JPS62159581A - Image pickup device - Google Patents

Image pickup device

Info

Publication number
JPS62159581A
JPS62159581A JP61001188A JP118886A JPS62159581A JP S62159581 A JPS62159581 A JP S62159581A JP 61001188 A JP61001188 A JP 61001188A JP 118886 A JP118886 A JP 118886A JP S62159581 A JPS62159581 A JP S62159581A
Authority
JP
Japan
Prior art keywords
pixel
light
receiving
picture element
interpolation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61001188A
Other languages
Japanese (ja)
Inventor
Yoshiaki Otsu
大津 芳明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP61001188A priority Critical patent/JPS62159581A/en
Publication of JPS62159581A publication Critical patent/JPS62159581A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To perform interpolating with high accuracy by finely displacing an object image and a photodetecting picture element relatively. CONSTITUTION:Potentials V1 and V3 are changed over and an oscillating voltage of an amplitude V4 is impressed to the respective potentials V1, V3 and in this manner, by applying the fine oscillation, a high resolution is further realized. Namely, if a picture element output in the position of the potential V1 and a picture element output in the position of the V3 are simply operated, the interpolation can be performed. However, this method is only applied to the object changing linearly from the position of the V1 to the position of the V3, and if the fine oscillation is applied, the interpolation can be performed with high accuracy.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は有限開口の撮像素子の解像度を上げる為のソリ
ッドステッド化した高解像の撮像装置に関するものであ
る・ 〔従来技術〕 従来は、バイモルフ型CODの様に、ピエゾ素子を用い
て固体撮像素子を、半画素ピッチ振動させて解像度を2
倍にする方式、又は特開昭59−して画素の2列を重ね
て受像する倍像方式等の機構が知られている。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a solid-stead high-resolution imaging device for increasing the resolution of a finite aperture imaging device. [Prior Art] Conventionally, Like a bimorph COD, a piezo element is used to vibrate a solid-state image sensor at a pitch of half a pixel, increasing the resolution to 2.
Mechanisms such as a doubling method, or a doubling method in which two rows of pixels are superimposed to receive an image, as disclosed in Japanese Patent Application Laid-Open No. 1982, are known.

〔発明の解決しようとする問題点〕[Problem to be solved by the invention]

しかし、いずれも解像力を2倍にするだけである。ピエ
ゾ振動サイクルに制限があったり、偏光板を利用する方
法では、撮像素子の受像感度が悪くなる。又機構部品が
多く高価で1位置決め等や組立て精度も要求される。又
、固体撮像素子を高解像にする為には技術的な困難を伴
うばかりか、特性の劣化や大幅なコストアップを伴う。
However, either method only doubles the resolution. If the piezo vibration cycle is limited or a polarizing plate is used, the image receiving sensitivity of the image sensor will deteriorate. Furthermore, it has many mechanical parts, is expensive, and requires precision in positioning and assembly. Furthermore, increasing the resolution of a solid-state imaging device not only involves technical difficulties, but also involves deterioration of characteristics and a significant increase in cost.

本発明はこのような従来の欠点を除去すると同時に、光
ビーム偏向による微小振動をさせるだけで、高解像が計
れる撮像装置を提供することを(]的としている。
It is an object of the present invention to eliminate such conventional drawbacks and at the same time provide an imaging device that can measure high resolution simply by causing minute vibrations by deflecting a light beam.

〔問題点を解決する為の手段〕[Means for solving problems]

本発明では被写体像を標本化する為の所定のピッチで配
列された複数の受光画素、該複数の画素と被写体像を相
対的に前記ピッチより小さい11】で振動させる制御手
段、前記受光画素の出力を演算して受光画素の信号の補
間を行う演算手段を右する。
The present invention includes a plurality of light-receiving pixels arranged at a predetermined pitch for sampling a subject image, a control means for vibrating the plurality of pixels and the subject image relatively at a pitch smaller than the pitch, and This is a calculation means that calculates the output and interpolates the signal of the light receiving pixel.

〔作 用〕[For production]

このように構成しているので、大きな変位をさせなくて
も微小振動をさせるだけで、このときの振動出力を演算
することにより画素信号の補間を高精度で行うことがで
きる。
With this configuration, it is possible to interpolate pixel signals with high precision by just making a minute vibration without making a large displacement, and by calculating the vibration output at this time.

