JPS62158Y2 - - Google Patents
Info
- Publication number
- JPS62158Y2 JPS62158Y2 JP8736082U JP8736082U JPS62158Y2 JP S62158 Y2 JPS62158 Y2 JP S62158Y2 JP 8736082 U JP8736082 U JP 8736082U JP 8736082 U JP8736082 U JP 8736082U JP S62158 Y2 JPS62158 Y2 JP S62158Y2
- Authority
- JP
- Japan
- Prior art keywords
- phase
- voltage
- frequency conversion
- transistor
- conversion circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000006243 chemical reaction Methods 0.000 claims description 33
- 230000000903 blocking effect Effects 0.000 claims 1
- 239000003990 capacitor Substances 0.000 description 16
- 238000010586 diagram Methods 0.000 description 5
- 230000004907 flux Effects 0.000 description 5
- 238000004804 winding Methods 0.000 description 5
- 230000005284 excitation Effects 0.000 description 3
- 230000001965 increasing effect Effects 0.000 description 3
- 230000010355 oscillation Effects 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 230000016507 interphase Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
Landscapes
- Circuit Arrangements For Discharge Lamps (AREA)
Description
【考案の詳細な説明】 本考案は放電灯点灯装置に関する。[Detailed explanation of the idea] The present invention relates to a discharge lamp lighting device.
放電灯点灯装置として、高周波変換回路を用い
た高周波点灯が知られている。高周波点灯は商用
周波の様な低周波点灯に比べて発光効率がよく、
中でも振巾が一定である高周波点灯は最も効率の
よいことが知られている。その一例として3相電
源の各相に高周波変換回路を接続し、各高周波出
力を直列に合成するといつた回路構成を持つ高周
波点灯装置があり、第1図にこの種の従来の高周
波点灯装置の回路図を示す。 As a discharge lamp lighting device, high frequency lighting using a high frequency conversion circuit is known. High frequency lighting has better luminous efficiency than low frequency lighting such as commercial frequency,
Among them, high-frequency lighting with a constant amplitude is known to be the most efficient. An example of this is a high-frequency lighting device that has a circuit configuration in which a high-frequency conversion circuit is connected to each phase of a three-phase power supply and the respective high-frequency outputs are combined in series. A circuit diagram is shown.
第1図において、高周波変換回路2,3,4は
3相電源1の各相間電圧を入力とし、その変換周
期は他励式によつて高周波変換回路の各々のトラ
ンジスタ対のオン・オフを制御している。各々の
高周波変換回路2,3,4の出力は発振トランス
5,6,7の2次巻線が各々直列接続され、その
合成出力は振巾がほぼ一定となる高周波出力とな
り、これによつて放電灯8は電流制限要素9を介
して点灯する。ここで、一次側出力として高周波
変換回路の共振コンデンサ10の電圧・電流の関
係は、仮に高周波変換回路が単一であれば(例え
ば2だけ)他励振動と同一周期で、第2図イに示
すごとく電圧は正弦波振動を行ない、また電流は
電圧より位相がπ/2進んだ波形となる。 In Fig. 1, high-frequency conversion circuits 2, 3, and 4 receive each interphase voltage of a three-phase power supply 1 as input, and the conversion period is controlled by separately excitation to turn on/off each transistor pair of the high-frequency conversion circuit. ing. The output of each high frequency conversion circuit 2, 3, 4 is connected in series with the secondary windings of oscillation transformers 5, 6, 7, and the combined output is a high frequency output whose amplitude is approximately constant. The discharge lamp 8 is turned on via the current limiting element 9. Here, the relationship between the voltage and current of the resonant capacitor 10 of the high-frequency conversion circuit as the primary side output is as shown in Figure 2 A if there is a single high-frequency conversion circuit (for example, only 2) with the same period as the separately excited vibration. As shown, the voltage oscillates in a sinusoidal wave, and the current has a waveform whose phase leads the voltage by π/2.
