JPS62164234A - Optical system driver - Google Patents

Optical system driver

Info

Publication number
JPS62164234A
JPS62164234A JP436186A JP436186A JPS62164234A JP S62164234 A JPS62164234 A JP S62164234A JP 436186 A JP436186 A JP 436186A JP 436186 A JP436186 A JP 436186A JP S62164234 A JPS62164234 A JP S62164234A
Authority
JP
Japan
Prior art keywords
optical system
support member
piezoelectric element
displacement
amplified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP436186A
Other languages
Japanese (ja)
Inventor
Giichi Miyajima
義一 宮島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP436186A priority Critical patent/JPS62164234A/en
Publication of JPS62164234A publication Critical patent/JPS62164234A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To drive an optical system with high accuracy by forming a support member into a curved arm shape and providing a piezoelectric element into a space enclosed by said support member. CONSTITUTION:When the voltage is impressed to a piezoelectric element 101, the element 101 has a mechanical strain and is displaced in the direction A-A'. This displacement is transmitted to the direction (a) of a frame body part 102a via a head 103 attached at the tip part of the element 101. Then the displacement degree is mechanically amplified by the part 102a. In other words, a point of force produced by the head 103 is set closer to the fulcrum side than the position of a hinge part 102d serving as an action point with the position of a hinge part 102e defined as a fulcrum. Thus the displacement degree of the element 101 is amplified by the action of levers and transmitted to a support member 102. The end face of the part 102a is fixed to a base 111 and therefore an optical system holder attachment part 102b is displaced in the direction (b), e.g., the tracking direction with a shaft hole 102c defined as the center of a curvature radius. The distance between the action point and the the hole 102c is smaller than that between the part 102a and the hole 102c. Therefore the displacement of the element 101 is amplified further at the part 102b.

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、光学系駆動装置に係シ、特に光デイスク装置
、光磁気ディスク装置、デジタルオーディオ装置等の光
学式情報記録再生装置において、光ビームを情報記録媒
体上に集光させる光学系駆動装置に関するものである。 (従来の技術) 一般に光デイスク装置等の光学式情報記録再生装置にお
いて、情報記録媒体の情報ビット(幅1〜2μm、長さ
1〜3μm)に記録されてhる情報を読み取るには、ま
ず、光ビーム(通常レーデビーム〕を対物レンズ等の光
学系によって倣4\スポ、トに集光し、情報ビットに照
射する。この時、情報の有無によって情報記録媒体から
の反射光或いは透過光は光学的に変化する。この変化を
光検出器で検出することにより、情報ビットに対応した
再生信号を得るξとができる。前述した光学式情報記録
再生装置にお込ては、情報記録媒体上のff報ピ、ト列
を光ビームの微小スポットが常に正確に走査することが
極めて重要である。そのために、情報記録媒体の反り等
に伴う焦点ずれを補正するオートフォーカス及び情報記
録媒体の偏心等による照射位置ずれを補正するオートト
ラッキングが必要となる。 そして、このオートフォーカス機能及びオートトラ、キ
ング機能を実現する手段として、光学系をばね状構造体
で支持し、コイルと磁性体部材から成る磁気回路によっ
て生じる電磁力を利用する方法が公知である。 第4図はオートフォーカス機能及びオートトラ、キング
機能を有する従来の光学系駆動装置を示す斜視図である
。この図において、1,2はフォーカシング用の磁気回
路を構成する磁石とヨークであり、3,4はトラッキン
グ用の磁気回路を構成する磁石とヨークである。5は光
学系として対物レンズ6を装着した光学系保持体であり
、該光学系保持体5の対向する両側面に固着
(Industrial Application Field) The present invention relates to an optical system drive device, particularly in an optical information recording/reproducing device such as an optical disk device, a magneto-optical disk device, or a digital audio device, in which a light beam is directed onto an information recording medium. This invention relates to an optical system driving device that focuses light. (Prior Art) In general, in an optical information recording/reproducing device such as an optical disk device, in order to read the information recorded in the information bits (1 to 2 μm in width and 1 to 3 μm in length) of an information recording medium, first, , a light beam (usually a Lede beam) is focused on a spot 4\\g by an optical system such as an objective lens, and irradiated onto the information bit.At this time, depending on the presence or absence of information, reflected light or transmitted light from the information recording medium By detecting this change with a photodetector, a reproduction signal corresponding to the information bit can be obtained. It is extremely important that the tiny spot of the light beam always accurately scans the FF information and columns.For this purpose, autofocus and eccentricity of the information recording medium are used to correct focal shifts caused by warping of the information recording medium. Auto-tracking is required to correct the irradiation position deviation due to etc.Then, as a means to realize this auto-focus function and auto-tracking and tracking functions, the optical system is supported by a spring-like structure and consists of a coil and a magnetic member. A method using electromagnetic force generated by a magnetic circuit is known. Fig. 4 is a perspective view showing a conventional optical system drive device having an autofocus function and an autotracking and kinging function. In this figure, 1 and 2 are A magnet and a yoke constitute a magnetic circuit for focusing, and 3 and 4 are magnets and a yoke that constitute a magnetic circuit for tracking.5 is an optical system holder equipped with an objective lens 6 as an optical system; Fixed to both opposing sides of the optical system holder 5

