JPS62159749A - Air-fuel ratio control device for internal combustion engine - Google Patents

Air-fuel ratio control device for internal combustion engine

Info

Publication number
JPS62159749A
JPS62159749A JP280986A JP280986A JPS62159749A JP S62159749 A JPS62159749 A JP S62159749A JP 280986 A JP280986 A JP 280986A JP 280986 A JP280986 A JP 280986A JP S62159749 A JPS62159749 A JP S62159749A
Authority
JP
Japan
Prior art keywords
fuel
amount
air
engine
predicted value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP280986A
Other languages
Japanese (ja)
Other versions
JPH0665860B2 (en
Inventor
Toru Yoshimura
吉村 亨
Hatsuo Nagaishi
初雄 永石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP280986A priority Critical patent/JPH0665860B2/en
Publication of JPS62159749A publication Critical patent/JPS62159749A/en
Publication of JPH0665860B2 publication Critical patent/JPH0665860B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PURPOSE:To satisfactorily hold the composition of exhaust gas over the entire operating range of an engine, by compensating the supply amount of fuel so that variations in air-fuel ration due to a fuel amount reserved in an intake-air system is compensated. CONSTITUTION:A fuel amount computing means 101 computes a fuel supply amount in accordance with the engine operating condition, and an equilibrium value computing means 102 computes an equilibrium value for a supply amount reserved in an engine air-intake system. Further, a subtracting means 103 computes the difference between the above-mentioned equilibrium value and a predicted value thereof, and an over- or under-amount computing means 104 computes an over- or under-fuel amount per cycle in accordance with the above-mentioned difference. Further, a predicted value computing means 105 computes a predicted value for the present equilibrium value in accordance with the over- or under-fuel amount and the predicted value for the previous equilibrium value. Then, a fuel amount compensating means 106 compensates the supply fuel amount in accordance with the over- or under-fuel amount, and a secondary air supply means 107 is allowed to feed secondary air when the compensated fuel amount becomes below a predetermined value.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は内燃機関の空燃比制御装置に関し、詳しくは
火花点火式内燃機関の過渡的運転状態での空燃比制御精
度及び排気エミッションを改善することを目的とした空
燃比制御装置の改良に関する。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to an air-fuel ratio control device for an internal combustion engine, and more specifically, to improve air-fuel ratio control accuracy and exhaust emissions during transient operating conditions of a spark-ignition internal combustion engine. This invention relates to an improvement of an air-fuel ratio control device for the purpose of

(従来の技術) 車両用内燃機関等においては、機関に本来求められる出
力性能や運転性を改善しつつ排気浄化の要請に応える見
地から、機関に供給する燃料量ないし空燃比をいかに適
切に制御するかが重要な課題になっている。ことに車両
用機関は低速低負荷から高速高負荷に至る幅広い運転域
で使用されるため、加速や減速など過渡的な運転状態で
の空燃比制御の適否が運転性や排気エミッシヨンに大き
く影響する。
(Prior art) In internal combustion engines for vehicles, it is important to appropriately control the amount of fuel supplied to the engine or the air-fuel ratio in order to improve the output performance and drivability that are originally required of the engine while meeting the demands for exhaust purification. The important issue is whether to do so. In particular, vehicle engines are used in a wide range of operating ranges, from low speeds and low loads to high speeds and high loads, so the suitability of air-fuel ratio control during transient operating conditions such as acceleration and deceleration has a significant impact on drivability and exhaust emissions. .

そこで、燃料計量精度に優れた電子制御燃料噴射装置を
基本として、加速時または減速時に燃料噴射量を増量補
正または減量補正することにより過渡時を含むあらゆる
運転状態において適切な空燃比が得られるようにした制
御装置または制御方法が多くの車両用機関に採用されつ
つある。(この種の制御方法の公知例としては、例えば
特開昭58−144635号公報参照。) こうした過渡補正が必要な理由は、供給燃料の一部が機
関シリングに達するまでの間に吸気管や吸入ボートの内
壁面に付着する現象、あるいは吸入されずに吸気管内に
浮遊している燃料(これら吸気系の付着燃料及び浮遊燃
料を、以下「吸気系保留燃料」と総称する。)の量が過
渡時において空燃比ないし機関性能に影響を及ぼすから
であり、例えば加速時に吸気量に比例した量の燃料を供
給しただけではその一部が吸気系に付着して供給応答遅
れを起こすため実空燃比が過薄となって加速性能が悪化
するという問題を生じる。
Therefore, based on an electronically controlled fuel injection system with excellent fuel metering accuracy, it is possible to obtain an appropriate air-fuel ratio in all driving conditions, including transient conditions, by increasing or decreasing the fuel injection amount during acceleration or deceleration. Control devices and control methods based on the above are being adopted in many vehicle engines. (For a known example of this type of control method, see, for example, Japanese Patent Laid-Open No. 144635/1983.) The reason why such transient correction is necessary is that the intake pipe and The phenomenon of adhering to the inner wall of the intake boat or the amount of fuel floating in the intake pipe without being inhaled (these adhering fuel and floating fuel in the intake system are collectively referred to as "intake system retained fuel") This is because it affects the air-fuel ratio or engine performance during transient periods. For example, if only an amount of fuel proportional to the intake air amount is supplied during acceleration, some of it will adhere to the intake system and cause a delay in the supply response, so the actual A problem arises in that the fuel ratio becomes too lean and acceleration performance deteriorates.

(発明が解決しようとする問題点) ところで、この吸気系保留燃料の量は機関の運転状態に
応じて変化し、回転速度や機関温度、さらには吸気管の
絶対圧等に影IIJされるのであるが、従来の空燃比制
御では吸気管圧力の変化をパラメータとして予め実験的
に定めた補正方式によって近似的に過渡時燃料の過不足
量を算出し、これに機関冷却水温度に応じた補正を施す
ことにより空燃比を適性化するという手法を基本としで
おり、従って前述のように種々の要因に基づいて変動す
る吸気系保留燃料量に対応して常に適切な空燃比が得ら
れるとは限らず、設計点にあたる特定の運転状態のとき
を除き誤差を生じるのは避けられなかった。
(Problem to be Solved by the Invention) By the way, the amount of fuel retained in the intake system changes depending on the operating condition of the engine, and is affected by the rotational speed, engine temperature, absolute pressure of the intake pipe, etc. However, in conventional air-fuel ratio control, the transient amount of fuel is approximately calculated using a correction method determined experimentally using the change in intake pipe pressure as a parameter, and then correction is made according to the engine cooling water temperature. The method is based on the method of optimizing the air-fuel ratio by applying However, it was inevitable that errors would occur except under specific operating conditions that correspond to the design point.