しかし実際には高周波変換回路が3つ存在し、
またその入力としても3相電源1の各相電圧を用
いていることにより、入力電圧の位相は2π/3
ずつ遅れている。そのために、高周波変換回路2
の共振コンデンサ10に流れる電流は、トランジ
スタ対11,12の11がオフ、12がオン状態
であれば、1次電流が第3図のイのような向きに
流れる。この電流は、前記単一高周波変換回路で
も同様であり、この電流は高周波変換回路2の入
力電圧によつて1次巻線の両端子間に電圧が誘起
され、この電圧を誘起するために鉄心内の磁束を
確立するために必要な励磁電流と、2次回路に電
流が流れることによつて2次側巻線の起磁力を打
ち消すだけの起磁力を生ずるように流れる平衡電
流との和である。そこで、第1図に示した回路で
は高周波変換回路2の共振コンデンサ10には高
周波変換回路3,4の2次電流i2,i3が、高周波
変換回路2の2次回路を流れることによつて、そ
のために発生する起磁力を打ち消すだけの起磁力
が1次回路に流れる。すなわち、これは電流(i2
+i3)による磁束打ち消し電流であり、その電流
は第3図ロのように流れる。 However, there are actually three high frequency conversion circuits,
Also, by using each phase voltage of the three-phase power supply 1 as its input, the phase of the input voltage is 2π/3
It's one step behind. For this purpose, the high frequency conversion circuit 2
When the transistor pair 11 and 12 is turned off and transistor 12 is turned on, the primary current flows in the resonant capacitor 10 in the direction shown in FIG. 3A. This current is the same in the single high frequency conversion circuit, and this current is caused by the input voltage of the high frequency conversion circuit 2 inducing a voltage between both terminals of the primary winding, and in order to induce this voltage, the iron core The sum of the excitation current necessary to establish the magnetic flux in the secondary circuit and the equilibrium current that flows so that the current flowing in the secondary circuit generates a magnetomotive force sufficient to cancel the magnetomotive force of the secondary winding. be. Therefore, in the circuit shown in FIG. 1, the secondary currents i 2 and i 3 of the high frequency conversion circuits 3 and 4 flow through the secondary circuit of the high frequency conversion circuit 2 to the resonant capacitor 10 of the high frequency conversion circuit 2. Therefore, a magnetomotive force sufficient to cancel the magnetomotive force generated thereby flows into the primary circuit. That is, this is the current (i 2
+i 3 ), and the current flows as shown in Figure 3 (b).
かくして、共振コンデンサ10には、第3図中
に示した如きイ,ロの電流が互いに逆方向に流
れ、電流は第2図ロのような関係になり、それに
伴ない電圧波形も、他励周期よりも短かい周期で
振動し、電圧ゼロ期間すなわち休止期間が発生す
ることになる。この時、高周波変換回路2のトラ
ンジスタ12のコレクタ電流と共振コンデンサ1
0の電圧波形の関係は第4図のようになる。この
ように休止期間が存在するのは、高周波変換回路
2の入力電圧半サイクル全領域ではなく、入力電
圧の瞬時値が小さい位相時である。 Thus, the currents A and B as shown in FIG. 3 flow in the resonant capacitor 10 in opposite directions, the currents have a relationship as shown in FIG. It vibrates at a shorter period than the period, and a zero voltage period, that is, a rest period occurs. At this time, the collector current of the transistor 12 of the high frequency conversion circuit 2 and the resonance capacitor 1
The relationship between the voltage waveforms at 0 is as shown in FIG. In this way, the pause period exists not during the entire input voltage half-cycle region of the high frequency conversion circuit 2, but during the phase when the instantaneous value of the input voltage is small.
第5図に各高周波変換回路の入力電圧の関係を
示す。ここで、u,v,wはそれぞれ第1図の高
周波変換回路2,3,4の入力電圧とする。第5
図で位相t1時は高周波変換回路2の入力電圧uは
最大となつており、それにより1次巻線に誘起さ
れる電圧も高く、励磁電流と平衡電流の和すなわ
ち第3図におけるイの電流も大きい。それに対し
て高周波変換回路3,4では、入力電圧v,wは
ピーク値の半分であるため、2次電流(i2+i3)は
小さく、高周波変換回路2の(i2+i3)による、磁
束打ち消し電流すなわち第3図におけるロは小さ
い。よつて、共振コンデンサに流れる電流イ−ロ
は大きく、それに伴ないコンデンサ電圧も高く、
周期も長い。すなわちこの位相時には、第4図の
ようにコンデンサ電圧波形に休止期間が存在しな
い。一方、第5図の位相t2時には、高周波変換回
路2の入力電圧uはゼロであり、第3図で示した
イの電流は流れない。これに対し、高周波変換回
路3,4では入力電圧はピークの√3/2と大き
く、高周波変換回路2での(i2+i3)による磁束打
ち消し電流は大きい。よつて、コンデンサに流れ
る電流は小さく、同様にコンデンサ両端電圧の周
期も小さく休止期間が存在し、第4図のようにな
る。 FIG. 5 shows the relationship between the input voltages of each high frequency conversion circuit. Here, u, v, and w are input voltages of the high frequency conversion circuits 2, 3, and 4 shown in FIG. 1, respectively. Fifth
In the figure, at phase t 1 , the input voltage u of the high frequency conversion circuit 2 is at its maximum, and the voltage induced in the primary winding is also high, which means the sum of the excitation current and the balance current, i.e. The current is also large. On the other hand, in the high frequency conversion circuits 3 and 4, the input voltages v and w are half of the peak values, so the secondary current (i 2 + i 3 ) is small, and due to (i 2 + i 3 ) of the high frequency conversion circuit 2, The magnetic flux canceling current, ie, B in FIG. 3 is small. Therefore, the current flowing through the resonant capacitor is large, and the capacitor voltage is also high accordingly.
