JPS62158547A - Molding material for precision casting - Google Patents

Molding material for precision casting

Info

Publication number
JPS62158547A
JPS62158547A JP29869885A JP29869885A JPS62158547A JP S62158547 A JPS62158547 A JP S62158547A JP 29869885 A JP29869885 A JP 29869885A JP 29869885 A JP29869885 A JP 29869885A JP S62158547 A JPS62158547 A JP S62158547A
Authority
JP
Japan
Prior art keywords
slag
slurry
molding material
mold
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29869885A
Other languages
Japanese (ja)
Other versions
JPH069728B2 (en
Inventor
Eiji Okada
英治 岡田
Masayoshi Mori
森 政義
Hatsuyoshi Kai
初義 甲斐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP60298698A priority Critical patent/JPH069728B2/en
Publication of JPS62158547A publication Critical patent/JPS62158547A/en
Publication of JPH069728B2 publication Critical patent/JPH069728B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Mold Materials And Core Materials (AREA)

Abstract

PURPOSE:To improve quality of molding material and to reduce production cost by adjusting water-crushed ferro-nickel slag having the specified wt% of MgO, FeO and CaO to less than the described grain size, to form the molding material. CONSTITUTION:The slag by-produced at smelting for ferro-nickel is treated by the water-crushing method and selected as the suitable slag for its composition of >=30% MgO, <=13% FeO, <=5% CaO and adjusted to <=5mm for max. grain size. The slag material is used as the molding material by mixing with stucco material such as usual ZrO2-SiO2 series, etc., or this slag alone. This molding material has desired characteristics for strength, casting surface, etc., and good collapsibility and also, stable chemical composition and thermal expansion ratio. Further, as raw material is obtd. at low cost, the quality of mold is improved and molding cost is reduced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、インベストメント鋳造法による精密鋳造の際
に使用され、良好な鋳肌が得られ、型ばらしの良い精密
鋳造用鋳型材料に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a mold material for precision casting that is used in precision casting by an investment casting method, provides a good casting surface, and has good mold release. be.

〔従来の技術及び間碩点〕[Conventional technology and shortcomings]

精密鋳造法にインベストメント鋳造法といわれる方法が
知られ実用されている。すなわち、この方法は、まず鋳
物製品と同型のワックス・ぐターンを製作し、このワッ
クス・Rターンに鋳造に必要な湯道を設けてワックスツ
リーに組立てる。次に、このワックスツリーに耐火物を
複層にコーティングし、乾燥した後、加熱して脱ワツク
スする。その後、この鋳型を焼成予熱してから溶湯を鋳
込み冷却後、型ばらしして鋳造品を取り出し、仕上げ加
工して製品とする方法である。
A precision casting method called investment casting method is known and in practical use. That is, in this method, a wax turn of the same type as the cast product is first manufactured, a runner necessary for casting is provided in this wax R turn, and then assembled into a wax tree. Next, this wax tree is coated with multiple layers of refractory material, dried, and then heated to remove wax. Thereafter, the mold is preheated for firing, the molten metal is poured into the mold, the mold is cooled, the mold is removed, the cast product is taken out, and the product is finished and processed.

そして、前記の耐火物のコーティング方法としては、ワ
ックスツリーを耐火物に/セインダーを加えたスラリー
に浸漬して耐火物を付着・させたものに、粉末耐火物い
わゆるスタッコ材をふりかけサンディングする方法がと
られ、この浸漬とサンディングとを繰り返して所望の耐
火度や強変を有する鋳型を形成するものである。
The method for coating the refractory is to soak the wax tree in a slurry of refractory/saunder to adhere the refractory, sprinkle it with powdered refractory, so-called stucco material, and then sand it. This immersion and sanding are repeated to form a mold having the desired degree of fire resistance and strong deformation.