もっとも、これを解決するためには過渡状態での吸気系
保留燃料量に影響する総ての要因を検出して補正をする
ことになるが、この場合補正の要不要等に関する判定条
件が多くなることから、運転性や排気エミッシヨンの要
求を満足させるためのマツチング作業に多くの工程が必
要になってしまう。
However, in order to solve this problem, it is necessary to detect and correct all the factors that affect the amount of fuel retained in the intake system in a transient state, but in this case, there are many criteria for determining whether correction is necessary or not. Therefore, many processes are required for matching work to satisfy the requirements for drivability and exhaust emissions.

また、特に吸気管巣合部よりも上流側で燃料を供給する
シングルポイントインジェクシタン方式の燃料噴射装置
や気化器においては燃料供給部位から機関シリンダまで
の混合気経路が長くなるため、それだけ過渡状態での空
燃比に対する吸気系保留燃料の影響が大きくなるのであ
るが、減速時に着目すると保留燃料量が非常に多いだけ
に燃料供給を遮断しても過濃混合気が生成されることが
あり、この結果HCやCO等の未燃成分が多量に排出さ
れるという問題を生じやすい。
In addition, especially in single-point injector type fuel injection devices and carburetors that supply fuel upstream of the intake pipe joint, the air-fuel mixture path from the fuel supply part to the engine cylinder is long, which increases the transient state. The influence of the retained fuel in the intake system on the air-fuel ratio becomes greater during deceleration, but when we focus on deceleration, the amount of retained fuel is so large that even if the fuel supply is cut off, a rich mixture may be generated. As a result, the problem tends to occur that a large amount of unburned components such as HC and CO are discharged.

二の発明はこうした問題点に着目してなされたもので、
吸気系保留燃料量の定常条件での平衡状態量に基づいて
供給燃料量を補正することにより過渡状態での空燃比を
適切に制御するとともに、燃料過多となる減速状態にお
いては吸気系または排気系の空気量を増加することによ
り排気組成の悪化を回避することを目的としている。
The second invention was made by focusing on these problems.
By correcting the supplied fuel amount based on the equilibrium state amount of intake system retained fuel amount under steady conditions, the air-fuel ratio in transient conditions is appropriately controlled. The aim is to avoid deterioration of the exhaust gas composition by increasing the amount of air in the exhaust gas.

(問題、貞を解決するための手段) 上記目的を達成するためにこの発明では、第1図に示し
たように、機関運転状態に応じて供給燃料量を演算する
燃料量演算手段101と、機関吸X系保留燃料量の定常
運転条件での平衡状態量を運転状態に応じて演算する平
衡状!A量演算手段102と、この平衡状!!!量量と
その予測値との差を演算する減算手段103と、この減
算結果に基づいて単位周期あたりの過不足燃料量を演算
する過不足量演算手段104と、この過不足燃料量と以
前の平衡状!!!量の予測値とから現在の平衡状!!!
量の予測値を演算する予測値演算手段105と、前記過
不足燃料量に基づいて供給燃料量を補正する燃料量補正
手段106と、補正後の供給燃料量が所定値以下となっ
たときに機関の吸気系もしくは排気系に空気を供給する
2次空気供給手段107とを設けた。
(Means for Solving the Problem) In order to achieve the above object, the present invention includes a fuel amount calculation means 101 that calculates the amount of fuel to be supplied according to the engine operating state, as shown in FIG. Equilibrium state that calculates the amount of retained fuel in the engine suction X system under steady operating conditions according to the operating state! A quantity calculating means 102 and this equilibrium state! ! ! A subtracting means 103 calculates the difference between the fuel amount and its predicted value, an excess/deficit amount calculating means 104 calculates the excess/deficit fuel amount per unit cycle based on the result of this subtraction, and Equilibrium! ! ! The current equilibrium state from the predicted value of the amount! ! !
A predicted value calculating means 105 calculates a predicted value of the fuel amount, a fuel amount correcting means 106 corrects the supplied fuel amount based on the excess/deficit fuel amount, A secondary air supply means 107 for supplying air to the intake system or exhaust system of the engine is provided.

なお、ここで「演算」とは数学的演算のみならずマイク
ロコンピュータ等を使用した処理系における論理演算や
検索処理等をも含む広義の演算処理を意味しており、例
えば上記平衡状態量の演算とは後述する実施例のように
予めテーブル化したデータの検索により平衡状態量を求
める処理を含み、あるいは所定の運転状態データを変数
として平衡状態量を関数化しうる場合は数値計算による
処理としてもよい。
Note that "operation" here means arithmetic processing in a broad sense, including not only mathematical operations but also logical operations and search processing in a processing system using a microcomputer, etc. For example, the above-mentioned calculation of the equilibrium state quantity This includes the process of finding the equilibrium state quantity by searching pre-tabled data as in the example described later, or the process of numerical calculation if the equilibrium state quantity can be converted into a function using predetermined operating state data as a variable. good.

(作用) 既に述べたように、吸気系保留燃料量は機関連転状態に
応じて時々刻々と変化するので、これを直接検知し、な
おかつ応答遅れ無しに空燃比制御に反映させることは容
易ではない。また、機関運転状態の変化のしかたは無限
であるから、過渡的な保留燃料量を予め実験的に求める
ことも事実上困難である。
(Function) As already mentioned, the amount of fuel retained in the intake system changes from moment to moment depending on the machine rotation status, so it is not easy to directly detect this and reflect it in air-fuel ratio control without delay in response. do not have. Further, since there are infinite ways in which the engine operating state can change, it is practically difficult to experimentally determine the transient amount of retained fuel in advance.