The cycle is also long. That is, during this phase, there is no rest period in the capacitor voltage waveform as shown in FIG. On the other hand, at phase t2 in FIG. 5, the input voltage u of the high frequency conversion circuit 2 is zero, and the current A shown in FIG. 3 does not flow. On the other hand, in the high frequency conversion circuits 3 and 4, the input voltage is as large as √3/2 of the peak, and the magnetic flux cancellation current due to (i 2 +i 3 ) in the high frequency conversion circuit 2 is large. Therefore, the current flowing through the capacitor is small, and the period of the voltage across the capacitor is also small and there is a rest period, as shown in FIG. 4.
従つて、3相高周波変換回路では入力電圧瞬時
値の大きい位相で、コンデンサ電圧に休止期間が
存在しなくても、入力電圧が小さい位相時では共
振周期が変わり休止期間が存在するのである。ま
た、休止期間をなくすために、共振コンデンサの
容量を増やして周期を大きくすれば入力電圧が小
さい位相時に休止期間はなくなるが、逆に入力電
圧が大きい位相時にコンデンサ電圧の振動周期す
なわち共振周期が同期回路の周期よりも大きくな
り、コンデンサ電圧が立ち切れ現象を生じコレク
タ損失増大等によつてトランジスタが破壊すると
いつた問題が生じる。また、コレクタ電流icの
逆電流を阻止しようとすると、例えば、第3図で
トランジスタ11のコレクタに順方向にダイオー
ド等の単方向整流素子を挿入すればよいが、逆電
流が流れないことによつて出力トランスの磁束が
飽和し、それを防ぐためには出力トランスの1次
巻線やコアの断面積を増大させるといつた対策が
必要であり、トランス形状が大となり大きな欠点
となる。ここで、このコレクタ逆電流は回路内を
どのように流れるかというと、このコレクタ逆電
流が流れるのは、前述したように、コンデンサ電
圧波形の休止期間であり、またトランジスタの状
態は第3図でトランジスタ11はオフ、トランジ
スタ12はオンである。それ故、トランジスタ1
2のコレクタ→エミツタを導通して、トランジス
タ11のベース→コレクタ逆電流となる。すなわ
ち、休止期間が存在する時、その期間においてオ
フしているトランジスタのベース・コレクタに逆
電流が流れるのである。しかし、通常、トランジ
スタのベース・コレクタに逆電流を流すといつた
使い方はせず、トランジスタの規格上も、この逆
電流は全く保障されていない。よつて上記従来の
3相高周波変換回路では、トランジスタの信頼
性、言い換えれば回路動作の安定性に問題があり
欠点となつている。 Therefore, in a three-phase high frequency conversion circuit, even if there is no rest period in the capacitor voltage in the phase where the instantaneous input voltage value is large, the resonance period changes and there is a rest period in the phase where the input voltage is small. In addition, in order to eliminate the pause period, if the capacitance of the resonant capacitor is increased to increase the period, the pause period will disappear during the phase where the input voltage is small, but conversely, the oscillation period of the capacitor voltage, that is, the resonance period, will decrease during the phase when the input voltage is large. When the cycle becomes larger than the period of the synchronous circuit, a problem arises in that the capacitor voltage is cut off and the transistor is destroyed due to increased collector loss and the like. In addition, if you try to prevent the reverse current of the collector current ic , for example, you can insert a unidirectional rectifying element such as a diode in the collector of the transistor 11 in the forward direction as shown in Fig. 3, but this will prevent the reverse current from flowing. Therefore, the magnetic flux of the output transformer becomes saturated, and in order to prevent this, it is necessary to take measures such as increasing the cross-sectional area of the primary winding and core of the output transformer, which results in a large shape of the transformer, which is a major drawback. Here, how does this collector reverse current flow in the circuit? As mentioned above, this collector reverse current flows during the rest period of the capacitor voltage waveform, and the state of the transistor is as shown in Figure 3. At this time, transistor 11 is off and transistor 12 is on. Therefore, transistor 1
2 conducts from the collector to the emitter, resulting in a reverse current from the base to the collector of the transistor 11. That is, when there is a rest period, a reverse current flows between the base and collector of the transistor that is off during that period. However, normally, a reverse current is not allowed to flow between the base and collector of a transistor, and this reverse current is not guaranteed at all in the transistor specifications. Therefore, the conventional three-phase high frequency conversion circuit described above has a problem with the reliability of the transistors, in other words, the stability of the circuit operation, which is a drawback.