【−たコイ
ル7.8は、それぞれ前記フォーカシング及びトラッキ
ング用の磁気回路内に配置されている。9゜10は光学
系保持体5をフォーカシング方向にi]動自在に保持す
る支持げねで、11.12は光学系保持体5をトラッキ
ング方向に可動自在に保持する支持ばねであり、中継板
13を介して連結されている。】4は前記磁石1,3・
ヨーク2,4・光学系保持体5・支持ばね9.10.1
1.12等を配設した基台である。 以上のように構成された装置において、コイル7.8に
電流を印加するととにJ、す、各磁石1゜3・ヨーク2
,4から成る磁気[自1路によって生じる電磁力による
相互作用によって、名支持ばね9゜10.11.12を
介して光学系保持体5に装着しり対物レンズ6のフォー
カシング及びトラッキングを行うことができる。 (発明が解決しようとする問題点) しかしながら、前述した板ばね状の支持ばね9゜10.
11.12は、その特性上高周波でトラッキング及びフ
ォーカシングを行う際、各支持ばね9、No、11.1
2に副共振が生じることによって、高精度のトラ、キン
グ及びフォーカシングができない問題点があった。 一方、上記副共振の問題を解決する為、光学系を所定の
軸に対して回動自在に設0られた支持部材で支持した装
置が特公昭60−30017号等で提案されている。し
かしながら、この装置においても光学系の駆動は、磁石
とコイルとの間の電磁力によって行なわれていた為、磁
気回路等の構成が複雑で、装置も大型化しがちであった
。 本発明は、上記従来例の問題点を解決する目的でなされ
、光学系の駆動を高精度で、且つ簡単、コンノ4クトな
構成で行うことができる光学系駆動装置を提供しようと
するものである。 (問題点を解決するだめの手段) 前記問題点を解決するための手段として、本発明は、光
学系駆動装置を、ある軸線のまわりに回動可能に設けら
れた支持部材と、該支持部材の前記軸線から離隔した位
置にその光軸が前記軸線とほは平行になるように支持さ
れた光学系と、前記支持部材に回動力向の駆動力を与え
る圧電素子とから構成し、且つ前記支持部材を曲ったア
ーム状に形成して、この支持部材によって囲まれた空間
に前記圧電素子を配することを要旨とするものである。 (実施例) 以下、本発明を図示の一実施例によって詳細に説明する
。 第1図は本発明に係る光学系駆動装置を示す分解構成図
である。この図において、101は積層型の圧電素子で
あり、該圧電素子101は薄いグリーンシート上に極め
て薄い内部電極101 mを印刷積層して形成したセラ
ミック101bを積層することによって構成されている
(第2図参照)。 101cは各セラミ、り101b間の側面に設けた絶縁
体であセ、その外側に端子101 d 、 101 e
を有する外部電極101fが配設されている。102は
光学系を支持するコの字型に曲ったアーム状の支持部材
であり、該支持部材102の一方に形成した枠体部10
2a内に圧電素子101を配設し、その先端部に設けた
へ、r103が枠体部102mと線接触で当接して込る
。支持部材102の他方は圧電素子101を配設した枠
体部】02aの外周面に沿って形成されており、更にそ
の先端部に円筒状の光学系保持体取付部102bが形成
されている。 104は円筒状の光学系保持体であり、該光学系保持体
104には光学系として対物レンズ105が装着されて
おシ、外周面にはフォーカシング用のコイル106を配
設すると共に、摺動摩擦抵抗を減らすためにテフロン系
の樹脂がコーティングされている。そして、光学系保持
体104は支持部材102の光学系保持体取付部102
bに対物レンズ105の光軸方向に対して摺動自在に配
設されている。107は支持部材102の軸孔102c
に上方から挿入した軸受であり、該軸受107はビス1
08で支持部材102の上部に取付けた固定板109に
よって係止されている。110は基台111に設けた軸
受であシ、該軸受110を支持部材102の軸孔】02
cに下方から挿入して。 軸受107と点接触で支持部材102を回動自在に支持
している。まえ、枠体部102aの端部は基台111に
ビス112,113で固着されている。 114は基台1】1上に配設した円筒状の磁石であり、
該磁石114内に支持部材102の光学系保持体取付部
102bが位置している。102d。 102・、102fけそれぞれ支持部材1020粋体部
102aに形成したひんじ部である。 本発明に係る光学系駆動装置は上記のように構成されて
おり、まず、トラッキングを行う際は、端子101d、
101e及び外部電極101fを介して圧電素子】01
に電圧を印加する。すると、積層された各セラミック1
01bに機械的歪みが生じてA −A’力方向変位する
。そして、この変位は第3図に示すように、圧電素子1
01の先端部拠設けたへ、l−’103を介して枠体部
102aのa方向に伝達される。そして、伝達された圧
電素子101の変位量は、この枠体部102aによって
機械的に増幅される。即ち、ひんじ部102eの位置を
支点として、作用点たるひんじ部102dの位置よりも
ヘッド103による力点が支点側にある為てこの原理に
より圧電素子】01の変位量は増幅されて支持部材10
2に伝えられる。この際。 枠体部102mの端面は基台】11に固定されている為
に、支持部材】02の一端に形成した光学系保持体取付
部102bは、軸孔102Cを曲率半径の中心にしてb
方向(トラッキング方向)に変位する。ここで、前述の
作用点(ひんし部102dの位置)と軸孔102Cとの
距離は、光学系保持体取付部102bと軸孔102Cと
の距離よシも短いため、てこの原理により圧電素子10
1から伝達された変位は光学系保持体取付部102bに
おいて更に増幅される。例えば、圧電素子101から支
持部材】02の枠体部102aに伝達された変位量を1
0〜20μmとすると、光学系保持体取付部102bで
の変位量は数百μm程度となる。また、圧[素子101
に印加した電圧をオフにすることKよって、支持部材1
02は元の状態に戻る。前記積層型圧電素子を用いるノ
リ、トとしては、軽薄短小化が可能で電気−機械エネル
ギーの変換効率が高く低消費電力で、高精度駆動が可能
である等があげられる。 ここで、前記支持部材102は曲つたアーム状に形成さ
れ、この支持部材102によって囲まれた空間に前述の
圧電素子101を配しているので、装置全体をコンノ譬
りトに構成出来る。 次に、フォーカシングを行う際は、光学系保持体104
の外周面に設けたコイル106に電流を印加することに
よって生じる磁界と、磁石114によって生じる磁界と
の磁気的相互作用によシ。 光学系保持体取付部102bに摺動自在に配設した光学
系保持体104は対物レン、e105の光軸方向に駆動
する。この際、光学系保持体104の外周面はテフロン
系の樹脂でコーティングされておシ、且つ、光学系保持
体取付部102bの内周面も摺動抵抗を減らす為に鏡面
仕上げがなされているので、スムーズな7オーカシ/グ
が可能である。 また、本実施例は光デイスク装置の光学系駆動装置に適
用した例であるが、形状検知装置、レーデ加工機等、他
の光学機器にも適用できることは明らかである。 尚、前述した実施例は光学系として対物レンズのみを駆
動する場合を説明したが、光源等も含んだ光学系全体を
駆動する場合にも適用可能である。 (発明の効果) 以上説明したように本発明に係る光学系駆動装置は、ト
ラッキングを圧電素子の機械的歪みによって生じる変位
を利用して行うので光学系の高精度な駆動を簡単な構成
で行うことができる。 また、支持部材を曲ったアーム状に形成し、この支持部
材によって囲まれた空間に圧電素子を配し九ので、装置
の小型化も図ることができる。