これに対して、この発明では上述の通り実験的に比較的
容易に決定することができる定常運転条件での吸気系保
留燃料量を基礎とし、これと上記所定の方式により求め
た過渡的運転条件での予測値との差に基づいて燃料の過
不足量ないし基本的な空燃比補正量を求めるので、電子
制御燃料噴射装置等において検出される一般的な運転状
!a情報、例えば負荷、回転速度、冷却水温度等に基づ
いて適切な空燃比に制御することができる。
In contrast, the present invention is based on the amount of fuel retained in the intake system under steady-state operating conditions, which can be determined relatively easily experimentally as described above, and based on this and transient operating conditions determined by the above-described method. Since the amount of excess or deficiency of fuel or the basic air-fuel ratio correction amount is determined based on the difference between the predicted value and the predicted value, it is possible to calculate the amount of excess or deficiency of fuel or the basic air-fuel ratio correction amount. The air-fuel ratio can be controlled to an appropriate air-fuel ratio based on a information such as load, rotational speed, cooling water temperature, etc.

また、この発明では補正後の供給燃料量が所定値以下と
なったときには機関の吸気系もしくは排気系に2次空気
が供給されるので、減速時の空燃比過濃化に伴う未燃成
分の排出が確実に回避される。なお、排気系に2次空気
を供給する場合は、反応器または酸化触媒装置等を介し
て未燃成分の燃焼を促すのが望ましい。
In addition, in this invention, when the corrected amount of supplied fuel becomes less than a predetermined value, secondary air is supplied to the intake system or exhaust system of the engine, so that unburned components due to over-enrichment of the air-fuel ratio during deceleration are removed. Emissions are definitely avoided. In addition, when supplying secondary air to the exhaust system, it is desirable to promote combustion of unburned components via a reactor, an oxidation catalyst device, or the like.

(実施例) 以下、この発明の実施例を図面に基づいて説明する。(Example) Embodiments of the present invention will be described below based on the drawings.

第2図はこの発明を電子制御燃料噴射装置として構成し
た実施例の磯イ戒的構成を示したものであり、この場合
空燃比制御に関する処理はCPU、RAMSROM、I
10装置等からなるマイクロコンピュータで構成した制
御回路1により集中的に行なわれる。すなわち、第1図
に示した各手段101〜106にあたるものは制御回路
1として一体化されている。
FIG. 2 shows the basic configuration of an embodiment of the present invention configured as an electronically controlled fuel injection device. In this case, processing related to air-fuel ratio control is performed by the CPU, RAMSROM, and
This is performed centrally by a control circuit 1 composed of a microcomputer consisting of 10 devices and the like. That is, the respective means 101 to 106 shown in FIG. 1 are integrated as the control circuit 1.

一方、2は火花、直火式の内燃機関であり、3はその吸
気通路、4は排気通路、5はスロットルボディ、6は吸
気絞り弁、7は電磁燃料噴射弁、8はエアクリーナ、9
は酸化触媒(または三元触媒)である。前記電磁燃料噴
射弁7は図示しない燃料供給系統を介して一定圧力とな
るように調圧された燃料の供給を受け、制御回路1から
の駆動信号の開弁時間比(デユーティ比)に比例した量
の燃料を噴射供給する。すなわち、この場合制御回路1
は電磁燃料噴射弁7を介しての燃料噴射量の増減制御に
より空燃比を制御する。
On the other hand, 2 is a spark, direct fire type internal combustion engine, 3 is its intake passage, 4 is an exhaust passage, 5 is a throttle body, 6 is an intake throttle valve, 7 is an electromagnetic fuel injection valve, 8 is an air cleaner, 9
is an oxidation catalyst (or three-way catalyst). The electromagnetic fuel injection valve 7 is supplied with fuel whose pressure is regulated to be constant through a fuel supply system (not shown), and whose pressure is proportional to the valve opening time ratio (duty ratio) of the drive signal from the control circuit 1. The amount of fuel is injected and supplied. That is, in this case, the control circuit 1
controls the air-fuel ratio by controlling the increase/decrease of the fuel injection amount via the electromagnetic fuel injection valve 7.

また、10は絞り弁6の位置及び開度変化を検出するス
ロットルセンサ、11は吸気流量を検出するエア70−
センサ、12は機関クランク軸の回転位置及び速度を検
出する回転センサ、13は排気酸素濃度を検出する酸素
センサ、14は機関冷却水温を検出する水温センサであ
り、これらの検出手段と図示しない変速機ニュートラル
スイッチ、クラッチスイッチなどから得られる信号に基
づいて制御回路1が燃料噴射量ないし空燃比を決定する
ことになる。
Further, 10 is a throttle sensor that detects the position and opening degree change of the throttle valve 6, and 11 is an air 70- that detects the intake flow rate.
12 is a rotation sensor that detects the rotational position and speed of the engine crankshaft, 13 is an oxygen sensor that detects the exhaust oxygen concentration, and 14 is a water temperature sensor that detects the engine cooling water temperature. The control circuit 1 determines the fuel injection amount or air-fuel ratio based on signals obtained from the engine neutral switch, clutch switch, etc.

上記構成における基本的な燃料噴射量制御については周
知の通りであり、例えばエア70−センサ11と回転セ
ンサ12を介して検出した吸入空気量と回転速度の関係
からテーブルルックアップ等により所定の空燃比が得ら
れる基本燃料噴射量Tp(実質上は噴射弁7の噴射パル
ス幅)を決定し、これに酸素センサ13の出力に基づい
て決定したフィードバック補正係数α及び所定の補正係
数C0EFとを乗じ、さらにバッテリ電圧に相関する燃
料噴射弁7の不感情時間の補信号にあたる補正量Tsを
加えたものを駆動信号TIとして電磁燃料噴射弁7に付
与する(すなわち、TI=Tp−COEF−α+Ts)
。ただし、前記C0EFは始動、暖機、アイドル等の機
関状態に応じて付与される補正係数の総和である。また
、この発明では、詳しくは後述するが上記噴射量制御の
過程でさらに吸気系保留燃料量に基づいた過渡補正を施
し、さらに減速時にあっては2次空気の供給を行う。
The basic fuel injection amount control in the above configuration is well known. For example, a predetermined fuel injection amount is determined by table lookup based on the relationship between the intake air amount and rotational speed detected via the air 70-sensor 11 and rotation sensor 12. A basic fuel injection amount Tp (substantially the injection pulse width of the injection valve 7) for obtaining the fuel ratio is determined, and this is multiplied by a feedback correction coefficient α determined based on the output of the oxygen sensor 13 and a predetermined correction coefficient C0EF. , and a correction amount Ts, which is a supplementary signal of the dead time of the fuel injection valve 7 that is correlated with the battery voltage, is added to the electromagnetic fuel injection valve 7 as a drive signal TI (that is, TI=Tp-COEF-α+Ts).
. However, the C0EF is the sum of correction coefficients given according to engine conditions such as starting, warming up, and idling. Further, in the present invention, as will be described in detail later, in the process of the injection amount control, a transient correction is further performed based on the amount of fuel retained in the intake system, and furthermore, during deceleration, secondary air is supplied.

