JPH0161022B2 - - Google Patents

Info

Publication number
JPH0161022B2
JPH0161022B2 JP1422682A JP1422682A JPH0161022B2 JP H0161022 B2 JPH0161022 B2 JP H0161022B2 JP 1422682 A JP1422682 A JP 1422682A JP 1422682 A JP1422682 A JP 1422682A JP H0161022 B2 JPH0161022 B2 JP H0161022B2
Authority
JP
Japan
Prior art keywords
circuit
power supply
frequency conversion
output
conversion circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1422682A
Other languages
Japanese (ja)
Other versions
JPS58133169A (en
Inventor
Yoshasu Sakaguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP1422682A priority Critical patent/JPS58133169A/en
Publication of JPS58133169A publication Critical patent/JPS58133169A/en
Publication of JPH0161022B2 publication Critical patent/JPH0161022B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/285Single converters with a plurality of output stages connected in parallel

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Rectifiers (AREA)
  • Dc-Dc Converters (AREA)
  • Ac-Ac Conversion (AREA)

Description

【発明の詳細な説明】 本発明は直流電源装置に関する。[Detailed description of the invention] The present invention relates to a DC power supply device.

最近のエレクトロニクス分野における技術革新
は、目覚ましく、パワートランジスタやサイリス
タを利用した電力制御技術は急速に高度化してき
た。代表例の1つとして、照明分野での点灯回路
の全電子化が挙げられる。オイルシヨツク以来の
省電力ニーズより、高効率な点灯方式として、
30KHz〜40KHzでランプを点灯制御するインバー
タを用いた、いわゆる高周波点灯方式が有望視さ
れ、最近、各社ともに開発を競つているのが、現
状である。他の例として、省力・自動化の要請も
最近強くなり、電動機の速度制御もインバータに
より汎用化され、産業界において、積極的な自動
化への取組みが行われている。
Recent technological innovations in the electronics field have been remarkable, and power control technology using power transistors and thyristors has rapidly become more sophisticated. One typical example is the all-electronization of lighting circuits in the lighting field. As a highly efficient lighting method, in response to the need for power saving since oil shocks,
The so-called high-frequency lighting method, which uses an inverter to control lamp lighting at 30KHz to 40KHz, is seen as promising, and companies are currently competing to develop it. As another example, the demand for labor saving and automation has recently become stronger, and the speed control of electric motors has become more generalized using inverters, and active efforts toward automation are being made in the industrial world.

かかる状況の中では、直流電源は欠くべからざ
るもので、特に商用電源より直流を得る交直変換
回路は、電力制御分野において重要な要素であ
る。ところで最近の電力制御の需要増より、発生
している問題として、スイツチ方式での制御ゆえ
の高周波障害があり、力率改善用コンデンサの焼
損、電力会社の変圧器の効率低下、誘導障害等の
為、高調波成分の少ない、すなわち入力電流(電
圧)歪の小さい交直変換回路が要望されている。
In such a situation, a DC power supply is indispensable, and in particular, an AC/DC conversion circuit that obtains DC from a commercial power supply is an important element in the power control field. By the way, with the recent increase in demand for power control, problems have arisen such as high-frequency interference due to switch-based control, burnout of power factor correction capacitors, reduced efficiency of power company transformers, induction disturbances, etc. Therefore, there is a demand for an AC/DC conversion circuit with less harmonic components, that is, with less input current (voltage) distortion.