〔実施例〕〔Example〕

第1図〜第3図は本発明の実施例で21は光偏向素子(
電気光学効果を持つKDP (KH2PO4)、ADP
 (NH4H2POa)。
1 to 3 show examples of the present invention, and 21 is a light deflection element (
KDP (KH2PO4), ADP with electro-optic effect
(NH4H2POa).

LiNbO3などの結晶材料で、結晶軸はZ軸方向に沿
って配置されている。)、2は1と同じ材質で結晶軸方
向をZ軸に対してlと逆方向に配置し、又、X、Y平面
の対角線方向でカットして1と接着している。1.2を
接合した形状は、例えif Y方向ノ厚ミ10m+s、
 X 、 Z方向夫//30111(7)矩形板などで
ある。3,4は+、−が切り換わる双方向性の′電極、
5は撮像レンズ、6は撮像素子でその表面には簿ピッチ
で配列された複数の受光画素が設けられている。
In a crystalline material such as LiNbO3, the crystal axis is arranged along the Z-axis direction. ) and 2 are made of the same material as 1, with the crystal axis direction opposite to 1 with respect to the Z axis, and are cut in the diagonal direction of the X, Y plane and bonded to 1. The shape of 1.2 joined is, for example, if the thickness in the Y direction is 10 m + s,
X, Z direction husband//30111 (7) Rectangular plate, etc. 3 and 4 are bidirectional 'electrodes that switch between + and -;
Reference numeral 5 denotes an imaging lens, and 6 an imaging element, on the surface of which a plurality of light-receiving pixels are arranged at regular pitches.

各受光画素は被写体像を標本化する為の光電変換を行う
、7は光偏向素子1,2に駆動信号を供給する為の制御
回路、8は撮像素子6の出力を演算処理する為の演算処
理回路である。
Each light-receiving pixel performs photoelectric conversion to sample the subject image, 7 is a control circuit for supplying drive signals to the optical deflection elements 1 and 2, and 8 is an arithmetic operation for processing the output of the image sensor 6. It is a processing circuit.

電極3,4の間の電位を第2図のように変化させた場合
、入射光はZ軸を中心にX方向に偏向し、撮像素子6に
入射するので撮像素子内の所定の画素に入射する被写体
の標本位置はAからBまで変化する。ここでAからBへ
の変位量を各画素のピッチの局に選べば1電位■1とV
3とで電圧を切り換えてやるだけで見かけ上、画素数を
2倍にしたのと同様の効果が得られる。
When the potential between the electrodes 3 and 4 is changed as shown in Figure 2, the incident light is deflected in the X direction centering on the Z axis and enters the image sensor 6, so that it is incident on a predetermined pixel in the image sensor. The sample position of the subject changes from A to B. Here, if the amount of displacement from A to B is selected as the station of the pitch of each pixel, 1 potential ■ 1 and V
By simply switching the voltage between 3 and 3, the same effect as doubling the number of pixels can be obtained.

本実施例では、このような電圧の変化に加え、第3図の
ような変調を加えることにより更に高解像化を狙ってい
る。
In this embodiment, in addition to such voltage changes, the aim is to achieve even higher resolution by adding modulation as shown in FIG.

即ち、■、及びv3の電位の切り換えと共に、このvl
 、v3の夫々の電位において振幅V4の振動電圧を印
加させている。
That is, in addition to switching the potentials of ■ and v3, this vl
, v3, an oscillating voltage of amplitude V4 is applied at each potential.

この電圧振幅v4は(Vl −V3 )よりも小さい、
これは、v4の変化を(VI  V3)以上にすること
が応答性からみて極めて困難だからである。
This voltage amplitude v4 is smaller than (Vl - V3),
This is because it is extremely difficult to make the change in v4 more than (VI V3) from the viewpoint of responsiveness.