20は第1図の2次空気供給手段107にあたる2次空
気供給装置であり、エアクリーナ8からの大気を酸化触
媒9の上流側に位1dシて徘′A通路4に臨設した2次
空気供給口21に導入する2次空気通路22と、この通
路22の途中に介装された負圧駆動の(■閉切換弁23
と、同じく2次空気制御弁24と、曲記開閏切換弁23
を制御回路1からの指令に基づいて開閉駆動する電磁弁
25からなっている。電磁弁25は、吸気通路3の絞り
弁6よりも下流の部分から得られる吸入負圧と大気圧と
を選択的に開閉切換弁23に供給するもので、常態では
大気導入位置にあるが制御回路1からの駆動信号が入力
すると負圧導入位置に切り換わり、駆動信号が停止する
と再び大気導入位置に復帰する。開閉切換弁23は、前
記電磁弁25を介しての圧力切換えに応動し、大気導入
時は弾性的に閉弁付勢されているが、負圧が導入される
とその間だけ開弁じて2次空気通路22を開く。他方、
2次空気制御弁24はリード弁構成であり、排気脈動効
果により排気通路4内の圧力が大気圧以下となったとき
に自動開弁してエアクリーナ8からの大気を排気通路4
へと導入し、逆に排気脈動波の高圧成分が作用すると閉
弁して通路22への排気の逆流を阻止する。
20 is a secondary air supply device corresponding to the secondary air supply means 107 in FIG. A secondary air passage 22 that is introduced into the port 21 and a negative pressure-driven (■ closed switching valve 23
Similarly, the secondary air control valve 24 and the switching valve 23
It consists of a solenoid valve 25 that is driven to open and close based on commands from the control circuit 1. The solenoid valve 25 selectively supplies the intake negative pressure obtained from the downstream part of the intake passage 3 and the atmospheric pressure to the on-off switching valve 23, and is normally in the atmospheric introduction position, but is not controlled. When the drive signal from circuit 1 is input, it switches to the negative pressure introduction position, and when the drive signal stops, it returns to the atmosphere introduction position again. The on-off switching valve 23 responds to pressure switching via the electromagnetic valve 25, and is elastically biased to close when atmospheric air is introduced, but when negative pressure is introduced, it opens only during that time and closes the secondary valve. Open air passage 22. On the other hand,
The secondary air control valve 24 has a reed valve configuration, and automatically opens when the pressure in the exhaust passage 4 becomes below atmospheric pressure due to the exhaust pulsation effect, and the atmosphere from the air cleaner 8 is transferred to the exhaust passage 4.
When the high-pressure component of the exhaust pulsating wave acts on the valve, the valve closes to prevent the exhaust from flowing back into the passage 22.

なお、上記排気脈動効果を利用した2次空気供給装!!
!20は4気筒以下の4サイクル型機関に適応するもの
で、顕著な排気脈動が発生しない6気筒以上の機関等に
おいてはエアポンプなどを用いて積極的に2次空気を供
給する構成とするのが望ましい。
In addition, a secondary air supply system that utilizes the exhaust pulsation effect mentioned above! !
! 20 is suitable for 4-stroke engines with 4 cylinders or less, and for engines with 6 cylinders or more where noticeable exhaust pulsation does not occur, it is recommended to use an air pump etc. to actively supply secondary air. desirable.

次に、上記構成下での空燃比補正と2次空気供給に関す
る制御の内容を流れ図を参照しながら説明する。なお、
tlS3図と第4図が燃料噴射制御のメインルーチンに
あたり、第5図とPIS6図がその過程で使用する補正
値等を求めるためのサブルーチンに相当する。
Next, the details of control regarding air-fuel ratio correction and secondary air supply under the above configuration will be explained with reference to flowcharts. In addition,
tlS3 diagram and FIG. 4 correspond to the main routine of fuel injection control, and FIG. 5 and PIS6 diagram correspond to the subroutine for determining correction values, etc. used in the process.

この制御では、第3図に示したようにまず基本噴射it
 T pを求める(ステップ301 )、これは上述し
た通り吸入空気mqaと回転速度Nとをパラメータとし
て、これらの比に所定の定数Kを乗じるという通常の手
法による。
In this control, as shown in FIG.
T p is determined (step 301) by the usual method of multiplying the ratio of these by a predetermined constant K using the intake air mqa and the rotational speed N as parameters, as described above.

次に、補正の根拠となる吸気系保留燃料量の定常的運転
条件での平衡状態量MOを演算する(ステップ302)
。この場合、MOは所定の冷却水温度範囲Two−Tw
4につき上記基本噴射量Tpと回転速度Nとをパラメー
タとして保留燃料量MOO〜MO4を付与するように予
め実測から形成したメモリーテーブルから求めるように
しである。
Next, the equilibrium state amount MO of the intake system retained fuel amount under steady operating conditions, which is the basis for correction, is calculated (step 302).
. In this case, MO is a predetermined cooling water temperature range Two-Tw
4, the reserved fuel amounts MOO to MO4 are determined using the basic injection amount Tp and rotational speed N as parameters from a memory table formed in advance from actual measurements.

すなわち、所定水温毎に第7図に例示したような特性で
MOnを付与するテーブルが制御回路1のメモリに記憶
されており、第5図に示した通り実際の冷却水温度Tl
1lとTp、Nをパラメータとする前記テーブルからの
読みだし、及び補間計算からMOを決定する。その詳細
としては、実際に冷却水がとりうる温度変化幅の範囲内
で予め設定されたrwo−’「w4(ただし、Tu+O
> Tw4 )の基準温度毎に′「pとNとをパラメー
タとしてMOO〜M04を付与する都合5個のテーブル
が用意されており、水温センサ14を介して検出した実
水温TII+が位置する温度範囲の境界となる上下の基
準温度に相当するテーブルから個々に値を読みだしたう
えで、実温度T vaと基準温度との差から直線近似の
補完計算を行って最終的にMO番決定する。
That is, a table is stored in the memory of the control circuit 1 that assigns MOn for each predetermined water temperature with the characteristics illustrated in FIG. 7, and as shown in FIG.
MO is determined by reading from the table using 1l, Tp, and N as parameters, and by interpolation calculation. The details include rwo-'w4 (however, Tu+O
> Tw4) For each reference temperature, five tables are prepared in which MOO to M04 are assigned using p and N as parameters, and the temperature range in which the actual water temperature TII+ detected via the water temperature sensor 14 is located. The MO number is finally determined by reading values individually from the table corresponding to the upper and lower reference temperatures that are the boundaries of T va and then performing complementary calculations using linear approximation from the difference between the actual temperature T va and the reference temperature.