The two coils 7.8 are arranged in the focusing and tracking magnetic circuits, respectively. Reference numerals 9 and 10 are support legs that hold the optical system holder 5 movably in the focusing direction, 11 and 12 are support springs that hold the optical system holder 5 movably in the tracking direction, and the relay plate They are connected via 13. ] 4 is the magnet 1, 3.
Yokes 2, 4, optical system holder 5, support spring 9.10.1
This is a base on which 1.12 etc. are installed. In the device configured as described above, when a current is applied to the coil 7.8, each magnet 1°3 and yoke 2
, 4, and the objective lens 6 attached to the optical system holder 5 through the support springs 9, 10, 11, and 12 can be focused and tracked by the interaction due to the electromagnetic force generated by the magnetic [self 1 path]. can. (Problems to be Solved by the Invention) However, the above-mentioned leaf spring-shaped support spring 9.10.
11.12, each support spring 9, No. 11.1 is used when tracking and focusing at high frequency due to its characteristics.
There is a problem in that high-precision tracking, focusing, and focusing cannot be performed due to the occurrence of sub-resonance in the second lens. On the other hand, in order to solve the above problem of sub-resonance, an apparatus in which an optical system is supported by a supporting member rotatably provided about a predetermined axis has been proposed in Japanese Patent Publication No. 30017/1983. However, in this device as well, the optical system is driven by electromagnetic force between a magnet and a coil, so the structure of the magnetic circuit etc. is complicated and the device tends to be large. The present invention was made in order to solve the above-mentioned problems of the conventional example, and it is an object of the present invention to provide an optical system driving device that can drive an optical system with high precision, and with a simple and simple configuration. be. (Means for Solving the Problem) As a means for solving the problem, the present invention provides an optical system drive device that includes a support member that is rotatably provided around a certain axis, and a support member that is rotatable around a certain axis. an optical system supported at a position spaced apart from the axis so that its optical axis is almost parallel to the axis, and a piezoelectric element that applies a driving force in the direction of rotation to the support member; The gist is that the support member is formed into a curved arm shape, and the piezoelectric element is disposed in a space surrounded by the support member. (Example) Hereinafter, the present invention will be explained in detail with reference to an illustrated example. FIG. 1 is an exploded configuration diagram showing an optical system driving device according to the present invention. In this figure, 101 is a laminated piezoelectric element, and the piezoelectric element 101 is constructed by laminating a ceramic 101b formed by printing and laminating extremely thin internal electrodes 101m on a thin green sheet. (See Figure 2). 101c is an insulator provided on the side surface between each ceramic plate 101b, and terminals 101d and 101e are provided on the outside thereof.
An external electrode 101f is provided. Reference numeral 102 denotes a U-shaped arm-shaped support member that supports the optical system, and a frame portion 10 formed on one side of the support member 102
