JPS62264022A - Image pickup device - Google Patents

Image pickup device

Info

Publication number
JPS62264022A
JPS62264022A JP61106866A JP10686686A JPS62264022A JP S62264022 A JPS62264022 A JP S62264022A JP 61106866 A JP61106866 A JP 61106866A JP 10686686 A JP10686686 A JP 10686686A JP S62264022 A JPS62264022 A JP S62264022A
Authority
JP
Japan
Prior art keywords
actuators
pixel
soft
prism
resolution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61106866A
Other languages
Japanese (ja)
Inventor
Yoshiaki Otsu
大津 芳明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP61106866A priority Critical patent/JPS62264022A/en
Publication of JPS62264022A publication Critical patent/JPS62264022A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To easily and surely perform a stable operation by providing actuators and providing a soft prism whose thickness is changed to have a gradient by the operation of these actuators. CONSTITUTION:Plural actuators 3-1-3-4 consisting of piezoelectric elements are arranged in the peripheral part to vary the vertical angel of a soft prism 1 by depression. The vertical angle of the soft prism 1 is varied to generate a gradient of refractive index, and light beams of picture elements 4-1-4-4 are minutely deflected and are inputted to an image pickup element 5, and the resolution of the image pickup element 5 is improved in image input by the picture element interpolating method. The angle of the soft prism 1 is successively changed in vertical and horizontal directions by actuators 3-1-3-4 to deflect light beams two-dimensionally. Plural picture elements 4-1-4-4 are successively taken in by the clock of the image pickup element 5 synchronized with the driving timing of actuators 3-1-3-4 and are inputted to a memory 7 to improve the resolution.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は撮像装置に関し、特に解像度を高めた撮像装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an imaging device, and particularly to an imaging device with increased resolution.

〔従来の技術〕[Conventional technology]

解像度を高める方式として従来はピエゾ素子で固体撮像
素子を半画素ピッチ分振動させて解像度を2倍にする方
式、または複屈折を利用して画素の2列を重ねて受像す
る倍像方式等の機構があった。しかし、いずれも−・方
向の解像度を2倍にするだけである。また、ピエゾ振動
サイクルに制限があったり、偏向板を利用する方法では
W検素子の受像感度が悪くなる欠点があった。これら従
来の方式では機構部品が多く、高価で、位置決め副、組
立て精度も要求される。一方、固体撮像素子自身を高解
像にする為に光電変換画素の形成密度を向りせしめるに
は、技術的な困難を伴うばかりか、特性の劣化や大幅な
コストアップを伴う。
Conventional methods for increasing resolution include a method that doubles the resolution by vibrating a solid-state image sensor by a half-pixel pitch using a piezo element, or a doubling method that utilizes birefringence to receive an image by overlapping two rows of pixels. There was a mechanism. However, in either case, the resolution in the - direction is only doubled. In addition, there are limitations to the piezo vibration cycle, and the method using a deflection plate has the disadvantage that the image receiving sensitivity of the W detector becomes poor. These conventional methods require many mechanical parts, are expensive, and require precision positioning and assembly. On the other hand, increasing the formation density of photoelectric conversion pixels in order to improve the resolution of the solid-state image sensor itself not only involves technical difficulties, but also involves deterioration of characteristics and a significant increase in cost.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は、上述した従来の欠点を解決し構成部品が少な
く、簡単な方法により確χにしかも安定した動作装置と
し、しかも高解像度化が容易な撮像装置を提供すること
を目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide an imaging device that solves the above-mentioned conventional drawbacks, has fewer components, can be operated reliably and stably using a simple method, and can easily achieve high resolution.

〔問題点を解決するための手段〕[Means for solving problems]

このような目的を達成するために本発明の撮像装置は周
辺部に複数の7クチユニータが配設されアクチュエータ
の動作によって厚さが勾配を生ずるように変化するソフ
トプリズムを備えたことを特徴とする。
In order to achieve such an object, the imaging device of the present invention is characterized in that it is equipped with a soft prism in which a plurality of seven-piece units are disposed around the periphery and whose thickness changes to produce a gradient according to the operation of an actuator. .