本実施例ではこのように微小振動を加えることにより更
に高解像化を実現する。即ち、電位VIの位置での画素
出力とV3の位置での画素出力とを単純に演算しても補
間は可能である。しかし、この方法ではvlの位置から
V3の位置まで被写体が線形変化をしているものにしか
適用できないのに対し、本実施例の如く、微小振動を加
えると、次のようなより高精度の捕m1が可能となる。
In this embodiment, higher resolution is achieved by adding minute vibrations in this manner. That is, interpolation is possible by simply calculating the pixel output at the position of potential VI and the pixel output at the position of potential V3. However, this method can only be applied to objects where the subject changes linearly from the position of vl to the position of V3, whereas adding minute vibrations as in this example allows for the following higher precision Capturing m1 becomes possible.

例えばA点とB点の中間点C点が、A点及びB点を含む
n次関数上にあるものと仮定し、このn次間数で0点の
近似をとることができる。
For example, assuming that point C, an intermediate point between points A and B, is on an n-dimensional function that includes points A and B, the zero point can be approximated by this n-dimensional function.

例えばn=2とした場合、0点の信号レベルy (c)
は次式で補間可能である。
For example, if n=2, the signal level at point 0 y (c)
can be interpolated using the following equation.

y (c ) = a d 2 + b d + e 
   −−−−(1)このようにA点、B点で微小振動
をさせてやるだけでより高精度のn次近似が可能となる
。しかもこの微小振動の巾はA点、B点間のピッチより
も小さい巾でよい。
y (c) = a d 2 + b d + e
----- (1) In this way, by simply causing minute vibrations at points A and B, more accurate n-th approximation is possible. Moreover, the width of this minute vibration may be smaller than the pitch between points A and B.

演算処理回路8では上記の(1)〜(9)式の演算を行
うことにより、各受光画素から4つの受光画素からの信
号に相ちする信号を得ることができる。
The arithmetic processing circuit 8 performs the calculations of equations (1) to (9) above to obtain a signal corresponding to the signals from the four light-receiving pixels from each light-receiving pixel.

尚、具体的には制御回路7からv=v1+v4srnφ
の信号を印加している状態で蓄積された撮像素子からの
信号を読み出してA/D変換してメ工 n  tf f
;1 椿 + ス 次にV=V3 +V4 sinφを′II2極3,4間
に印加した状態で蓄積された撮像素子からの信号を読み
出してA/D変換してメモリの別の領域に記憶する。
Specifically, from the control circuit 7, v=v1+v4srnφ
While the signal is being applied, the accumulated signal from the image sensor is read out, A/D converted, and then processed. n tf f
;1 Tsubaki + Next, with V=V3 +V4 sinφ applied between 'II2 poles 3 and 4, the accumulated signal from the image sensor is read out, A/D converted, and stored in another area of the memory. .

次に夫々の領域に記憶された各画素の信号を読み出しな
がら互いに第(+)〜(9)式の演算を行う。即ち同じ
受光画素のA点とB点、及び所定画素のA点と隣接する
受光画素のB点、及び所定画素のB点と隣接する画素の
A点との間で前記演算を行うことにより1つの画素の信
号を用いて4倍の画素信号を得ることができる。
Next, while reading the signals of each pixel stored in each area, calculations of equations (+) to (9) are performed on each other. That is, by performing the above calculation between point A and point B of the same light-receiving pixel, point A of the predetermined pixel and point B of the light-receiving pixel adjacent to the point A of the predetermined pixel, and point A of the pixel adjacent to the point B of the predetermined pixel, 1. Four times as many pixel signals can be obtained using one pixel signal.

尚1以上の説明では1方向についてのみ高解像度化を図
っているが、直交する2方向について、このような画像
ずらしと微小振動をさせるようにしてやっても良い、そ
うすることにより8倍の検氷化を行うことが可能となる
In the above explanation, the resolution is increased only in one direction, but it is also possible to perform such image shifting and micro-vibration in two orthogonal directions.By doing so, the detection rate will be increased by 8 times. It becomes possible to perform freezing.

又、実施例では画像を受光画素に対して移動させたが、
これは相対的なものであれば良く、受光画素側をバイモ
ルフ等で移動させても良いことは言うまでもない。又、
その為の移動手段はバイモルフや電気光学素子に限定さ
れない。
Also, in the example, the image was moved relative to the light-receiving pixel, but
This need only be relative, and it goes without saying that the light-receiving pixel side may be moved using a bimorph or the like. or,
The means of movement for this purpose is not limited to bimorphs or electro-optical elements.