本考案は上記の点に鑑み提案されたものであ
り、3相電源の各相にプツシユプル形インバータ
を接続し、各高周波出力を直列に合成することに
より振巾がほぼ一定な高周波を得、電流制限要素
を介して接続した放電灯を点灯させる放電灯点灯
装置において、動作中、プツシユプル形インバー
タにある発振トランジスタのベース・コレクタ逆
電流を防ぎ、トランジスタの信頼性を向上させ安
定した回路動作を可能とするような放電灯点灯装
置を提供することを目的とする。 The present invention was proposed in view of the above points, and by connecting a push-pull type inverter to each phase of a three-phase power supply and composing each high-frequency output in series, a high frequency with a nearly constant amplitude is obtained, and the current In a discharge lamp lighting device that lights a discharge lamp connected through a limiting element, this prevents base-collector reverse current of the oscillation transistor in the push-pull type inverter during operation, improving transistor reliability and enabling stable circuit operation. An object of the present invention is to provide a discharge lamp lighting device that does the following.
以下、本考案の実施例を示す図面に従つて本考
案を説明する。 The present invention will be described below with reference to the drawings showing embodiments of the present invention.
第6図は本考案の一実施例を示したもので、各
トランジスタ対にダイオードのような整流素子D
を並列に逆方向に接続している点が特徴となつて
いる。これによつて、共振コンデンサの休止期間
にトランジスタのベース・コレクタに流れる電流
は、トランジスタの出力側から、トランジスタの
エミツタには入らず整流素子を流れて、トランジ
スタの入力側すなわちコレクタの方へ流れること
になる。この整流素子の働きによつてトランジス
タのベース・コレクタへの逆電流は全く流れなく
なり、休止期間中第6図破線のように電流は流れ
る。(S1OFF,S2ON状態)その他の回路の動作
状態は従来例と全く同一であるため、重複を避け
る意味でその説明は省略する。 FIG. 6 shows an embodiment of the present invention, in which a rectifying element D such as a diode is connected to each transistor pair.
The feature is that they are connected in parallel in opposite directions. As a result, the current flowing to the base and collector of the transistor during the rest period of the resonant capacitor flows from the output side of the transistor to the rectifying element without entering the emitter of the transistor, and then to the input side of the transistor, that is, the collector. It turns out. Due to the action of this rectifying element, no reverse current flows to the base-collector of the transistor at all, and current flows as shown by the broken line in FIG. 6 during the rest period. (S 1 OFF, S 2 ON state) Since the operating states of the other circuits are exactly the same as in the conventional example, their explanation will be omitted to avoid duplication.
以上のように本考案の放電灯点灯装置にあつて
は、3相高周波変換回路内の各トランジスタ対と
並列に逆方向に整流素子を設けることによつて、
3相高周波変換回路動作の本質である、2次電流
に起因した磁束打ち消し電流によるトランジスタ
のベース・コレクタ逆電流を上記整流素子に流す
ことによつて阻止し、トランジスタの信頼性を向
上させると共に、本来の動作すなわち3相高周波
変換回路の出力電圧として振巾がほぼ一定な高周
波出力が得られ高効率を得ることができる点をそ
こなうことがなく、大きな効果がある。 As described above, in the discharge lamp lighting device of the present invention, by providing a rectifying element in parallel with each transistor pair in the three-phase high frequency conversion circuit in the opposite direction,
The transistor base-collector reverse current due to the magnetic flux canceling current caused by the secondary current, which is the essence of the operation of the three-phase high-frequency conversion circuit, is blocked by flowing through the rectifying element, and the reliability of the transistor is improved. This has a great effect without impairing the original operation, that is, the ability to obtain a high frequency output with a substantially constant amplitude as the output voltage of the three-phase high frequency conversion circuit and to obtain high efficiency.