さて、3相の商用電源を用いて、誘導電動機の
速度制御、放電灯の高周波点灯等を行う場合の交
直変換回路として、従来、第1図に示す様な3相
の全波整流が用いられている。この回路では第2
図の動作状態で示す様に、1相の半サイクル中に
必らずπ/3だけ、入力電流が流れない期間が発
生する。すなわち、e1の1相に着目すれば、e1
に流れる入力電流は、ダイオードD1もしくは
D1′がオンしている期間だけ流れる為、t0〜t1、t3
〜t4、t6〜t7の期間は入力電流が休止することに
なるからである。従つて、この休止期間は、当然
入力電流(電圧)を歪ませる事になり、前述した
種々の障害をもたらすことになる。又、負荷側で
更に、サイリスタ等の電子デバイスでスイツチン
グを用いた電力制御を行つた場合は、障害が更に
大きくなる事はいうまでもない。この様に、3相
全波整流での交直変換回路を用いて、電力制御す
る場合には、入力電流の歪が原理的に大きくなる
事から歪を小さくし、しかも容易に平滑な直流を
得る事のできる交直変換方法が必要である。
Conventionally, a three-phase full-wave rectifier as shown in Figure 1 has been used as an AC/DC conversion circuit when using a three-phase commercial power source to control the speed of an induction motor, high-frequency lighting of a discharge lamp, etc. ing. In this circuit, the second
As shown in the operating state in the figure, there always occurs a period of π/3 during which no input current flows during a half cycle of one phase. In other words, if we focus on the 1st phase of e 1 , the input current flowing to the e 1 phase will be the diode D 1 or
Since it flows only while D 1 ' is on, t 0 ~ t 1 , t 3
This is because the input current is suspended during the periods from ~ t4 to t6 to t7 . Therefore, this idle period naturally distorts the input current (voltage), resulting in the various problems mentioned above. Furthermore, if power control is performed on the load side using switching using an electronic device such as a thyristor, it goes without saying that the problem will be even greater. In this way, when controlling power using an AC/DC conversion circuit with three-phase full-wave rectification, the distortion of the input current is theoretically large, so it is possible to reduce the distortion and easily obtain smooth DC. There is a need for an AC/DC conversion method that can do this.

第3図に基本構成図を示す。6は3相電源、
1,2,3は同期回路5の同期信号で同期し、3
相電源を入力として入力・出力を絶縁している高
周波変換回路、4は高周波変換回路1,2,3の
出力を直列合成した高周波電圧を、整流、平滑す
る整流・平滑回路である。
Figure 3 shows the basic configuration diagram. 6 is a 3-phase power supply,
1, 2, and 3 are synchronized by the synchronization signal of the synchronization circuit 5,
A high-frequency conversion circuit receives a phase power source as an input and insulates the input and output. 4 is a rectification/smoothing circuit that rectifies and smoothes the high-frequency voltage obtained by serially combining the outputs of the high-frequency conversion circuits 1, 2, and 3.

第4図に具体的回路を示す。高周波変換回路
1,2,3はプツシユプル型インバータで、ほぼ
同一仕様をもつものである。同期回路5は入力電
源を直流電源とした出力レベル一定の1,2,3
と同様のプツシユプル自励式インバータであり、
発振インダクタンスに高周波変換回路への同期バ
イアス用巻線イ−ロ,ハ−ニ,ホ−ヘが磁気結合
され巻かれている。整流・平滑回路4は全波整流
した後、コンデンサで平滑したものを使用してい
る。
Figure 4 shows a specific circuit. The high frequency conversion circuits 1, 2, and 3 are push-pull type inverters and have almost the same specifications. The synchronous circuit 5 has a constant output level of 1, 2, 3 using a DC power source as an input power source.
It is a push-pull self-excited inverter similar to
Synchronous bias windings E-ro, Har-ni, and Ho-he for the high-frequency conversion circuit are magnetically coupled and wound around the oscillation inductance. The rectifier/smoothing circuit 4 uses a circuit that is full-wave rectified and then smoothed with a capacitor.