次に、このようにして求めたMOに対して、現時点での
吸気系保留燃料量の予測値Mが単位周期あたり(例えば
クランク紬1回忙毎)にどの程度の割合で接近するかの
割合を表す係数DKを演算する(ステップ303)。こ
れは、まず前回の処理で求めた単位周期当たりの燃料不
足量DMと水温T11とに基づき、予め第8図のように
形成されたデープルからの読みだしによりDKTWを求
め、次にNとTpとt二基づき同じく第9図のように形
成されたテーブルからの読みだしによりDKNを求め、
これらを乗じてI)Kとする(第6図参照)。
Next, calculate the rate at which the predicted value M of the amount of fuel retained in the intake system at the present time approaches the MO obtained in this way per unit cycle (for example, every time the crank Tsumugi is busy). A coefficient DK representing the value is calculated (step 303). First, based on the fuel shortage amount DM per unit cycle and the water temperature T11 obtained in the previous process, DKTW is obtained by reading from the dimple formed in advance as shown in FIG. 8, and then N and Tp Based on
These are multiplied to give I)K (see Figure 6).

さらに、この係数I)KをMOとその予測値Mとの差に
乗じる演算−二より単位周期あたりの燃料過不足fiD
Mを求める(ステップ304)、このときの予測値Mは
、後に説明する第4図1こ示した処理において求められ
るMの前回処理分であり、これをMOから差し引くこと
5二より吸気系保留燃料の平衡状!!!量に対する現時
点での燃料の過剰量または不足量が得られるので、これ
に接近係数DKを乗じることに上り単位周期あたりの燃
料の過不足量が求められる。この場合、過不足量DMは
加速状態では正の値をとって燃料不足量を表し、減速状
態では負の値をとって燃料過剰量を表すことになる6 第・を図はこのようにして定められた過不足量DMを加
味して最終的な燃料噴射量TIを演算するとともに2次
空気供給を制御する処理を示しており、まず当初の基本
噴射量Tpに前iDMを加えてこれを新たな基本噴射f
iTpfとする(ステップ401)。
Furthermore, the calculation of multiplying the difference between MO and its predicted value M by this coefficient I) K - fuel surplus/deficiency per unit cycle fiD
Calculate M (step 304). The predicted value M at this time is the previous processing amount of M calculated in the process shown in FIG. Fuel equilibrium! ! ! Since the current surplus or shortage of fuel with respect to the amount is obtained, the surplus or shortage of fuel per unit cycle can be determined by multiplying this by the approach coefficient DK. In this case, the surplus/deficiency amount DM takes a positive value in the acceleration state to represent the fuel shortage amount, and takes a negative value to represent the fuel surplus amount in the deceleration state. This shows the process of calculating the final fuel injection amount TI by taking into account the predetermined excess or deficiency amount DM and controlling the secondary air supply. First, the previous basic injection amount Tp is added to the previous iDM and then New basic injection f
iTpf (step 401).

次に、このTpfに既述した基本補正係数C0FFとフ
ィー−バック補正係数aとを乗じたものに噴射弁7の不
感帯補償分子sを加えてTIを得る(ステップ402 
)、制御回路1の内部では、このようにして求めたTI
の値が出力レジスタに書き込まれ、これによりI10装
置を介して噴射弁7にTIに応じた駆動信号が供給され
、燃料噴射が行なわれることになる(ステップ403)
。そして、最後に次回の処理のために前回の予測値Mに
今回の不足fiDMを加えて新たなMを設定する(ステ
ップ404)。これは、DMが吸気系保留燃料量の変化
を代表する量であるのに対して、Mが現時点での保留燃
料量を与えることから、Mは逐次DM分だけ補正される
ことになり、従って次回の補正のためのMをM+DMと
しで予測するのである。なお、このm4図の処理は燃料
噴射時期またはクランク軸回転に同期して行なわれるも
のであり、例えば機関クランク紬1回転毎にTIが算出
され、その都度予測値Mが更新される。
Next, the dead zone compensation numerator s of the injection valve 7 is added to the product obtained by multiplying this Tpf by the basic correction coefficient C0FF and the feedback correction coefficient a described above to obtain TI (step 402).
), inside the control circuit 1, the TI obtained in this way
The value of is written to the output register, and a drive signal according to TI is thereby supplied to the injection valve 7 via the I10 device, and fuel injection is performed (step 403).
. Finally, for the next process, a new M is set by adding the current shortage fiDM to the previous predicted value M (step 404). This is because DM is a quantity that represents the change in the amount of fuel retained in the intake system, whereas M gives the amount of retained fuel at the present moment, so M is successively corrected by the amount of DM. The prediction is made by setting M for the next correction as M+DM. Note that the processing of this m4 diagram is performed in synchronization with the fuel injection timing or crankshaft rotation, and, for example, TI is calculated every one revolution of the engine crank, and the predicted value M is updated each time.

一方、補正基本噴射量Tpfを得たのち、これを基準値
LEAiと比較して、Tpf<LEAiのときは2次空
気供給装置20の電磁弁25に通電して2次空気の供給
を行う(ステップ405.406)。
On the other hand, after obtaining the corrected basic injection amount Tpf, it is compared with the reference value LEAi, and when Tpf<LEAi, the solenoid valve 25 of the secondary air supply device 20 is energized to supply secondary air ( Steps 405 and 406).

