食塩電解のように極めて
電流密度が大きく、しかも高温度のもとで使用す
るような用途にも適用できるように用途拡大が可
能なガス拡散電極の製造法を提供するものであ
る。 発泡状金属多孔体は、三次元構造を有している
ので、ニツケル粉末に活性炭あるいはアセチレン
ブラツクのようなカーボンブラツクを加えた混合
粉末を充てんすることはできるが、やはりスクリ
ーンや孔あき板等の二次元構造の多孔体を用いる
場合よりも困難であり、多量生産や大型電極を製
造する際には改良の余地を残していた。 そこで本発明では、すでにアルカリ電池用ニツ
ケル極等の製法として提案したように、まずニツ
ケル粉末と炭素をカルボキシメチルセルロースの
ような水溶性結着剤溶液によりペースト状とし、
これをすり込み治具により多孔体にすり込むので
ある。この方法により、炭素とニツケル粉末のよ
うに密度が極めて異なるものでも均一に多孔体に
充てんできることがわかつた。しかもこの発泡状
多孔体をフープ状にしておけば、このフープをペ
ースト中に浸せきし、この部分ですり込み操作を
加えられるので、連続的に充てんすることが可能
となり、これを乾燥後非酸化性雰囲気中で焼結す
ることにより、ガス拡散電極用の基体を連続的に
製造することが可能である。この後は触媒および
防水剤を添加すればよい。この触媒もたとえばイ
オン化傾向の差を利用して析出させ、さらに水洗
乾燥後、防水剤溶液に浸せきし、必要ならばその
後に熱処理をすればよいので、すべて連続工程が
可能になる。 本発明はこのように連続生産に適した方法であ
るとともに、大きな電極でも均一性よく製造でき
る。しかし、むしろ、高率放電で長寿命の電極に
することが大きな長所なのである。 すなわち、ニツケルと炭素の混合粉末の焼結体
自体が触媒の担体として、また導電体としてすぐ
れていることはすでに明らかであるが、発泡状金
属多孔体でこの焼結体が包まれるように存在して
いるので、単に包含されている炭素粉末が使用中
に脱落して性能劣化が生ずることが少なくなると
ともに、ペーストを含有させているのでこれが焼
結時に炭化してニツケル焼結体への炭素粉末の付
着力を向上させることになり、脱落による性能劣
化はさらに少なくなるのである。 また、ニツケル粉末と炭素の混合割合について
は、ニツケル粉末に対する活性炭の添加量が30重
量%程度、カーボンブラツクでは12%程度までは
多い方が寿命の点ではすぐれていることを見出し
ているが、粉末、充てん焼結法でしかも二次元構
造のスクリーン等の芯材の場合は、もともと炭素
は焼結には関与しないので多量に存在するとニツ
ケル粉末同志の接触が少なくなり、したがつてニ
ツケルの焼結が妨害されることになり、この傾向
が顕著となる。したがつて焼結体の強度が低下
し、また、活性炭あるいはカーボンブラツクなど
の加えられている炭素の脱落も多い。このような
原因で炭素の添加量は、活性炭で12%程度、カー
ボンブラツクでは6%程度が限度であつた。とこ
ろが粉末を充てんし焼結する方法でも、芯材を発
泡状金属にすることにより、芯材で焼結体を包含
する構造となるので、活性炭の場合には20%程度
にまで、カーボンブラツクでは8%程度にまで引
き上げることができる。 本発明では、芯材としては、このような三次元
構造の発泡状金属を用い、ニツケルと炭素の混合
粉末を結着剤溶液によりペーストにし、これを充
てんしているので、炭素の混合量をさらに増すこ
とが可能になつたのである。 芯材としてスクリーン、エキスパンドメタル、
パンチングメタル等を用い、これにカーボニルニ
ツケルをカルボキシメチルセルロース水溶液でペ
ーストにしたものを両面に塗着し、水素や水素と
窒素の混合ガス等の雰囲気中で焼結する方法が焼
結式アルカリ電池用の焼結基体の製法としてよく
知られ普及している。本発明は、この方法を改良
して、芯材として発泡メタルを用い、ペーストと
してニツケルと炭素の混合粉末に結着剤を加えた
ものを用いて、ガス拡散電極としてとくに高負荷
のもとで長寿命を可能にしたものである。 つまり、アルカリ電池用焼結基体の場合の、ペ
ーストを塗着し焼結する方法は、粉末を充てんし
焼結する方法に比べて連続生産に適しているので
採用されている。しかし、この場合は焼結後に活
物質を充てんする必要がある。ところが、ニツケ
ル粉末がペースト時にいつたんぬれてそれから乾
燥されるペースト式では充てん密度が大きくな
り、高多孔度になり難く、高多孔度にする努力は
払われているが、活物質充てんへの困難さが残さ
れ、活物質が表面に付着する問題点がある。しか
し、それでも連続生産のメリツトがあるので採用
される場合があるのである。 ところが、ニツケル粉末と炭素粉末を混合して
焼結し、これをガス拡散電極の基体として用い、
しかもその芯材として発泡状金属を用いる場合に
おいては、大きな負荷のもとでも長寿命の電極を
得ることが可能であることを見出したのである。 その理由としては、まず、ニツケル粉末と炭素
粉末の混合の均一性がよくなることがあげられ
る。つぎに、ペースト式では、少量ではあるが結