同期回路5に、電源E0,E4を投入すると、自
励発振し、同期バイアス用巻線イ−ロ,ハ−ニ,
ホ−ヘに同期回路5がもつ、自励発振周波数0
(周期T0)の正弦波電圧Vbが第5図の様に発生す
る。さて、このVbが高周波変換回路1,2,3
へ入力され、直流バイアス電源E1,E2,E3が投
入されると、Vbが正の時Q1,Q3,Q5がオン状
態、Q2,Q4,Q6がオフ状態に入り、Vbが負に転
じると、逆に、Q1,Q3,Q5がオフ状態、Q2
Q4,Q6がオン状態に転じ、従つて、同期回路5
の自励発振出力に同期してトランジスタQ1,Q3
Q5とQ2,Q4,Q6が交互にオン・オフを繰り返
す。この様な動作を行わせて、入力3ψ電源e1
e2,e3を入力すると、各高周波変換回路1,2,
3の出力電圧V1,V2,V3は同期がとれ、第5図
V1,V2,V3に示す波形を得る事ができる。これ
らのピーク値V1-p、V2-p、V3-pは、e1,e2,e3
瞬時値の絶対値に比例したものであり電源の低周
波と比較してみると第6図に示す様に得ることが
できる。従つてVput=V1+V2+V3はほぼ一定レ
ベルのピーク値をもつ高周波電圧となり、第7図
に示した波形となる。このVputは整流平滑回路4
により全波整流され、コンデンサにより平滑さ
れ、平滑な直流に変換されることになる。
When the power supplies E 0 and E 4 are applied to the synchronous circuit 5, self-excited oscillation occurs, and the synchronous bias windings E-ro, Har-ni,
The self-excited oscillation frequency of the synchronous circuit 5 is 0.
A sine wave voltage V b of (period T 0 ) is generated as shown in FIG. Now, this V b is the high frequency conversion circuit 1, 2, 3
When V b is positive, Q 1 , Q 3 , Q 5 are on, and Q 2 , Q 4 , Q 6 are off . , and V b turns negative, conversely, Q 1 , Q 3 , and Q 5 are off, and Q 2 ,
Q 4 and Q 6 turn on, and therefore the synchronous circuit 5
Transistors Q 1 , Q 3 ,
Q 5 , Q 2 , Q 4 , and Q 6 alternately turn on and off. By performing this operation, the input 3ψ power supply e 1 ,
When e 2 and e 3 are input, each high frequency conversion circuit 1, 2,
The output voltages V 1 , V 2 , and V 3 of 3 are synchronized, as shown in Fig. 5.
The waveforms shown in V 1 , V 2 , and V 3 can be obtained. These peak values V 1-p , V 2-p , and V 3-p are proportional to the absolute values of the instantaneous values of e 1 , e 2 , and e 3 , and when compared with the low frequency of the power supply, It can be obtained as shown in FIG. Therefore, V put =V 1 +V 2 +V 3 becomes a high frequency voltage having a peak value at a substantially constant level, and has the waveform shown in FIG. This V put is rectifier smoothing circuit 4
The current is full-wave rectified, smoothed by a capacitor, and converted into smooth direct current.

この様に各高周波変換回路1,2,3の出力を
直列合成すれば、各出力は休止する事なく、負荷
に供給され、従つて全波整流時の様な入力電流の
休止区間もなくなり、歪等を極めて小さくする事
ができる。
If the outputs of the high frequency conversion circuits 1, 2, and 3 are combined in series in this way, each output will be supplied to the load without any pauses, and therefore there will be no pause period for the input current as in the case of full-wave rectification. Distortion etc. can be made extremely small.

第8図に本発明の1実施例を示す。破線枠内の
1,2,3の回路ブロツクは高周波変換回路で、
電源部を除き、回路仕様はほぼ等しいものであ
る。いづれもプツシユプル型インバータで、同期
回路5のみは自励式インバータを構成している。
すなわち発振用巻線n1,n2とコンデンサC0で発生
する振動電圧がトランジスタQ1,Q2のベースへ
Vdの誘起電圧で帰還されているからである。従
つて、同期回路5は直流電源E0,E1が投入され
れば、自励発振し、巻線イとロ、ハとニ、ホとヘ
の間に、それぞれ正弦波の高周波電圧Va,Vb
VcがVcpと同じ方向に発生する。このVa,Vb
Vcは高周波変換回路1,2,3のスイツチトラ
ンジスタのベース抵抗両端に印加される為、Vcp
が正(Va,Vb,Vcが正)の時、トランジスタ
Q4,Q6,Q8がオン、Q3,Q5,Q7がオフ状態へ強
制的に転じる。又、Vcpが負の時は逆に、Q3
Q5,Q7がオン、Q4,Q6,Q8がオフ状態へ転じる
事になり、同期回路5の自励振動周期に同期し
て、高周波変換回路1,2,3が強制スイツチ動
作して、出力トランスT1,T2,T3に同期振動電
圧が発生する事になる。
FIG. 8 shows one embodiment of the present invention. Circuit blocks 1, 2, and 3 within the dashed line frame are high frequency conversion circuits.
The circuit specifications are almost the same except for the power supply section. All of them are push-pull type inverters, and only the synchronous circuit 5 constitutes a self-excited inverter.
In other words, the oscillating voltage generated in the oscillation windings n 1 and n 2 and the capacitor C 0 flows to the bases of the transistors Q 1 and Q 2.
This is because the induced voltage of Vd is fed back. Therefore, when the DC power sources E 0 and E 1 are turned on, the synchronous circuit 5 self-oscillates and generates a sinusoidal high-frequency voltage V a between the windings A and B, C and D, and E and H, respectively. , V b ,
V c occurs in the same direction as V cp . These V a , V b ,
Since V c is applied across the base resistances of the switch transistors of high frequency conversion circuits 1, 2, and 3, V cp
is positive (V a , V b , V c are positive), the transistor
Q 4 , Q 6 , and Q 8 are turned on, and Q 3 , Q 5 , and Q 7 are forced to turn off. Conversely, when V cp is negative, Q 3 ,
Q 5 , Q 7 turn on, Q 4 , Q 6 , Q 8 turn off, and high frequency conversion circuits 1, 2, and 3 are forced to switch in synchronization with the self-excited vibration period of synchronous circuit 5. As a result, synchronous oscillating voltage is generated in the output transformers T 1 , T 2 , and T 3 .