〔作 用〕[For production]

本発明は有限開口の撮像素子の入力部において、アクチ
ュエータによりソフトプリズムの頂角を変えて、屈折率
勾配を生じさせ、画素の光ビームを微小に偏向させて#
M像素子に入力させる1画素補間法により、画像入力に
おいて撮像素子の高解像度化を計っている。アクチュエ
ータを例えば垂直と水平方向に配置させ、垂直、水平方
向に逐時ソフトプリズムの角度を変えていく事により。
The present invention uses an actuator to change the apex angle of a soft prism at the input section of an image sensor with a finite aperture to create a refractive index gradient and minutely deflect the light beam of a pixel.
The 1-pixel interpolation method input to the M image element is used to increase the resolution of the image sensor during image input. For example, by arranging the actuator vertically and horizontally and changing the angle of the soft prism in the vertical and horizontal directions one by one.

2次元の光ビーム偏向を行なう、このアクチュエータの
駆動タイミングと同期させた!!像素子のクロックで、
複数の画素を全て逐時取り込み、メモリーに入力する・
バにより高解像度化が可能である。
Synchronized with the drive timing of this actuator, which performs two-dimensional light beam deflection! ! With the clock of the image element,
Capture all multiple pixels one by one and input them into memory.
Higher resolution is possible with the help of a bar.

〔実施例〕〔Example〕

以下に図面を参照して本発明の詳細な説明する。 The present invention will be described in detail below with reference to the drawings.

[実施例1] 第1図に本発明の第1の実施例を示す6図において、l
はシリコンゴムなどの透明弾性体又はシリコンオイルな
どの透明液体を材料としたソフトプリズム、2はソフト
プリズムをサンドイッチ状に両側から挟んだガラス板、
3−1.3−2゜3−3.3−4は例えば圧電素fから
なる7クチユエータでソフトプリズムの頂角を押圧し可
変させる。4−1.4−2.4−3.4−4はソフトプ
リズムにより偏向して、撮像素T上に結像する格子点状
に位置する光学的画素、5は画素4−1ないし4−4が
結像するCCDなどの2次元の撮像素子で、この潜像素
子とに複数の光電変換セルが行および列状に配列する様
に構成する。6は撮像素子5に入力した、複数の補間画
素信号をそれぞれメモリ7の対応する番地に割り振るシ
フトレジスタなどから成るインターフェース、7はと記
複数の画素信号を記憶する大容量メモリー、8−1〜8
−4はアクチュエータ3−1〜3−4をそれぞれ駆動す
るドライバー、9は撮像素子の蓄積および読み出しタイ
ミングと同期させて、垂直、水モ方向の7クチユエータ
3−1〜3−4に駆動電圧を加える発振回路である。
[Example 1] In Figure 6 showing the first example of the present invention in Figure 1, l
2 is a soft prism made of a transparent elastic material such as silicone rubber or a transparent liquid such as silicone oil; 2 is a glass plate with a soft prism sandwiched between both sides;
3-1.3-2 and 3-3.3-4 press the apex angle of the soft prism with seven cutuators consisting of, for example, a piezoelectric element f to vary it. 4-1.4-2.4-3.4-4 is an optical pixel located in the form of a lattice point which is deflected by a soft prism and imaged on the image sensor T, and 5 is a pixel 4-1 to 4- 4 is a two-dimensional imaging device such as a CCD that forms an image, and a plurality of photoelectric conversion cells are arranged in rows and columns on this latent image device. 6 is an interface consisting of a shift register, etc., which allocates a plurality of interpolated pixel signals input to the image sensor 5 to corresponding addresses in the memory 7, and 7 is a large-capacity memory for storing the plurality of pixel signals, 8-1 to 8-1. 8
-4 is a driver that drives each of the actuators 3-1 to 3-4, and 9 is a driver that applies a driving voltage to the seven actuators 3-1 to 3-4 in the vertical and water directions in synchronization with the storage and readout timing of the image sensor. This is an oscillation circuit to be added.

第2図は画素の入力標本例で5−1は撮像素子51の各
光電変換セル、4−1ないし474は撮像素子5の各光
電変換セル5−1に対して逐次この順に入力される4つ
の光学的画素である。
FIG. 2 shows an example of a pixel input sample, where 5-1 is each photoelectric conversion cell of the image sensor 51, and 4-1 to 474 are 4 input samples that are sequentially input to each photoelectric conversion cell 5-1 of the image sensor 5 in this order. one optical pixel.