スラリーのバインダーとしては一般に、191 ozを
約30%含有するコロイダルシリカが使用され、1を人
物としては、ジルコン、溶融シリカ等耐火度が高い微粉
末が使用できる。この耐火物とノでイングーに、必要に
応じ界面活性剤や消泡剤及び水を添加して所望の粘度に
調整したものが使用される。
Colloidal silica containing about 30% of 191 oz is generally used as the binder for the slurry, and as the material 1, fine powder with high refractory properties such as zircon or fused silica can be used. A surfactant, an antifoaming agent, and water are added to this refractory and ingu as necessary to adjust the viscosity to a desired value.

又、スタッコ材としては、ZrO2−8102系、5i
n2系、Al2O3系、Al2O35i02系等の各種
の耐火物が使用されており、とくに溶湯に直接に接触し
刈物の表面性状を決める第1層用として平均粒度が約帥
メツシュ以下のZrO2−5i02系が多く使用されて
いる。第2層以後は、所望強度、通気性及び鋳造後の崩
壊性等を考慮し、粒度0,3〜4.5註の粒状耐火物が
使用されている。
In addition, as stucco materials, ZrO2-8102 series, 5i
Various refractories such as n2 series, Al2O3 series, and Al2O35i02 series are used, and ZrO2-5i02 with an average particle size of about 300 yen mesh or less is especially used for the first layer that comes into direct contact with the molten metal and determines the surface properties of the cut material. system is widely used. From the second layer onwards, granular refractories with a particle size of 0.3 to 4.5 are used in consideration of desired strength, air permeability, disintegrability after casting, etc.

しかしながら、これらの耐火物は、一般に、天然の鉱物
を乾燥、又は焼成して粒度調整したり、高温で溶融した
ものを破砕したりして型造しているのであるが、良宵で
高線量な鉱物は次第に資源が同温して人手困難になって
きており、高価であったり、品質のばらつきが大きかっ
たりといった問題があり、さらて、型げらしの際の崩壊
性が悪く、手数や時間かかる等の問題があった。
However, these refractories are generally molded by drying or firing natural minerals to adjust the particle size, or by crushing molten minerals at high temperatures. Mineral resources are becoming increasingly homogeneous, making it difficult for people to handle them, and there are problems such as they are expensive and have large variations in quality.Furthermore, they are difficult to disintegrate when molded, making it labor-intensive and time-consuming. There were such problems.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者等は、前記の問題点を解決するために、種々の
耐火物について種々試験研究を重ねた結果、フェロニッ
ケル製錬の際の副生物として産出される特定組成のスラ
グを特定粒度に調整したものが、従来から[重用されて
いる耐火物と代替が可能であるばかシでなく、さらに優
れた性能を発揮し得ることを見出して本発明をなしたも
のである。すなわち、本発明は、MgOが(2)重tチ
界上、FeOが13重量%以下、CaOが5重を俤以下
の水砕フェロニッケルスラグを最大粒径5間以下に粒度
調整した精密鋳造用鋳型材料である。
In order to solve the above-mentioned problems, the present inventors conducted various tests and research on various refractories, and as a result, the present inventors developed a method for converting slag of a specific composition, which is produced as a by-product during ferronickel smelting, into a specific particle size. The present invention was made based on the discovery that the adjusted material is not only a substitute for conventional refractories that have been heavily used, but also can exhibit even superior performance. That is, the present invention provides precision casting in which granulated ferronickel slag is made of granulated ferronickel slag containing (2) MgO at (2) weight percent, FeO at 13 weight percent or less, and CaO at 5 weight percent or less, with a maximum particle size of 5 mm or less. It is a mold material for

本発明において使用する鋳型材料は、フェロニッケル製
錬副生物のスラグであって、フェロニッケル製錬は、硅
苦土ニッケル鉱であるいわゆるガーニライト鉱だ還元剤
や必要だ応じて溶剤を添加して、電気炉、溶蚊炉、ロー
タリーキルン等で還元溶融してN1約204を含有する
金属フェロニッケルを分離回収し、副生ずるスラグけ、
水砕、風砕、乾砕等で処理するこ七によって行なわれて
いる。
The mold material used in the present invention is slag which is a by-product of ferronickel smelting, and ferronickel smelting involves adding a reducing agent and a solvent as necessary. , the metal ferronickel containing about 204 N1 is separated and recovered by reduction melting in an electric furnace, melting furnace, rotary kiln, etc., and the by-product slag,
This process is carried out using methods such as water crushing, wind crushing, and dry crushing.