これにより、排気通路4に排出された排気中の未焼成分
が酸化され、さらに触媒9にて燃焼を侃されるため最終
的に排出されるHCやCO等の有害物質の量が充分に低
減される。すなわち、高負荷時など吸気系保留燃料量が
多い運転条件から減速を開始したときにはTpfがゼロ
以下に減少してしまうほど負方向のDMの値が大きくな
るが、このことは燃料の供給を停止しても吸気系保留燃
料により過濃混合気が生成されてしまうことを意味して
おり、この結果として排出された未燃成分を多量に含む
排気をそのまま触媒9に導入しても充分な酸化反応が得
られないので2次空気を供給して充分な酸化雰囲気を付
与するのである。
As a result, the unburned components in the exhaust gas discharged into the exhaust passage 4 are oxidized and further combusted in the catalyst 9, thereby sufficiently reducing the amount of harmful substances such as HC and CO that are finally discharged. be done. In other words, when deceleration is started under operating conditions with a large amount of fuel retained in the intake system, such as during high load, the value of DM in the negative direction becomes so large that Tpf decreases below zero, but this does not mean that the fuel supply is stopped. However, this means that a rich mixture is generated due to the retained fuel in the intake system, and as a result, even if the exhaust gas containing a large amount of unburned components is directly introduced into the catalyst 9, sufficient oxidation is not achieved. Since no reaction is obtained, secondary air is supplied to provide a sufficient oxidizing atmosphere.

また、この場合冷却水温Twが所定基準値TwEAi以
下の低温時、または噴射系が全開増量を行っている運転
状態のときにも2次空気を供給することにより、未燃成
分が生じやすいこれらの条件下での排気浄化処理を行う
ようにしており、その他の運転条件下においては2次空
気供給を停止するようにしている(ステップ407〜4
09)。なお、前述の全開増量状態はTIの大きさ、あ
るいはスロットルセンサ10からの信号等により判定さ
れる。
In addition, in this case, by supplying secondary air even when the cooling water temperature Tw is at a low temperature below the predetermined reference value TwEAi, or when the injection system is in an operating state where the injection system is fully open and increasing, unburned components are likely to be generated. The exhaust gas purification process is performed under certain operating conditions, and the secondary air supply is stopped under other operating conditions (steps 407 to 4).
09). The above-mentioned full-open fuel increase state is determined based on the magnitude of TI, the signal from the throttle sensor 10, etc.

第10図は加速時、減速時、加速途中でのギアチェンノ
時など運転状態の変化に対応させて上記制御における各
種の量の変化を信号波形として示したもので、図に見ら
れるように、吸気系保留燃料量の定常条件での平衡状態
量MOとその予測値Mとを基本として得られる補正分の
燃料量値DMは実際の不足(または過剰)燃料量と良く
一致した特性で変化し、これにより過渡的運転時におい
ても精度の高い空燃比制御が可能になる。
Figure 10 shows signal waveforms of changes in various amounts in the above control in response to changes in operating conditions, such as during acceleration, deceleration, and gear change during acceleration. The corrected fuel amount value DM obtained based on the equilibrium state amount MO of the system retained fuel amount under steady conditions and its predicted value M changes with characteristics that closely match the actual insufficient (or excess) fuel amount, This enables highly accurate air-fuel ratio control even during transient operation.

ところで、このような空燃比補正は減速時の燃料カット
からりカバリ−(噴射再開)を行う時や始動時にも対応
可能である。第11図は燃料カットリカバリ一時の空燃
比補正に対応した補正処理の一例を示したもので、13
図と異なるのは基本噴射量Tpを演算したのち減速燃料
カット条件か否かを判定し、燃料カットであればMOの
値としてゼロまたは通常のMOよりも非常に小さい所定
値MFCを付与する点にある。一般に燃料カットを行う
とその間に吸気系保留燃料が機関に吸入されてしまうた
め、リカバリ一時には再噴射燃料の一部によって新たな
保留燃料が形成される分だけ実質供給燃料量が不足して
空燃比が希薄化してしまうのであるが、前述のようにし
てMOとしてゼロまたは非常に小さな値を付与すると、
第12図に示したように燃料カット中に予測値MがMO
に接近するように少しづつ小さくなり、一方リカバリー
によってMOは急激に大さくなるので、それだけMとの
差MO−Mが大となって最終的には燃料増量がなされる
ことになり、これにより空燃比の希薄化が回避されるの
である。なお、減速途中から加速を開始したときのよう
に、燃料カットの時間が短くてMが充分にMOに接近す
る前にリカバリーに入った場合、リカバリ一時のMOと
Mとの差がそれほど大きくならないため増量分にあたる
DMも小さくなるが、このような条件下ではりカバリ−
に入るまでの保留燃料の消費量も少ないので実質空燃比
には大きく影響しない。
Incidentally, such air-fuel ratio correction can also be applied when performing recovery (injection restart) from fuel cut during deceleration or when starting the engine. Figure 11 shows an example of a correction process corresponding to air-fuel ratio correction during fuel cut recovery.
The difference from the diagram is that after calculating the basic injection amount Tp, it is determined whether or not there is a deceleration fuel cut condition, and if it is a fuel cut, zero or a predetermined value MFC that is much smaller than the normal MO is given as the MO value. It is in. Generally, when a fuel cut is performed, the retained fuel in the intake system is sucked into the engine, so during recovery, the actual amount of supplied fuel is insufficient due to the formation of new retained fuel by part of the re-injected fuel, and the engine runs out. The fuel ratio becomes diluted, but if we assign zero or a very small value to MO as described above,
As shown in Figure 12, the predicted value M changes to MO during fuel cut.
On the other hand, as MO increases rapidly due to recovery, the difference between MO and M increases, and eventually the amount of fuel must be increased. This avoids dilution of the air-fuel ratio. In addition, if the fuel cut time is short and recovery is started before M gets close enough to MO, as when acceleration is started in the middle of deceleration, the difference between MO and M at the time of recovery will not be that large. Therefore, the DM corresponding to the increased amount will also be smaller, but under these conditions, the peel coverage will be reduced.
Since the amount of reserved fuel consumed before entering the engine is small, it does not greatly affect the actual air-fuel ratio.

また、始動時ないし始動完爆後の補正については、図示
しないがイグニッションスイッチがオンとなったときに
別途設けた初期化ルーチンによりMOをゼロとすること
により、上記リカバリ一時と同様にしてクランキング時
ないし暖機時の条件に応じた自動的な増量補正を竹うこ
とができる。
In addition, regarding the correction at the time of starting or after the start is completed, MO is set to zero by a separately prepared initialization routine when the ignition switch is turned on (not shown), and cranking is performed in the same way as during the recovery period described above. It is possible to automatically increase the amount according to the conditions during warm-up or warm-up.