第3図(A)は第1図におけるソフトプリズムと7クチ
ユエータをより231mに示すモ面図、第3図(B)は
 第3図(A)のA−B!itに沿った断面図である0
図においてIAは例えば窓枠状の押え部材であって、圧
電素子3−1ないし3−4をガラス板2に押しつけ、そ
の連動を規制する。交って圧電素子のソフトプリズムl
の厚さ方向における寸法変化は、ガラス板2をとおして
のソフトプリズムlに対する圧力となり、ソフトプリズ
ムlの厚さの変化をもたらす、圧電J:子としては、電
圧によってその厚さが変化する構成、具体的には第3図
(A)の紙面に垂直な方向に伸縮するような構成にする
とよい、押え板LAの構成は図示に限らず、圧電素子を
、その寸法変化がソフトプリズムの厚さ変化をもたらす
ように規制できるものであればよい。
Figure 3 (A) is a top view showing the soft prism and 7 cutuators in Figure 1 at a distance of 231 m, and Figure 3 (B) is A-B of Figure 3 (A)! 0 which is a cross-sectional view along it
In the figure, IA is a holding member in the shape of a window frame, for example, which presses the piezoelectric elements 3-1 to 3-4 against the glass plate 2 and restricts their interlocking. Intersecting piezoelectric element soft prism l
The dimensional change in the thickness direction of the piezoelectric J: creates pressure on the soft prism l through the glass plate 2, causing a change in the thickness of the soft prism l. Specifically, it is preferable to have a structure that expands and contracts in the direction perpendicular to the plane of the paper in FIG. It suffices if it can be regulated to bring about change.

L記構成において発振器9より例えばドライバー8−1
にパルスを加えて圧電素子3−1を駆動させると、ガラ
ス板2が厚さ方向に押されてソフトプリズムlはL部が
厚みの薄い、Y軸方向に一様な傾きを持ったプリズム形
状となり、その結果Y軸方向に一様な屈折率を生じる。
In the L configuration, the oscillator 9 generates, for example, the driver 8-1.
When a pulse is applied to drive the piezoelectric element 3-1, the glass plate 2 is pushed in the thickness direction, and the soft prism l has a prism shape with a thinner L portion and a uniform inclination in the Y-axis direction. As a result, a uniform refractive index is produced in the Y-axis direction.

そして光学的画素4−1が偏向して撮像溝f5の光電変
換セル5−1に入力される。この画素に対応した電気信
号を所定時間セル5−1で蓄積した後インタフェース6
を介してメモリ7の所定番地に記憶する0次のタイミン
グではドライバー8−2にパルスが加えられ、圧電素子
3−2が駆動される。そしてソフトプリズム1の厚さが
X軸方向に沿って変化し、画素4−2が撮像素子5の光
電変換セル5−1に入力される。同様にドライバー8−
3゜8−4と逐次タイミングパルスが加わり、それぞれ
圧電素子3−3.3−4が駆動されて1画素4−3.4
−4が撮像素子の蓄積および読み出しから成るlフィー
ルドずつのクロックタイミングと同期して取り込まれる
。この様にして、逐次4画素を1フイールドずつ次々に
撮像素子に入力して光電変換してから読み出してメモリ
ー上に画素信号として記憶させる。一画素あたりの偏向
に要する時間はソフトプリズムの弾性から、約20m5
ecで、4画素分を順次偏向させる場合、偏向に要する
時間は約80 m5ecで高速かつ高解像を容易に得る
ことができる。
The optical pixel 4-1 is then deflected and input to the photoelectric conversion cell 5-1 in the imaging groove f5. After accumulating the electrical signal corresponding to this pixel in the cell 5-1 for a predetermined time, the interface 6
At the timing of the 0th order stored in a predetermined location of the memory 7 via the 0th order, a pulse is applied to the driver 8-2, and the piezoelectric element 3-2 is driven. Then, the thickness of the soft prism 1 changes along the X-axis direction, and the pixel 4-2 is input to the photoelectric conversion cell 5-1 of the image sensor 5. Similarly, driver 8-
3°8-4 and sequential timing pulses are added, and the piezoelectric elements 3-3.3-4 are driven, resulting in one pixel 4-3.4
-4 is captured in synchronization with the clock timing of each l field consisting of storage and readout of the image sensor. In this way, four pixels are sequentially input to the image sensor one field at a time, photoelectrically converted, read out, and stored as pixel signals in the memory. The time required for deflection per pixel is approximately 20m5 due to the elasticity of the soft prism.
When 4 pixels are sequentially deflected using ec, the time required for deflection is about 80 m5 ec, and high speed and high resolution can be easily obtained.