着剤が用いられるのでこれが焼結時に炭化して炭
素粉末の焼結体への付着力が若干でも増すのであ
る。また、アルカリ電池では問題となるニツケル
粉末同志の強固な焼結は、炭素粉末の包含力を増
して好ましい。したがつてこれらの効果が芯材に
三次元の発泡状金属を使用して骨格で焼結層を包
む効果に付加されるのである。したがつて同じペ
ースト式といつてもその効果は、アルカリ電池用
焼結基体の場合とはまつたく異なるのである。 ニツケル粉末に加える炭素粉末としては、活性
炭が好ましく、粉末充てんで芯材としてスクリー
ン等を用いた場合には12重量%程度が限度であ
り、これが同じく粉末充てんで芯材として発泡状
金属を用いることにより20%程度にまでなり、本
発明では30%程度まで可能になる。その他ではア
セチレンブラツクなどのカーボンブラツクがよ
く、この場合も乾式で二次元構造の芯材では6%
程度、発泡状金属では8%程度、これが、本発明
では10%程度までが可能になる。したがつて活性
炭とカーボンブラツクを混合して用いる場合には
その混合比にもよるが、20%程度までである。 なおここで用いる発泡状金属としては、ニツケ
ルがよく、多孔度は90〜96%程度、孔径50〜300
μ、厚さ1〜3mmが好ましい。 さらに、ニツケル粉末としては、カーボニルニ
ツケルが最も普通であり、充てん密度の大きい粉
末の場合には、炭素は多量に、逆に小さい粉末で
はそれよりもやゝ少量がよく、上述の炭素の添加
の上限は充てん密度が大きい場合に相当する。ま
た、炭素量の下限については、少量でも入れるだ
け効果はあるが、多量に加えるほど特性、寿命と
もよいので、活性炭では10%程度以上、カーボン
ブラツクでは6%程度以上がよい。 以下本発明の実施例を説明する。 市販のカーボニルニツケル(充てん密度2.4)
と炭素粉末とを第1表に示すような割合で混合
し、この混合物1Kgに対してカルボキシメチルセ
ルロースの2.8重量%水溶液を約24加えて十分
撹拌してペーストを得る。このなかを厚さ2mm、
多孔度94%、平均孔径150μの発泡状金属フープ
を通し、その表面をゴム板を往復運動させてすり
込むように充てんする。勿論充てんはどのような
方法で行なつてもよいが、発泡状金属体への充て
んはこの方法が最もすぐれている。 ついで発泡状ニツケルの両面に付着しているペ
ーストをスリツト間を通すことにより取り除き、
180℃で10分間乾燥し、その後水素気流中におい
て950℃で20分間焼結する。このようにして本発
明のガス拡散電極が得られる。その後は、たとえ
ば白金、パラジウム、銀などの公知の触媒を添加
し、最後に防水剤としてたとえばフツ素樹脂デイ
スパージヨンを含浸し、場合によつては熱処理す
る。 本実施例では、触媒としてパラジウムを2mg/
cm2の割合で添加した。その添加方法は、少量の塩
酸をブチルアルコールとアセトンとの容積比3:
1の混合物で希釈した液に塩化パラジウムを溶解
し、この溶液に上記電極を浸漬することにより、
パラジウムを析出させる方法によつた。この触媒
添加後、防水剤としてフツ素樹脂の水性デイスパ
ージヨン(樹脂分6重量%)を含浸し、これに含
まれている界面活性剤を除くために窒素雰囲気中
で250℃で30分間加熱処理した。その後所定の位
置にリード板を取り付け、さらにガス側となる面
に、多孔度約65%、厚さ0.2mm、孔径平均10μの
フツ素樹脂多孔体を100Kg/cm2の圧力で圧着し
た。 図面は、上記の焼結までの電極製造工程を示
す。 図において、1が発泡状金属のフープ、2はタ
ーンローラ、3が駆動用ローラ、4がニツケルと
炭素を主とするペースト、5はこれを撹拌してい
る棒である。この場合に芯材1にペーストを充て
んする方法は種々あるが、この図は最も好ましい
方法の例であつて、ゴムのような柔軟性のある板
6を用い、これを支持板7で支持し、杆8により
往復運動させることにより、板6で芯材1の表面
をこするようにしてペーストを芯材に充てんす
る。9は芯材の表面に付着したペーストを除くた
めのスリツト、10は乾燥器、11は雰囲気炉で
あり、水素あるいは水素と窒素の混合ガスを用い
る。このようにしてガス拡散電極基体を得て、一
般的にはこの後で公知の方法で触媒および防水剤
を添加する。なお、酸素極として用いる場合に
は、この基体中の炭素を触媒とすることも可能で
ある。 次に、上記実施例におけるニツケルと炭素の混
合割合を第1表のように種々変えて得た電極の性
能試験の結果を説明する。なお比較例として、ニ
ツケルと炭素との混合物をスクリーンとともに型
内に充てんし、焼結する方法で得た電極を用い
た。
【表】
【表】
以上の各ガス拡散電極の周辺を電槽に接着固定
後、空気圧縮供給方式とし、対極にニツケル板を
用い、15%の苛性ソーダ水溶液を電解液として、
80℃で200mA/cm2の電流密度で連続的に放電し
た。電位の変化を酸化水銀極を照合電極として調
べた。なお、空気はあらかじめ苛性ソーダ水溶液
を通して炭酸ガスを除去したものを供給した。結
果を第2表に示す。
後、空気圧縮供給方式とし、対極にニツケル板を