第1図は従来の放電灯点灯装置の回路図、第2
図乃至第5図はその動作説明図、第6図は本考案
の一実施例を示す回路図である。
1……3相交流電源、2,3,4……高周波変
換回路(インバータ)、5,6,7……出力トラ
ンス、8……放電灯、S1,S2……トランジスタ、
D……整流素子、9……電流制限要素。
Figure 1 is a circuit diagram of a conventional discharge lamp lighting device, Figure 2 is a circuit diagram of a conventional discharge lamp lighting device.
5 to 5 are explanatory diagrams of its operation, and FIG. 6 is a circuit diagram showing an embodiment of the present invention. 1...Three-phase AC power supply, 2, 3, 4...High frequency conversion circuit (inverter), 5, 6, 7...Output transformer, 8...Discharge lamp, S1 , S2 ...Transistor,
D... Rectifying element, 9... Current limiting element.
Claims (1)
間電圧を全波整流し、該整流出力に接続した一対
のトランジスタの交互のスイツチング動作によ
り、高周波電圧を発生する3相の高周波変換回路
の出力端を直列接続し、ほぼ一定な高周波出力電
圧を得、該高周波出力電圧で放電灯を点灯する放
電灯点灯装置において、該トランジスタのコレク
タ・エミツタ間に逆方向に整流素子をバイパスさ
せ、該高周波変換回路の入力電圧の瞬時値が小さ
い位相時において、該トランジスタのベース・コ
レクタに発生する逆電流を阻止する事を特徴とし
た放電灯点灯装置。 A three-phase high-frequency conversion circuit that inputs each phase-to-phase voltage of a three-phase power supply, performs full-wave rectification of the three-phase voltage, and generates a high-frequency voltage by alternating switching operations of a pair of transistors connected to the rectified output. In a discharge lamp lighting device that connects output terminals in series to obtain a substantially constant high-frequency output voltage and lights a discharge lamp with the high-frequency output voltage, a rectifying element is bypassed in the opposite direction between the collector and emitter of the transistor, and the A discharge lamp lighting device characterized by blocking a reverse current generated in the base and collector of the transistor during a phase in which the instantaneous value of the input voltage of the high frequency conversion circuit is small.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8736082U JPS58193498U (en) | 1982-06-14 | 1982-06-14 | discharge lamp lighting device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8736082U JPS58193498U (en) | 1982-06-14 | 1982-06-14 | discharge lamp lighting device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58193498U JPS58193498U (en) | 1983-12-22 |
JPS62158Y2 true JPS62158Y2 (en) | 1987-01-06 |
Family
ID=30096078
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8736082U Granted JPS58193498U (en) | 1982-06-14 | 1982-06-14 | discharge lamp lighting device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58193498U (en) |
-
1982
- 1982-06-14 JP JP8736082U patent/JPS58193498U/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS58193498U (en) | 1983-12-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6396717B2 (en) | Switching power supply having an improved power factor by voltage feedback | |
JPH0591740A (en) | Power source circuit | |
JP2000324831A (en) | Switching power supply circuit | |
JP2680914B2 (en) | Switching power supply circuit | |
JPS6036710B2 (en) | power supply | |
JPH0442912B2 (en) | ||
JPH08214559A (en) | Current-resonance type switching power supply | |
JPS62158Y2 (en) | ||
JPH0591736A (en) | Power source circuit | |
JPS604676B2 (en) | power supply | |
JPH0588067B2 (en) | ||
JPH0161023B2 (en) | ||
JPS583579A (en) | Transistor inverter | |
JPS61277372A (en) | Power supply device | |
JPH0161022B2 (en) | ||
JPH0740720B2 (en) | Switching power supply for multi-scan television receiver | |
JPH0211999B2 (en) | ||
JPH0586131B2 (en) | ||
JPH0568379A (en) | Power supply circuit | |
JPH0534907B2 (en) | ||
JPH10243656A (en) | Power supply | |
JP2002034258A (en) | Converter | |
JPH061714B2 (en) | Multi Induction Cooker | |
JPS644440B2 (en) | ||
JPS6160559B2 (en) |