[実施例2] 第4図ないし第6図に本発明の他の実施例の動作を示す
、第4図は撮像素子の取込みクロックのタイミングチャ
ートで、パルス列(A)、(B)、((:)。
[Embodiment 2] FIGS. 4 to 6 show the operation of another embodiment of the present invention. FIG. 4 is a timing chart of the capture clock of the image sensor, and pulse trains (A), (B), (( :).

(D)はそれぞれ圧電素子3−1.3−2.3−3.3
−4の駆動パルス、パルス列(E)は読み出しクロック
パルスを示す0図に示すように圧電素fの駆動パルスと
して2段階に可変のパルスを用いる。圧電素子3−1に
、時刻tl−t2の間、1段階目の低電圧V1をかけて
第5図に示すように小さくソフトプリズムを傾斜させ(
角度0□)、それにより比較的小さい屈折率勾配を生じ
させ第6図に示す画素4−1を偏向入射させる。
(D) are piezoelectric elements 3-1.3-2.3-3.3 respectively
-4 drive pulse, pulse train (E) uses a variable pulse in two stages as a drive pulse for the piezoelectric element f, as shown in Figure 0, which shows a read clock pulse. A first-stage low voltage V1 is applied to the piezoelectric element 3-1 during time tl-t2, and the soft prism is slightly tilted as shown in FIG.
angle 0□), thereby creating a relatively small refractive index gradient and deflecting the pixel 4-1 shown in FIG.

次にt2〜t3の間にt1〜t2の間に蓄積された画素
信号を読み出し、メモリー7に記憶する。この時刻t2
〜t3の間に圧電素子3−1に2段階目の高い電圧V 
2 (&2V+ )をかけて第5図に示す角度02のよ
うに大きくソフトプリズムを傾斜させ、大きな屈折率勾
配を生じさせ画素4−5を偏向させて撮像素子のセルS
−tに入力させる。このt2〜t3の間に蓄積された画
素信号は次のt3ないしt4の間に読み出されてメモリ
ー7に入力される。この様にして、1ケ所の7クチユエ
ータの駆動電圧を2段階に切り換えて1次々に7クチユ
エータにこの電圧を加えると共に、次の期間にメモリー
に記憶させていく事により4つのアクチュエータで2画
素づつ1合計8画素を1つの撮像素子に入力する。それ
により、第6図の様に格子点状に位置する8つの画素を
1つの撮像素子に入力して、メモリーに記憶することが
できるので8倍の画素補間が実現できる。
Next, between t2 and t3, the pixel signals accumulated between t1 and t2 are read out and stored in the memory 7. This time t2
A second high voltage V is applied to the piezoelectric element 3-1 during ~t3.
2 (&2V+), the soft prism is tilted greatly as shown in the angle 02 shown in Fig. 5, a large refractive index gradient is generated, the pixels 4-5 are deflected, and the cell S of the image sensor is
-Input to t. The pixel signals accumulated between t2 and t3 are read out and input into the memory 7 between t3 and t4. In this way, the driving voltage of the 7 actuators at one location is switched to 2 stages, and this voltage is applied to the 7 actuators one after another, and in the next period, it is stored in the memory, so that the 4 actuators are used for 2 pixels at a time. A total of 8 pixels are input to one image sensor. As a result, eight pixels located in a lattice pattern as shown in FIG. 6 can be input to one image sensor and stored in the memory, so that eight-fold pixel interpolation can be achieved.

[実施例3] 第7図に本発明の第3の実施例を示す0本実施例は6角
形のソフトプリズムを6角形のガラス板が両側から挟む
サンドイッチ構造になっている。
[Embodiment 3] FIG. 7 shows a third embodiment of the present invention. This embodiment has a sandwich structure in which a hexagonal soft prism is sandwiched between hexagonal glass plates from both sides.