ただし、コールドスタート時には供給燃料の一部がシリ
ンダ壁面等に付着して実質空燃比の希薄化をもたらした
り、燃焼せずに排出されたりすることがあるので、その
分を補うためにさらに増量補正を施すのが望ましい。
However, at the time of a cold start, some of the supplied fuel may adhere to the cylinder wall, etc., resulting in a dilution of the actual air-fuel ratio, or may be exhausted without being combusted, so the fuel amount may be further increased to compensate for this. It is desirable to apply

なお、上記実施例においては吸気系保留燃料量の定常条
件での平衡状fi1Moや係数DKを決定するためにパ
ラメータとして機関回転速度N、基本噴射量Tp、冷却
水温度Tw等を用いたが、これに限らず、例えば基本噴
射ft T pに代えて吸入空気量、吸気管圧力、絞り
弁開度を採用し、冷却水温度に代えて吸気温度等を採用
しても同様の補正制御を行うことが可能である。
In the above embodiment, the engine rotational speed N, basic injection amount Tp, cooling water temperature Tw, etc. were used as parameters to determine the equilibrium fi1Mo and coefficient DK of the intake system retained fuel amount under steady conditions. However, the same correction control can be performed even if, for example, the intake air amount, intake pipe pressure, and throttle valve opening are used instead of the basic injection ftTp, and the intake air temperature is used instead of the cooling water temperature. Is possible.

また、2次空気供給装置20については、第2図に想像
線で示したように吸気通路3に2次空気を供給する構成
としてもよく、この場合は減速過程で保留燃料により生
成された濃混合気を希釈して空燃比を適性化することに
なるので、燃焼自体が改善されて未燃成分の量が減少す
る。
Further, the secondary air supply device 20 may be configured to supply secondary air to the intake passage 3 as shown by the imaginary line in FIG. Since the air-fuel mixture is diluted to optimize the air-fuel ratio, combustion itself is improved and the amount of unburned components is reduced.

(発明の効果) 以上説明したとおり、この発明によれば加速または減速
という機関の過渡的な運転条件において空燃比に大きく
影響を及ぼす吸気系保留燃料量を求め、この保留燃料量
による空燃比の変動分を補償するように燃料の供給量を
補正するようにしたので、過渡的運転条件においても適
切な運転性能が確保される。また、前記吸気系保留燃料
量はこれを直接的に検出するのではなく、予め実験的に
求められる定常運転条件での平衡状態量から機関運転状
態に応じて予測するようにしたので、複雑な検出手段を
付加することなく前記制御が可能となり、従って燃料供
給系の機械的構成が徒に複雑化するおそれがない。
(Effects of the Invention) As explained above, according to the present invention, the amount of retained fuel in the intake system that greatly affects the air-fuel ratio under transient operating conditions of the engine such as acceleration or deceleration is determined, and the air-fuel ratio is determined by this amount of retained fuel. Since the fuel supply amount is corrected to compensate for the variation, appropriate operating performance is ensured even under transient operating conditions. In addition, the amount of retained fuel in the intake system is not directly detected, but is predicted according to the engine operating state from the equilibrium state amount under steady operating conditions, which is determined experimentally in advance. The above-mentioned control can be performed without adding a detection means, and therefore there is no fear that the mechanical configuration of the fuel supply system will become unnecessarily complicated.

さらに、この発明では吸気系保留燃料の影響下で起こる
、燃料供給量制御では補正しされない減速時の混合気過
濃化に対応して、機関の吸気系または排気系に2次空気
を供給するようにしたので、比較的多量の吸気系保留燃
料が生じるシングルポイントインノエクシ3ン方式の燃
料供給装置においてら確実に減速時の未燃成分の排出を
抑制することができ、従って上記空燃比補正と併せて機
関の排気組成を全運転域tこわたって改善することがで
きる。
Furthermore, in this invention, secondary air is supplied to the engine's intake system or exhaust system in response to the overenrichment of the mixture during deceleration, which occurs under the influence of intake system retained fuel and is not corrected by fuel supply amount control. As a result, it is possible to reliably suppress the discharge of unburned components during deceleration in a single point fuel supply system in which a relatively large amount of fuel is retained in the intake system. In addition, the exhaust composition of the engine can be improved over the entire operating range.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の概念的構成を示したブロック図であ
る。第2図はこの発明の一実施例の機械的構成図である
。第3図〜第6図は前記実施例に対応した空燃比制御の
制御内容を表した流れ図である。第7図は前記空燃比制
御において吸気系保留燃料量の定常条件における平衡状
!!i量MOを与えるテーブルの内容例を示した特性線
図、第8図と第9図は同じく前記空燃比制御において係
数DKを与えるテーブルの内容例を示した特性線図であ
る。第10図は前記空燃比制御におけるパラメータない
し係数等の変化と燃料噴射量の制御特性との関係を信号
波形として示した波形図である。 第11図は11(記空燃比制御を減速燃料カットからの
りカバリ一時に適用するようにした処理内容の一例を表
した流れ図、第12図はその処理による場合のttS1
0図に相当する波形図である。 101・・・燃料量演算手段、102・・・平衡状態量
演算手段、103・・・減算手段、104・・・過不足
量演算手段、105・・・予測値演算手段、106・・
・燃料量補正手段、107・・・2次空気供給手段、1
・・・制御回路、2・・・内燃機関、3・・・吸気通路
、4・・・排気通路、5・・・スロットルボディ、6・
・・吸気絞り弁、7・・・電磁燃料噴射弁、9・・・酸
化触媒、10・・・スロントルセンサ、11・・・エア
70−センサ、12・・・回転センサ、13・・・酸素
センサ、14・・・水温センサ、20・・・2次空気供
給装置、22・・・2次空気通路、23・・・開閉切換
弁、24・・・2次空気制御弁、25・・・電磁弁。 第4図 第5図 丁工 第10図 加速     淋′迷 キ゛アー5−rンジ。
FIG. 1 is a block diagram showing the conceptual configuration of the present invention. FIG. 2 is a mechanical configuration diagram of an embodiment of the present invention. 3 to 6 are flowcharts showing the contents of the air-fuel ratio control corresponding to the embodiment described above. Figure 7 shows the equilibrium state of the amount of fuel retained in the intake system under steady conditions in the air-fuel ratio control. ! FIGS. 8 and 9 are characteristic diagrams showing an example of the contents of a table giving the i quantity MO, and FIGS. 8 and 9 are characteristic diagrams showing an example of the contents of a table giving the coefficient DK in the air-fuel ratio control. FIG. 10 is a waveform diagram showing, as a signal waveform, the relationship between changes in parameters or coefficients, etc. in the air-fuel ratio control and control characteristics of the fuel injection amount. Fig. 11 is a flowchart showing an example of the processing contents in which the air-fuel ratio control described above is applied from the deceleration fuel cut to the time of road recovery.
FIG. 2 is a waveform diagram corresponding to FIG. 101... Fuel amount calculation means, 102... Equilibrium state quantity calculation means, 103... Subtraction means, 104... Excess/deficiency amount calculation means, 105... Predicted value calculation means, 106...
・Fuel amount correction means, 107...Secondary air supply means, 1
... Control circuit, 2... Internal combustion engine, 3... Intake passage, 4... Exhaust passage, 5... Throttle body, 6...
...Intake throttle valve, 7...Electromagnetic fuel injection valve, 9...Oxidation catalyst, 10...Throntl sensor, 11...Air 70-sensor, 12...Rotation sensor, 13... Oxygen sensor, 14...Water temperature sensor, 20...Secondary air supply device, 22...Secondary air passage, 23...Open/close switching valve, 24...Secondary air control valve, 25... ·solenoid valve. Figure 4 Figure 5 Figure 10 Acceleration 5-rung key.