A piezoelectric element 101 is disposed inside the piezoelectric element 2a, and the piezoelectric element 103 provided at the tip of the piezoelectric element 101 comes into line contact with the frame body part 102m. The other side of the support member 102 is formed along the outer circumferential surface of a frame portion 02a on which the piezoelectric element 101 is disposed, and a cylindrical optical system holder attachment portion 102b is further formed at its tip. Reference numeral 104 denotes a cylindrical optical system holder. An objective lens 105 is attached to the optical system holder 104 as an optical system. A focusing coil 106 is arranged on the outer circumferential surface, and a sliding friction Coated with Teflon resin to reduce resistance. The optical system holder 104 is attached to the optical system holder mounting portion 102 of the support member 102.
b, so as to be slidable in the optical axis direction of the objective lens 105. 107 is a shaft hole 102c of the support member 102
The bearing 107 is inserted from above into the
It is locked by a fixing plate 109 attached to the upper part of the support member 102 at 08. 110 is a bearing provided on the base 111, and the bearing 110 is inserted into the shaft hole of the support member 102]02
Insert it into c from below. The support member 102 is rotatably supported by point contact with a bearing 107 . In the front, the end portion of the frame portion 102a is fixed to the base 111 with screws 112 and 113. 114 is a cylindrical magnet placed on the base 1]1,
The optical system holder mounting portion 102b of the support member 102 is located within the magnet 114. 102d. 102. and 102f are hinge portions formed on the body portion 102a of the support member 1020, respectively. The optical system driving device according to the present invention is configured as described above, and first, when tracking is performed, the terminal 101d,
Piezoelectric element via 101e and external electrode 101f]01
Apply voltage to. Then, each laminated ceramic 1
Mechanical strain occurs in 01b, causing a displacement in the A-A' force direction. This displacement is caused by the piezoelectric element 1 as shown in FIG.
It is transmitted to the tip end portion of 01 through l-' 103 in the a direction of the frame body portion 102a. The transmitted displacement amount of the piezoelectric element 101 is mechanically amplified by the frame portion 102a. That is, with the position of the hinge part 102e as a fulcrum, the point of force exerted by the head 103 is closer to the fulcrum than the position of the hinge part 102d, which is the point of action, and therefore, due to this lever principle, the amount of displacement of the piezoelectric element 01 is amplified, and the amount of displacement of the piezoelectric element 01 is amplified and 10
2 can be conveyed. On this occasion. Since the end face of the frame portion 102m is fixed to the base 11, the optical system holder mounting portion 102b formed at one end of the supporting member 02 has a radius of curvature centered around the shaft hole 102C.
direction (tracking direction). Here, since the distance between the above-mentioned point of action (position of the hinge part 102d) and the shaft hole 102C is shorter than the distance between the optical system holder mounting part 102b and the shaft hole 102C, the piezoelectric element 10
The displacement transmitted from 1 is further amplified at the optical system holder mounting portion 102b. For example, if the amount of displacement transmitted from the piezoelectric element 101 to the frame portion 102a of the support member 02 is 1