尚、本発明の付加的な効果として、上記の微小振動によ
り、受光画素に低周波のノイズが入っていてもこれを打
ち消す!−19ができ、モアレを防止できる効果を有す
る。
Additionally, as an additional effect of the present invention, even if there is low frequency noise in the light receiving pixel, it is canceled out by the above-mentioned minute vibration! -19, which has the effect of preventing moiré.

〔効 果〕〔effect〕

被写体像と受光画素を相対的に微小変位させてやること
により、従来の単純な信号補間に比べ。
Compared to conventional simple signal interpolation, by making small relative displacements between the subject image and the light-receiving pixels.

より高精度の補間を行うことができる。Interpolation can be performed with higher precision.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の撮像装訝の構成側図、第2図は一部信
号波形図、第3図は詳細な信号波形図である。 1.2−−−一偏向素子 6−−m−撮像素子 8−一一一演算処理回路
FIG. 1 is a side view of the configuration of an imaging device according to the present invention, FIG. 2 is a partial signal waveform diagram, and FIG. 3 is a detailed signal waveform diagram. 1.2----1 deflection element 6--m-imaging element 8-111 arithmetic processing circuit

Claims (1)

【特許請求の範囲】 被写体像を標本化する為の所定のピッチで配列された複
数の受光画素、 該複数の画素と被写体像を相対的に前記ピッチより小さ
い巾で振動させる制御手段、 前記受光画素の出力を演算して受光画素の信号の補間を
行う演算手段、を有する撮像装置。
[Scope of Claims] A plurality of light-receiving pixels arranged at a predetermined pitch for sampling a subject image, a control means for relatively vibrating the plurality of pixels and the subject image in a width smaller than the pitch, and the light-receiving device. An imaging device comprising a calculation means that calculates the output of the pixel and interpolates the signal of the light-receiving pixel.
JP61001188A 1986-01-07 1986-01-07 Image pickup device Pending JPS62159581A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61001188A JPS62159581A (en) 1986-01-07 1986-01-07 Image pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61001188A JPS62159581A (en) 1986-01-07 1986-01-07 Image pickup device

Publications (1)

Publication Number Publication Date
JPS62159581A true JPS62159581A (en) 1987-07-15

Family

ID=11494476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61001188A Pending JPS62159581A (en) 1986-01-07 1986-01-07 Image pickup device

Country Status (1)

Country Link
JP (1) JPS62159581A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992022982A1 (en) * 1991-06-11 1992-12-23 Seiko Epson Corporation Photoelectric conversion device, image recording device and image recording/reproducing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992022982A1 (en) * 1991-06-11 1992-12-23 Seiko Epson Corporation Photoelectric conversion device, image recording device and image recording/reproducing device

Similar Documents

Publication Publication Date Title
JPS62157482A (en) Image pickup device
JPH0516569B2 (en)
US4581649A (en) Image pickup system
JPS5928884B2 (en) Distance detection method
EP0204932B1 (en) Displacement generating device
JPH03240372A (en) Still picture image pickup device
JP3471156B2 (en) Image shift mechanism and imaging device
US6856477B2 (en) Position detecting apparatus, and optical apparatus and position detecting method comprising this
JP4391643B2 (en) 3D image input device
JPS62159581A (en) Image pickup device
US4048492A (en) Method and apparatus for automatic focusing an optical system with a scanning grating
JPH06141242A (en) Image pickup device
JP2575619B2 (en) Imaging device
JPH07322151A (en) Solid-state image pickup device
JP3460872B2 (en) Position detection method and positioning device
JP3244331B2 (en) Super-resolution imaging device
JPH0279685A (en) Image pickup device
JP2000125169A (en) Image pickup device
RU2080635C1 (en) Scanner
JP2631779B2 (en) Scanning microscope
JPS63284979A (en) Solid-state image pickup element
JPH09257566A (en) Infrared ray detecting device and infrared ray detecting method
JPS62264022A (en) Image pickup device
JPS64863B2 (en)
JPS61264873A (en) Solid-state image pickup device