Claims (1)

【特許請求の範囲】[Claims] 機関運転状態に応じて供給燃料量を演算する燃料量演算
手段と、機関吸気系保留燃料量の定常運転条件での平衡
状態量を運転状態に応じて演算する平衡状態量演算手段
と、この平衡状態量とその予測値との差を演算する減算
手段と、この減算結果に基づいて単位周期あたりの過不
足燃料量を演算する過不足量演算手段と、この過不足燃
料量と以前の平衡状態量の予測値とから現在の平衡状態
量の予測値を演算する予測値演算手段と、前記過不足燃
料量に基づいて供給燃料量を補正する燃料量補正手段と
、補正後の供給燃料量が所定値以下となったときに機関
の吸気系もしくは排気系に空気を供給する2次空気供給
手段とを有することを特徴とする内燃機関の空燃比制御
装置。
A fuel amount calculating means for calculating the amount of fuel to be supplied according to the engine operating state; an equilibrium state amount calculating means for calculating the equilibrium state amount of the engine intake system retained fuel amount under steady operating conditions according to the operating state; A subtraction means for calculating the difference between the state quantity and its predicted value, an excess/deficiency calculation means for calculating the excess/deficit fuel amount per unit cycle based on the subtraction result, and a previous equilibrium state between the excess/deficit fuel amount and the previous equilibrium state. a predicted value calculating means for calculating a predicted value of the current equilibrium state quantity from the predicted value of the quantity; a fuel quantity correcting means for correcting the supplied fuel quantity based on the excess/deficit fuel quantity; An air-fuel ratio control device for an internal combustion engine, comprising: secondary air supply means for supplying air to an intake system or an exhaust system of an engine when the air-fuel ratio becomes below a predetermined value.
JP280986A 1986-01-09 1986-01-09 Air-fuel ratio controller for internal combustion engine Expired - Lifetime JPH0665860B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP280986A JPH0665860B2 (en) 1986-01-09 1986-01-09 Air-fuel ratio controller for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP280986A JPH0665860B2 (en) 1986-01-09 1986-01-09 Air-fuel ratio controller for internal combustion engine

Publications (2)

Publication Number Publication Date
JPS62159749A true JPS62159749A (en) 1987-07-15
JPH0665860B2 JPH0665860B2 (en) 1994-08-24

Family

ID=11539713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP280986A Expired - Lifetime JPH0665860B2 (en) 1986-01-09 1986-01-09 Air-fuel ratio controller for internal combustion engine

Country Status (1)

Country Link
JP (1) JPH0665860B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0674081A (en) * 1992-08-26 1994-03-15 Honda Motor Co Ltd Control device for internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0674081A (en) * 1992-08-26 1994-03-15 Honda Motor Co Ltd Control device for internal combustion engine

Also Published As

Publication number Publication date
JPH0665860B2 (en) 1994-08-24

Similar Documents

Publication Publication Date Title
US4964272A (en) Air-fuel ratio feedback control system including at least downstreamside air-fuel ratio sensor
US4964271A (en) Air-fuel ratio feedback control system including at least downstream-side air-fuel ratio sensor
JP3356878B2 (en) Air-fuel ratio control device for internal combustion engine
JPS6165038A (en) Air-fuel ratio control system
JPH08338325A (en) Control device for internal combustion engine
US4572129A (en) Air-fuel ratio feedback control method for internal combustion engines
JP2927074B2 (en) Air-fuel ratio control device for internal combustion engine
US5634449A (en) Engine air-fuel ratio controller
JPS62159749A (en) Air-fuel ratio control device for internal combustion engine
JPH0932537A (en) Control device of internal combustion engine
JPS61187570A (en) Intake secondary air feeder of internal-combustion engine
JPS62191641A (en) Learning control device for air-fuel ratio for internal combustion engine
JPH0656112B2 (en) Fuel injection control device for internal combustion engine
JP3593388B2 (en) Air-fuel ratio control device for internal combustion engine
JP4044978B2 (en) Engine air-fuel ratio control device
JP3170046B2 (en) Air-fuel ratio learning method for internal combustion engine
JPH11173218A (en) Egr rate estimation device for engine
JP3564923B2 (en) Engine air-fuel ratio control device
JP2962981B2 (en) Control method of air-fuel ratio correction injection time during transient
JP2561248B2 (en) Fuel cut control device for internal combustion engine
JPH0833133B2 (en) Air-fuel ratio control device for internal combustion engine
JPH0665856B2 (en) Air-fuel ratio correction device for internal combustion engine
JPS62282143A (en) Air-fuel ratio control device for internal combustion engine
JPH07247888A (en) Fuel injection control device for internal combustion engine
JPH05106485A (en) Fuel oil consumption control device for internal combustion engine