If it is 0 to 20 μm, the amount of displacement at the optical system holder mounting portion 102b will be approximately several hundred μm. In addition, the pressure [element 101
By turning off the voltage applied to the support member 1
02 returns to the original state. Advantages of using the laminated piezoelectric element include that it can be made light, thin, short, and compact, has high electrical-mechanical energy conversion efficiency, consumes low power, and can be driven with high precision. Here, the support member 102 is formed in the shape of a curved arm, and the piezoelectric element 101 described above is disposed in the space surrounded by the support member 102, so that the entire device can be constructed in the form of a condominium. Next, when performing focusing, the optical system holder 104
Due to the magnetic interaction between the magnetic field generated by applying a current to the coil 106 provided on the outer peripheral surface of the magnet 114 and the magnetic field generated by the magnet 114. The optical system holder 104, which is slidably disposed on the optical system holder mounting portion 102b, is driven in the optical axis direction of the objective lens e105. At this time, the outer peripheral surface of the optical system holder 104 is coated with Teflon-based resin, and the inner peripheral surface of the optical system holder mounting portion 102b is also mirror-finished to reduce sliding resistance. Therefore, a smooth 7-o-kashi/g is possible. Further, although this embodiment is an example in which the present invention is applied to an optical system drive device of an optical disk device, it is obvious that the present invention can also be applied to other optical devices such as a shape detection device and a radar processing machine. Incidentally, in the above-mentioned embodiment, the case where only the objective lens is driven as an optical system has been explained, but it is also applicable to the case where the entire optical system including a light source etc. is driven. (Effects of the Invention) As explained above, the optical system driving device according to the present invention performs tracking using the displacement caused by mechanical distortion of the piezoelectric element, and therefore can drive the optical system with high precision with a simple configuration. be able to. Further, since the support member is formed into a curved arm shape and the piezoelectric element is arranged in the space surrounded by the support member, the device can be made smaller.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る光学系駆動装置の分解した状態を
示す構成図、第2図は積層型圧電素子を示す断面図、第
3図は本発明に係る光学系駆動装置の要部を示す平面図
、第4図は従来例における光学系駆動装置を示す斜視図
である。 101・・・圧電素子、102・・・支持部材、102
a・・・枠体部、】02b・・・光学系保持体取付部、
102c・・・軸孔、104・・・光学系保持体、10
5・・・対物レンズ、106・・・コイル、107,1
10・・・軸受%111・・・基台、114・・・磁石
FIG. 1 is a configuration diagram showing an exploded state of an optical system driving device according to the present invention, FIG. 2 is a cross-sectional view showing a laminated piezoelectric element, and FIG. 3 is a main part of the optical system driving device according to the present invention. FIG. 4 is a perspective view showing a conventional optical system driving device. 101... Piezoelectric element, 102... Support member, 102
a... Frame body part, ]02b... Optical system holder mounting part,
102c... Shaft hole, 104... Optical system holder, 10
5...Objective lens, 106...Coil, 107,1
10... Bearing% 111... Base, 114... Magnet.