さて、今入力電圧が3ψの商用電源とすれば第
6図に示すように各線間電圧e1,e2,e3は2π/3
づつ位相がずれ、しかも高周波変換回路1,2,
3の出力トランスの1次巻線電圧V1,V2,V3
第6図の様に2π/3づつ包絡線がずれた波形と
なる。そこで、出力トランスT1,T2,T3の出力
巻線が第8図の如く、絶縁分離された形で、複数
個あると出力も分割され、たとえば、出力トラン
スT1の出力は、V11及びV12の電圧に分離される。
この大きさは2次側巻線数により決定し、同一仕
様であるならV11とV12はほぼ等しい値となり、
2次側が分離されていない単出力のものに比べ、
V11は約1/2の振巾波形となる。従つて第2図の
Vputも第7図の様に平滑でしかも単出力形のもの
に比べ1/2となり、整流平滑すれば、平滑直流電
圧VD1は1/2となり、平滑直流電源として2ケ独
立して利用できる事になる。
Now, if we use a commercial power supply with an input voltage of 3ψ, each line voltage e 1 , e 2 , e 3 is 2π/3 as shown in Figure 6.
The phases are shifted one by one, and the high frequency conversion circuits 1, 2,
The primary winding voltages V 1 , V 2 , and V 3 of the output transformer No. 3 have waveforms whose envelopes are shifted by 2π/3 as shown in FIG. Therefore, if the output windings of the output transformers T 1 , T 2 , and T 3 are insulated and separated as shown in FIG. 11 and V 12 voltages.
This size is determined by the number of windings on the secondary side, and if they have the same specifications, V 11 and V 12 will be approximately the same value,
Compared to a single output type with no separate secondary side,
V 11 has an amplitude waveform of approximately 1/2. Therefore, in Figure 2
As shown in Figure 7, V put is also smooth and 1/2 compared to the single output type, and if rectified and smoothed, the smoothed DC voltage V D1 becomes 1/2, and the two can be used independently as smoothed DC power supplies. It becomes possible.

本発明は叙上のように構成されているため、負
荷(例えばインバータ)毎に、独立した直流電源
を与えることができ、負荷の電源を個別にコント
ロールする事が可能となる。又、機器間のノイズ
による誤動作が多いアイソレーシヨンの必要な機
器の直流供給が容易となる。さらに入力歪が小さ
いこと等の効果を有する。
Since the present invention is configured as described above, it is possible to provide an independent DC power source to each load (for example, an inverter), and it is possible to individually control the power source of the load. In addition, it becomes easy to supply DC to equipment that requires isolation, which often causes malfunctions due to noise between equipment. Furthermore, it has effects such as low input distortion.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の直流電源装置、第2図は動作説
明図、第3図は直流電源装置の基本的ブロツク
図、第4図は具体的回路、第5図Vb,V1,V2
V3、第6図e1,V1,e2,V2,e3,V3、第7図は
動作説明図、第8図は本発明の実施例を示す。 1,2,3……高周波変換回路、4……整流平
滑回路、5……同期回路、6……交流電源、T1
〜T3……発振トランス、Q1〜Q8……トランジス
タ、E0,E1……直流電源。
Figure 1 is a conventional DC power supply, Figure 2 is an operational diagram, Figure 3 is a basic block diagram of the DC power supply, Figure 4 is a concrete circuit, and Figure 5 is V b , V 1 , V 2 .
V 3 , FIG. 6 e 1 , V 1 , e 2 , V 2 , e 3 , V 3 , FIG. 7 is an explanatory diagram of the operation, and FIG. 8 shows an embodiment of the present invention. 1, 2, 3... High frequency conversion circuit, 4... Rectifying and smoothing circuit, 5... Synchronous circuit, 6... AC power supply, T 1
~ T3 ...Oscillation transformer, Q1 ~ Q8 ...Transistor, E0 , E1 ...DC power supply.