光軸を軸とする時計回りに60°ずつの位置にある圧電
素子などの7クチユエータを駆動して、第8図の画素1
3−1〜13−6を撮像素子の各セル13−7上に順次
偏向させる。そして、第9図に示すパルスのタイミング
に同期させて撮像素子に取り込む0次に圧電素子12−
1から60@反時計回りの方向に回転させた位置にある
圧電素子12−2に電圧を加えて画素13−3を撮像素
子に入力させる。この様に60′″間隔に配置した圧電
素子に第9図に示すタイムチャートに従い順次に電圧を
加えていく事により、13−1ないし13−6までの6
つの画素を入力する事ができ、更に12−1〜12−6
への電圧を切って撮像素子のセル13−7に偏向しない
画素を入力して、7倍の高解像度化を計ることもできる
By driving seven actuators such as piezoelectric elements located at 60° clockwise positions around the optical axis, pixel 1 in FIG.
3-1 to 13-6 are sequentially deflected onto each cell 13-7 of the image sensor. Then, a zero-order piezoelectric element 12-
A voltage is applied to the piezoelectric element 12-2 at a position rotated from 1 to 60 @ counterclockwise to input the pixel 13-3 to the image sensor. In this way, by sequentially applying voltage to the piezoelectric elements arranged at 60'' intervals according to the time chart shown in FIG.
1 pixel can be input, and 12-1 to 12-6 pixels can be input.
It is also possible to increase the resolution by seven times by cutting off the voltage to the cell 13-7 and inputting a non-deflected pixel to the cell 13-7 of the image sensor.

なお以りの実施例では垂直水モ両方向の解像度を向トさ
せるよう構成したが、−次元方向のみ解像度を向上させ
るようにしても良いことは言うまでもない。
In the embodiments described above, the resolution is improved in both the vertical and horizontal directions, but it goes without saying that the resolution may be improved only in the -dimensional direction.

本発明によれば微分などによるエッヂ強調等、画像処理
のマスクの効果を画素シフトにより達成する°捗が町渣
になる。3次や5次などの画像処理演算ノマスクやコン
ポルージョンなどの機走をもたらす2次元のビームシフ
ターとして用いることもできる。なおアクチュエータと
して、圧電JT−を例として説明したが、形状記憶合金
、s1歪素子などを用いることができる。またソフトプ
リズムから成る偏向器により光ビーム偏向量を可変制御
する事ができるため、解像度を可変にすることも可能で
ある。
According to the present invention, the effect of masking in image processing, such as edge enhancement by differentiation, etc., can be achieved by pixel shifting. It can also be used as a two-dimensional beam shifter that provides maneuverability for 3rd and 5th order image processing operations such as masks and convolutions. Although piezoelectric JT- has been described as an example of the actuator, shape memory alloys, s1 strain elements, etc. can also be used. Furthermore, since the amount of light beam deflection can be variably controlled using a deflector made of a soft prism, it is also possible to make the resolution variable.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、ソフトプリズムか
4成る偏向器で複数の画素を各撮像素Iに入力する様に
構成しているので、解像度を大幅に向丘させる事ができ
る。
As explained above, according to the present invention, since a plurality of pixels are input to each image sensor I using a deflector consisting of four soft prisms, the resolution can be greatly improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例を説明する図。 第2図は4倍の画素補間を説明するための画素配列図、 第3図(A)はソフトプリズムと7クチユエータを詳細
に説明する平面図、同図(B)はそのA−B線に沿った
断面図、 第4図はアクチュエータの駆動パルスと撮像素子のグロ
ックパルスのタイミングチャート。 第5図はソフトプリズムの傾斜を説明する斜視図、 第6図は8倍の画素補間を説明するための画素配列図。 第7図は本発明の他の実施例を説明する図、第8図は7
倍の画素補間を説明するための画素配列図。 第9図はアクチュエータの駆動パルスと撮像素子のクロ
ックパルスのタイミングチャートである。 l・・・ソフトプリズム・ 2・・・ガラス板。 3−1  、3−2  、3−3  、3−4・・・ア
クチュエータ、4−1.4−2.・・・、4−8・・・
画素、5・・・撮像素子、 6・・・インターフェイス、 7・・・メモリー。 8・・・ドライバー、 9・・・発振回路、 12−1 、12−2 、・・・、 12−8・・・ア
クチュエータ、13−1.13−2.・・・13−6・
・・画素。 第3図 第5図 2、.1.、   。 8 ム !xxxx x 、、a32−4−  w  −−=ノ  ゛ イ1
8°  “     ′第6図 第7図 第8図 第9図
FIG. 1 is a diagram illustrating a first embodiment of the present invention. Figure 2 is a pixel arrangement diagram to explain 4x pixel interpolation, Figure 3 (A) is a plan view explaining the soft prism and 7 cutuators in detail, and Figure 3 (B) is a diagram showing the A-B line. 4 is a timing chart of actuator drive pulses and image sensor Glock pulses. FIG. 5 is a perspective view illustrating the inclination of the soft prism, and FIG. 6 is a pixel arrangement diagram illustrating 8x pixel interpolation. FIG. 7 is a diagram explaining another embodiment of the present invention, and FIG.
FIG. 3 is a pixel array diagram for explaining double pixel interpolation. FIG. 9 is a timing chart of drive pulses for the actuator and clock pulses for the image sensor. l...Soft prism 2...Glass plate. 3-1, 3-2, 3-3, 3-4...actuator, 4-1.4-2. ..., 4-8...
Pixel, 5...Image sensor, 6...Interface, 7...Memory. 8... Driver, 9... Oscillation circuit, 12-1, 12-2,..., 12-8... Actuator, 13-1.13-2. ...13-6・
...pixel. Figure 3 Figure 5 Figure 2, . 1. , . 8 Mu! xxxx x,, a32-4- w --=no ii 1
8° "'Figure 6 Figure 7 Figure 8 Figure 9