しかして、スラッゾは、製錬法によシ、その化学組成、
鉱物組成、粒度等が異なっているが、各々は安定してお
り1.老出量も百数十万屯に達し、このうちもつとも生
産量が多いのは電気炉法で約1650℃で還元製錬され
水砕したスラグ(を気炉水砕スラグという)である。そ
の代表的な化学組成は、いずれも重tSで、Mg028
〜37 %、peo7〜【3チ、 B 1oz45〜5
5 %、htzo5 1〜a q6、 CaO1〜2チ
であシ、鉱物組成としては、フォルステライト(2ME
Q−8i02 ) 75”約60tsテ主テあシ、ガラ
ス質が約30%、残部エンスタダイ)(MgO・StO
,)であり、粒度分布は、次表に示すようである。しか
して、これらスラッゾは、鉄鋼製錬の溶剤や硅カル肥料
として利用され、路盤材、埋立用にも使用されている。
However, due to the smelting process, its chemical composition,
Mineral composition, particle size, etc. are different, but each is stable and 1. The amount of slag produced reaches over 100,000 tons, and the most produced slag is slag that is granulated by reduction smelting at about 1650°C using the electric furnace method (referred to as granulated air furnace slag). Their typical chemical composition is heavy tS, Mg028
~37%, peo7~[3chi, B 1oz45~5
5%, htzo5 1~aq6, CaO1~2%, mineral composition is forsterite (2ME
Q-8i02) 75" Approximately 60ts main foot, approximately 30% vitreous, the remainder is solid) (MgO, StO
), and the particle size distribution is as shown in the table below. These sluds are used as a solvent in steel smelting and as a silicon fertilizer, and are also used as roadbed material and in landfills.

電気炉水砕スラグ社、組成の若干異なる数種類の磁石を
所定組成になるように配合し、高温で還元溶解した溶体
を水中で急冷破砕したものであるから、組成や粒間等が
安定しており、f耐火度は高く、添付の図に示すように
、熱膨張率は低く、さらに、形状は破砕品と同様な不定
形をしているので、粒度を適当に調整すれば精密鋳造用
のスタッコ材として使用することができる。
Electric Furnace Granulated Slag Co., Ltd. is a product made by blending several types of magnets with slightly different compositions to a predetermined composition, reducing and dissolving the solution at high temperatures, and then quenching and crushing it in water, so the composition and intergranularity are stable. As shown in the attached figure, it has a high fire resistance, a low coefficient of thermal expansion, and an irregular shape similar to a crushed product, so if the particle size is adjusted appropriately, it can be used for precision casting. Can be used as stucco material.

しかして、本発明における水砕フェロニッケルスラグは
、Mg030重量%以上、FeO13重′i′チ以下、
(ao 5重量係以下であって最大粒径5言罵以下のも
のである。
Therefore, the granulated ferronickel slag in the present invention has Mg030% by weight or more, FeO13% by weight or less,
(Has a weight ratio of 5 or less and a maximum particle size of 5 or less.

−iなわち、フェロニッケルスラグは、その化学組成が
、MgO<30重量%、FeO> 13重量%、OaO
〉5重量%では、融点が低下し、耐火度が低くなるから
である。
-i, the chemical composition of ferronickel slag is MgO<30% by weight, FeO>13% by weight, OaO
>5% by weight, the melting point decreases and the fire resistance decreases.