Claims (1)

【特許請求の範囲】[Claims] ある軸線のまわりに回動可能に設けられた支持部材と、
該支持部材の前記軸線から離隔した位置にその光軸が前
記軸線とほぼ平行になるように支持された光学系と、前
記支持部材に回動方向の駆動力を与える圧電素子とから
成り、前記支持部材が曲ったアーム状に形成され、この
支持部材によって囲まれた空間に前記圧電素子を配した
光学系駆動装置。
a support member rotatably provided around a certain axis;
an optical system supported at a position apart from the axis of the support member so that its optical axis is substantially parallel to the axis; and a piezoelectric element that applies a driving force in the rotational direction to the support member; An optical system driving device in which a support member is formed into a curved arm shape, and the piezoelectric element is arranged in a space surrounded by the support member.
JP436186A 1986-01-14 1986-01-14 Optical system driver Pending JPS62164234A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP436186A JPS62164234A (en) 1986-01-14 1986-01-14 Optical system driver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP436186A JPS62164234A (en) 1986-01-14 1986-01-14 Optical system driver

Publications (1)

Publication Number Publication Date
JPS62164234A true JPS62164234A (en) 1987-07-20

Family

ID=11582237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP436186A Pending JPS62164234A (en) 1986-01-14 1986-01-14 Optical system driver

Country Status (1)

Country Link
JP (1) JPS62164234A (en)

Similar Documents

Publication Publication Date Title
SU1687036A3 (en) Electrooptical device for scanning data pathon information carrier
KR100248459B1 (en) Driving apparatus of objective lens
JPS62164234A (en) Optical system driver
JPS62164235A (en) Optical system driver
JPS62205540A (en) Optical system driving device
KR20010051659A (en) Apparatus for driving an objective lens
JP2605123Y2 (en) Optical pickup device
KR0178596B1 (en) Objective lens driving device and driving method
JPS62205542A (en) Optical system driving device
JPH05266503A (en) Optical head
JPH10239577A (en) Moving operation device
JPH0728580Y2 (en) Objective lens drive
JPH0428025A (en) Objective lens driver
JP3318061B2 (en) Optical disk drive
JPH0454566Y2 (en)
JPH02270138A (en) Optical recording and reproducing device
KR20000007432U (en) Bobbin Assembly Structure of Optical Pickup Actuator
JPS62208438A (en) Driving device for optical system
JPS62165743A (en) Optical system driver
JP2000187864A (en) Optical recording/reproducing device
JPS621134A (en) Optical lens driving device
JPH064875A (en) Optical disk device and optical head
JPS6342044A (en) Optical system driving device
JPS62189635A (en) Optical system driver
JPS62205539A (en) Optical system driving device