用い、15%の苛性ソーダ水溶液を電解液として、
80℃で200mA/cm2の電流密度で連続的に放電し
た。電位の変化を酸化水銀極を照合電極として調
べた。なお、空気はあらかじめ苛性ソーダ水溶液
を通して炭酸ガスを除去したものを供給した。結
果を第2表に示す。
【表】
【表】
以上の特性で明らかなように、本発明の発泡金
属を芯材とし、これにニツケル粉末と炭素粉末か
らなるペーストを充てんして得られたガス拡散電
極は、炭素量が多いほど性能、寿命がよい。ただ
し、炭素粉末量が多いNo.5、No.8、No.11などの電
極では、これよりも炭素粉末量の少ない、例えば
No.4、No.7、No.10と比較して性能が劣るのは、炭
素粉末量が増加したことでニツケル粉末の結合が
劣化して電気抵抗が増すからである。又逆に炭素
粉末量がニツケル粉末の約5重量%であるNo.6の
電極では、炭素粉末量が少な過ぎて電極寿命は短
かくなるので好ましい炭素粉末量はニツケル粉末
の6〜30重量%であると云える。いずれにしても
従来の粉末式に比べると寿命は飛躍的に向上して
いる。なお、本発明と同じように芯材として発泡
金属を用いても炭素を添加せずにニツケルのみの
場合は800時間で性能が劣化した。 以上詳述したように、金属粉末、とくにカーボ
ニルニツケル粉末に炭素粉末を混合し、これをペ
ースト状にしてから、発泡状金属にすり込むよう
に充てんし、ついで焼結して得られた基体を用い
たガス拡散電極は、炭素粉末の含有量を増し、発
泡状金属骨格の電導性などにより、すぐれた特性
と寿命が得られる工業的価値大なるものである。
属を芯材とし、これにニツケル粉末と炭素粉末か
らなるペーストを充てんして得られたガス拡散電
極は、炭素量が多いほど性能、寿命がよい。ただ
し、炭素粉末量が多いNo.5、No.8、No.11などの電
極では、これよりも炭素粉末量の少ない、例えば
No.4、No.7、No.10と比較して性能が劣るのは、炭
素粉末量が増加したことでニツケル粉末の結合が
劣化して電気抵抗が増すからである。又逆に炭素
粉末量がニツケル粉末の約5重量%であるNo.6の
電極では、炭素粉末量が少な過ぎて電極寿命は短
かくなるので好ましい炭素粉末量はニツケル粉末
の6〜30重量%であると云える。いずれにしても
従来の粉末式に比べると寿命は飛躍的に向上して
いる。なお、本発明と同じように芯材として発泡
金属を用いても炭素を添加せずにニツケルのみの
場合は800時間で性能が劣化した。 以上詳述したように、金属粉末、とくにカーボ
ニルニツケル粉末に炭素粉末を混合し、これをペ
ースト状にしてから、発泡状金属にすり込むよう
に充てんし、ついで焼結して得られた基体を用い
たガス拡散電極は、炭素粉末の含有量を増し、発
泡状金属骨格の電導性などにより、すぐれた特性
と寿命が得られる工業的価値大なるものである。
面図は本発明の実施例における電極の製造工程
を示す。
を示す。
Claims (1)
- 【特許請求の範囲】 1 連続的に連なつた骨格を有する三次元構造の
発泡状金属多孔体にニツケル粉末と炭素粉末を含
むペーストを充てんし、乾燥後非酸化性雰囲気中
で焼結することを特徴とするガス拡散電極の製造
法。 2 前記ペーストを多孔体に充てんする工程が、
ペーストを多孔体にすり込むことからなる特許請
求の範囲第1項記載のガス拡散電極の製造法。 3 ニツケル粉末がカーボニルニツケル粉末であ
り、炭素粉末の量が前記ニツケル粉末の6〜30重
量%である特許請求の範囲第1項記載のガス拡散
電極の製造法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7421079A JPS55165501A (en) | 1979-06-12 | 1979-06-12 | Method of manufacturing gas diffusion electrode |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7421079A JPS55165501A (en) | 1979-06-12 | 1979-06-12 | Method of manufacturing gas diffusion electrode |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS55165501A JPS55165501A (en) | 1980-12-24 |
JPS6216511B2 true JPS6216511B2 (ja) | 1987-04-13 |
Family
ID=13540593