又、粒度は、使用目的に応じてインペラブレーカ−等で
破砕した後、篩別して、5〜2龍、0.5〜1.0mm
、0.3 w O,7rn、  0.05w0.3 m
の粒度のものを取出すものであって、0.3mm以上に
破砕する場合は、ボールミル等での粉砕よりもインペラ
ブレーカー等で破砕する方が粒の表面形状が不定形でス
ラリーに対する付着性が良くなり好ましく、最大粒径が
5nを越えると、サンディングの作業性が悪く、スラリ
ーへの均一な付着が困難となり、鋳型の強度が低下する
Depending on the purpose of use, the particle size is determined by crushing with an impeller breaker, etc., and then sieving to obtain particles of 5 to 2 mm or 0.5 to 1.0 mm.
, 0.3w O,7rn, 0.05w0.3m
When crushing to 0.3 mm or more, it is better to crush with an impeller breaker etc. than with a ball mill etc. as the surface shape of the particles is irregular and the adhesion to the slurry is better. Preferably, if the maximum particle size exceeds 5n, sanding workability is poor, uniform adhesion to the slurry becomes difficult, and the strength of the mold decreases.

さらに、フェロニッケルを水砕せず、溶体を空気による
風砕をしたり、路盤上に流して徐冷したものは、風化し
易く、強度も弱くなるので好ましくないので水砕スラグ
を使用するものである。
Furthermore, if ferronickel is not pulverized, but the solution is pulverized with air or poured onto a roadbed and slowly cooled, it is undesirable because it easily weathers and its strength is weakened, so granulated slag is used. It is.

これらの理由によって前記組成、粒度の水砕フェロニッ
ケルスラグであることが必要であす、従来品より優れた
鋳型材料として使用できるものである。
For these reasons, it is necessary to use granulated ferronickel slag with the above composition and particle size, which can be used as a mold material superior to conventional products.

〔発明の効果〕〔Effect of the invention〕

本発明は、特定組成、特定粒度の水砕フェロニッケルス
ラグからなる鋳型材料であるから、従来から使用されて
いるZrO2−5iCh系やA/203−8in2系の
スタッフ材との混用又は単独使用が可能であり、しかも
積層に際してどの段層で使用しても本発明鋳型材料を使
用する限り、いずれも製品鋳物の寸法精度は従来品と変
らず良好であって、鋳肌は同等以上に良好であシ、かつ
、型ばらしが容易になし得るものであり、フエロニッケ
ルスラクハ工業製品なので化学組成、鉱物組成や熱膨張
率等が安定しておυ、かつ、大量に安価に入手し得、他
の材質、粒度の材料との混合比を適宜に選定することに
よって鋳物の材質や寸法に応じ鋳型の強度、鋳物鋳肌等
所望の性能を有する鋳型を成型し得、硬くて摩耗しにく
いのでサンディングの際に流動させても粉の発生が少い
ためアンダーカットの必要がなく、手数がかからず、歩
留りもよく、微粉の害もない等優れた効果が認められる
ものである。
Since the present invention is a mold material made of granulated ferronickel slag with a specific composition and particle size, it can be used alone or in combination with conventionally used ZrO2-5iCh and A/203-8in2 stuff materials. In addition, as long as the mold material of the present invention is used in any layer during lamination, the dimensional accuracy of the product castings will be as good as conventional products, and the casting surface will be as good or better. The reeds and shape can be easily disassembled, and since it is an industrial product of ferronickel, its chemical composition, mineral composition, coefficient of thermal expansion, etc. are stable, and it can be obtained in large quantities at low cost. By appropriately selecting the mixing ratio with other materials and grain sizes, it is possible to mold a mold that has the desired performance, such as strength and casting surface, depending on the material and size of the casting, and is hard and resistant to wear. Therefore, even if it is fluidized during sanding, there is little generation of powder, so there is no need for undercutting, and excellent effects are recognized, such as less time and effort, good yield, and no harm caused by fine powder.

〔実施例〕〔Example〕

次に1本発明の実施例を述べる。 Next, one embodiment of the present invention will be described.

実施例1 1)水砕フェロニッケルスラグ組成 使用した水砕フェロニッケルスラグの化学組成を第1表
に示す。
Example 1 1) Composition of granulated ferronickel slag Table 1 shows the chemical composition of the granulated ferronickel slag used.