Claims (1)

【特許請求の範囲】[Claims] 周辺部に複数のアクチュエータが配設され該アクチュエ
ータの動作によって厚さが勾配を生ずるように変化する
ソフトプリズムを備えたことを特徴とする撮像装置。
An imaging device comprising a soft prism having a plurality of actuators disposed around its periphery and whose thickness changes to produce a gradient according to the operation of the actuators.
JP61106866A 1986-05-12 1986-05-12 Image pickup device Pending JPS62264022A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61106866A JPS62264022A (en) 1986-05-12 1986-05-12 Image pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61106866A JPS62264022A (en) 1986-05-12 1986-05-12 Image pickup device

Publications (1)

Publication Number Publication Date
JPS62264022A true JPS62264022A (en) 1987-11-17

Family

ID=14444468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61106866A Pending JPS62264022A (en) 1986-05-12 1986-05-12 Image pickup device

Country Status (1)

Country Link
JP (1) JPS62264022A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0363633A (en) * 1989-08-01 1991-03-19 Canon Inc Image pickup device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0363633A (en) * 1989-08-01 1991-03-19 Canon Inc Image pickup device

Similar Documents

Publication Publication Date Title
US4618884A (en) Image pickup and observation equipment for endoscope
US6236430B1 (en) Color still image sensing apparatus and method
JP5643555B2 (en) Solid-state imaging device and imaging system
US20120169910A1 (en) Image sensor and image capture device
JPH01135187A (en) Video display
US4641038A (en) Imaging device
JPH03240372A (en) Still picture image pickup device
JPH0682305A (en) Two-dimensional detector
US4707743A (en) Method and apparatus for image conversion with multiple exposures for filtering
JP2000032354A (en) Image pickup device
JPS62264022A (en) Image pickup device
JP3680410B2 (en) Solid-state imaging device
JP2931809B1 (en) Imaging device
JP4481178B2 (en) Imaging method and imaging apparatus
JP3222687B2 (en) Solid-state imaging device
JPH09219867A (en) Still color picture image pickup device and its method
JP3770737B2 (en) Imaging device
JPH10327359A (en) Image pickup device
JP2575619B2 (en) Imaging device
JPS62159581A (en) Image pickup device
JPS63284978A (en) Solid-state image pickup device
JPS6298977A (en) Solid state image pickup device
JPS61292481A (en) Multiple-element sensor
JPH0648840B2 (en) Scanning device
JPH079480Y2 (en) CCD line sensor