Claims (1)

【特許請求の範囲】[Claims] 1 3相電源と、前記の電源の各線間電圧を各々
入力とし、ほぼ同一回路仕様をもち、入出力が絶
縁され、かつ出力数が複数のn個あり、互いの出
力も絶縁された3組の高周波変換回路と、前記の
高周波変換回路の1出力づつを各組より抽出し、
直列合成した後、全波整流、平滑するn組の全波
整流・平滑回路及び前記高周波変換回路を同期し
て動作させる同期回路を具備した事を特徴とする
直流電源装置。
1. Three sets, each inputting a 3-phase power supply and each line voltage of the above power supply, having almost the same circuit specifications, isolated input and output, and a plurality of n outputs, and each output being isolated from each other. Extract one output of the high frequency conversion circuit and the high frequency conversion circuit from each set,
A DC power supply device comprising n sets of full-wave rectification/smoothing circuits that perform full-wave rectification and smoothing after series synthesis, and a synchronization circuit that operates the high-frequency conversion circuit in synchronization.
JP1422682A 1982-01-29 1982-01-29 Dc power source device Granted JPS58133169A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1422682A JPS58133169A (en) 1982-01-29 1982-01-29 Dc power source device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1422682A JPS58133169A (en) 1982-01-29 1982-01-29 Dc power source device

Publications (2)

Publication Number Publication Date
JPS58133169A JPS58133169A (en) 1983-08-08
JPH0161022B2 true JPH0161022B2 (en) 1989-12-26

Family

ID=11855146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1422682A Granted JPS58133169A (en) 1982-01-29 1982-01-29 Dc power source device

Country Status (1)

Country Link
JP (1) JPS58133169A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07205979A (en) * 1994-01-26 1995-08-08 Eishin Shokai:Kk Paper box

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0667196B2 (en) * 1982-10-01 1994-08-24 オリジン電気株式会社 Rectifier
JP4729331B2 (en) * 2005-04-18 2011-07-20 コーセル株式会社 Multiple power supply system
JP2011147325A (en) * 2010-01-18 2011-07-28 Ohira Electronics Co Ltd Three-phase power factor improving circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07205979A (en) * 1994-01-26 1995-08-08 Eishin Shokai:Kk Paper box

Also Published As

Publication number Publication date
JPS58133169A (en) 1983-08-08

Similar Documents

Publication Publication Date Title
JP2000324831A (en) Switching power supply circuit
JPH09131051A (en) Power factor improving converter circuit
JPH07115774A (en) Power supply
US4663699A (en) Synchronous converter circuit
JP4217950B2 (en) Control method of DC / DC converter
JPS6268068A (en) Power converter
JPH0161022B2 (en)
JPH0161023B2 (en)
JPH0630557A (en) Switching power unit
JP3079564B2 (en) Inverter power circuit
JPH05161357A (en) Power unit
JP2677738B2 (en) Switching regulator
JPS628155Y2 (en)
JPH0564451A (en) Power source apparatus
EP3934081A1 (en) Bridge rectifier operation and power fator correction circuit
JPH0637375A (en) High frequency power source for laser oscillator
JPH04265A (en) Power converter
JPH0318275A (en) Switching power device
JPH0487183A (en) Driver circuit for inverter type microwave oven
JP2632587B2 (en) Power supply
JP3063830B2 (en) converter
JPH0211999B2 (en)
JP3399376B2 (en) Inverter device
JPH10136650A (en) Rectifying circuit
JPS60113664A (en) Power source