第   1   表 2)スタッコ材の粒度分布 スタッコ材として本発明の水砕フェロニッケルスラグを
粉砕して第2表に示すような粒度分布をもったサンドA
、サンrB1サンドCの3種類のスタッコ材を調整し、
従来から使用されているAJ20.−5in2系、Zr
O2−S ion系スタッコ材も第2表に示すような粒
度分布をもったサンドD (AJsOs−Sin、系)
、サンドH(Al505−8101系)、サンPF (
ZrO2−slo、系)の3種類のスタッコ材として調
製した。
Table 1 2) Particle size distribution of stucco material Sand A, which is made by crushing the granulated ferronickel slag of the present invention and has a particle size distribution as shown in Table 2, is used as a stucco material.
, adjusted three types of stucco materials: Sun rB1 Sand C,
AJ20, which has been used conventionally. -5in2 series, Zr
O2-S ion based stucco material is also Sand D (AJsOs-Sin, series) with particle size distribution as shown in Table 2.
, Sand H (Al505-8101 series), Sun PF (
Three types of stucco materials were prepared: ZrO2-slo, system).

3)スラリー組成 コロイダルシリカ(5iOa30 % )、Zr o2
− SiC1g系フラワー#350、A71103S 
i Ox系フラワー#200及び添加剤(界面活性剤等
)を用いて第3表に示すよう々配合割合のプライマリ−
用スラリーとノミツクアップ用スラリーとを調製した。
3) Slurry composition Colloidal silica (5iOa30%), Zro2
- SiC1g flower #350, A71103S
i Ox-based flour #200 and additives (surfactants, etc.) are used to prepare the primary powder in the proportions shown in Table 3.
A slurry for use in dry cleaning and a slurry for pick-up were prepared.

4)ワックスツリーの調製 直径50龍φ、長さ110朋の円筒状の部品を複数個集
合した形状に湯道を付設してワックスツリーを調型した
4) Preparation of wax tree A wax tree was prepared by attaching a runner to a plurality of cylindrical parts each having a diameter of 50 mm and a length of 110 mm.

5)コーティングの施行 4)で調製したワックスツリーを3)で調製したプライ
マリ−用スラリー(以下、スラリーAという)に浸漬し
た後、ZrO2E1102系スタッコ材(以下、サンr
Fという)をサンディングして第1層のコーティングを
行ない、第2層は第1層と同様にしてコーティングして
形成し、第3層及び第4層は、それぞれ、ノックアップ
用スラリー(以下、スラリーBという)に浸漬した後、
本発明のスタッコ材B(以下、サンドBという)をサン
ディングしてコーティングして形成し、第5層及び第6
層は、それぞれ、スラIJ + Bに浸漬した後、・本
発明のスタッコ材A(以下、サンドAという)をサンデ
ィングして形成し、第7層は、スラリーBK浸漬しただ
けでサンディングを行なわずに形成した。
5) Coating The wax tree prepared in 4) was immersed in the primary slurry prepared in 3) (hereinafter referred to as slurry A), and then coated with ZrO2E1102-based stucco material (hereinafter referred to as Sanr).
The first layer is coated by sanding a slurry for knock-up (hereinafter referred to as F), the second layer is coated in the same manner as the first layer, and the third and fourth layers are coated using a knock-up slurry (hereinafter referred to as F). After immersion in slurry B),
The stucco material B of the present invention (hereinafter referred to as sand B) is sanded and coated to form the fifth layer and the sixth layer.
The layers were formed by dipping in slurry IJ + B and then sanding stucco material A of the present invention (hereinafter referred to as sand A), and the seventh layer was formed by dipping in slurry BK without sanding. was formed.

6)鋳造 この鋳型を通常の方法で温度22℃、湿度50%で冴時
間乾燥し、130℃に加熱して脱ワツクスし、1050
℃に焼成予熱を行なった後、1650°Cのステンレス
鋼の溶湯を鋳込んで、冷却後、ノックアウトマシンで解
体した。
6) Casting This mold was dried in the usual manner at a temperature of 22°C and a humidity of 50%, and then heated to 130°C to remove wax.
After preheating for firing to 1650°C, molten stainless steel was poured into the mold, and after cooling, it was dismantled using a knockout machine.