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7421079A Granted JPS55165501A (en) | 1979-06-12 | 1979-06-12 | Method of manufacturing gas diffusion electrode |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS55165501A (ja) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2506080B1 (fr) * | 1981-05-13 | 1985-07-19 | Inst Francais Du Petrole | Support collecteur de courant pour electrode de generateurs electrochimiques |
US4862596A (en) * | 1987-06-04 | 1989-09-05 | Daiwa Can Company, Limited | Apparatus for measuring size of seamed portion of cans |
FR2680799B1 (fr) * | 1991-09-03 | 1993-10-29 | Elf Aquitaine Ste Nale | Element de cible pour pulverisation cathodique, procede de preparation dudit element et cibles, notamment de grande surface, realisees a partir de cet element. |
JP2002289248A (ja) | 2001-01-17 | 2002-10-04 | Nissan Motor Co Ltd | 燃料電池用単セル及び固体電解質型燃料電池 |
JP6628057B2 (ja) * | 2015-08-07 | 2020-01-08 | 住友電気工業株式会社 | 金属多孔体、燃料電池、及び金属多孔体の製造方法 |
-
1979
- 1979-06-12 JP JP7421079A patent/JPS55165501A/ja active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS55165501A (en) | 1980-12-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7368853B2 (ja) | 多機能電極添加剤 | |
JPH0774469B2 (ja) | 電気触媒ガス拡散電極及びその作成方法 | |
US10069133B2 (en) | Process of preparing a chemically pre-formed (CPF) iron negative electrode with oxidizing gases | |
JPH01189866A (ja) | 溶融塩型燃料電池用アノードとその製造方法 | |
US3427204A (en) | Leached amalgamated zinc anode | |
JPS6216511B2 (ja) | ||
US3108910A (en) | Process for making electrodes or electrode elements for alkaline storage batteries an articles thus obtained | |
US4335192A (en) | Method of preparing a sintered iron electrode | |
US3415685A (en) | Gas-depolarizable galvanic cell | |
US3335034A (en) | Electrodes for fuel cells and the like and process for their manufacture | |
JPS6335069B2 (ja) | ||
JPH01186561A (ja) | 燃料電池 | |
JPS6139398B2 (ja) | ||
US3355326A (en) | Method of preparing electrodes | |
JPS60254564A (ja) | アルカリ蓄電池用ニツケル正極 | |
JPH0133025B2 (ja) | ||
JPS6114636B2 (ja) | ||
JP3414184B2 (ja) | アルカリ蓄電池用正極板の製造方法 | |
JPS60167270A (ja) | 溶融塩燃料電池用酸化極 | |
JPS6174262A (ja) | 溶融塩燃料電池用カソ−ドの製造法 | |
JPH04274167A (ja) | 燃料電池の電極触媒層 | |
EP2951871B1 (en) | Iron electrode employing a polyvinyl alcohol binder | |
JPS5986158A (ja) | 空気電池用触媒の製造法 | |
JPS63266766A (ja) | 電池用ニツケル電極の製造法 | |
JPS5832745B2 (ja) | アルカリ蓄電池用カドミウム負極板の製造方法 |