7)試験結果 得られた鋳物の鋳肌を目視検査し、寸法精度を測定し、
型ばらしの難易をノックアウトマシンの所要時間を測定
して判定した。これらの結果を第4表に示す。
7) Visually inspect the casting surface of the casting obtained as a result of the test, measure the dimensional accuracy,
The difficulty of demolding was determined by measuring the time required for a knockout machine. These results are shown in Table 4.

実施例2 実施例1と同様のワックスツリー、スラリー及びスタッ
コ材とを使用して、第1層及び第2層は、実施例1と同
様にしてコーティングして形成し、第3層及び第4層は
、スラリーBK浸漬した後、サンドB50%とサン)’
に50%の混合スタッコ材でサンディングして形成し、
第5層及び第6層は、スラリーBに浸漬した後、スタッ
コ材としてサンドA50%とサンPD50係の混合スタ
ッコ材でサンディングして形成し、第7層は、スラリー
BK浸漬するだけでサンディングを行なわずに形成しも
これを実施例1と同様に処理して同様にして鋳造を行な
い、得られた鋳物について実施例1と同様な試験を行っ
た。結果を第4表に示す。
Example 2 Using the same wax tree, slurry, and stucco material as in Example 1, the first and second layers were coated and formed in the same manner as in Example 1, and the third and fourth layers were coated and formed in the same manner as in Example 1. The layer is soaked in slurry BK, then sanded with 50% Sand B)'
Sanded and formed with 50% mixed stucco material,
The 5th and 6th layers are formed by dipping in Slurry B and then sanding with a mixed stucco material of 50% Sand A and 50% San PD, and the 7th layer is formed by sanding only by dipping in Slurry BK. Even if the molded product was not formed, it was treated and cast in the same manner as in Example 1, and the obtained casting was subjected to the same tests as in Example 1. The results are shown in Table 4.

実施例3 実施例1と同様のワックスツリー、スラリー及びスタッ
コ材とを使用して、第1層及び第2層は、スラIJ +
 Aに浸漬した後、本発明スタッコ材(以下、サンpc
とbう)30チとサンドF’ 70 %との混合スタッ
コ材でサンディングして形成し、第31及び第4層は、
スラ17 ++ Bに浸漬した後、サンドBでサンディ
ングして形成し、第6層及び第7層は、スラ+7 ++
 Bに浸漬した後、サンyhでサンディングして形成し
た。
Example 3 Using the same wax tree, slurry and stucco material as in Example 1, the first and second layers were made of sla IJ +
After soaking in A, the stucco material of the present invention (hereinafter referred to as San PC
b) The 31st and 4th layers are formed by sanding with a mixed stucco material of 30% Sand F' and 70% Sand F'.
The 6th and 7th layers are formed by dipping in Sura 17 ++ B and then sanding with Sand B.
After dipping in B, it was formed by sanding with sand yh.

これを実施例1と同様に処理して同様にして鋳造を行な
い、得られた鋳物について実施例1と同様な試験を行な
った。これらの結果を第4表に示す。
This was treated and cast in the same manner as in Example 1, and the obtained casting was subjected to the same tests as in Example 1. These results are shown in Table 4.

実施例4 実施例1と同様のワックスツリー、スラリー及びスタッ
コ材を使用して、第1層及び第2層は、スラリーAに浸
漬した後、サンドCでサンディングして形成し、第3層
及び第4層は、スラIJ−Bに浸漬した後、サンF B
 30 %とサンドF 70 ’1との混合スタッコ材
でサンディングして形成し、第5.6層はスラリーBに
浸漬した後サンrA3o%とサンドD 70 %の混合
品でサンディングし、第7層は、スラIJ m Hに浸
漬しただけでサンディン・グを行なわずに形成した。
Example 4 Using the same wax tree, slurry and stucco materials as in Example 1, the first and second layers were formed by dipping in slurry A and then sanding with sand C, and the third and second layers were formed by dipping in slurry A and then sanding with sand C. The fourth layer was immersed in Sura IJ-B and then soaked in Sun F B
The 5th and 6th layers were dipped in slurry B and then sanded with a mixture of 30% SanrA and 70% Sand D, and the 7th layer was formed by simply immersing it in slurry IJ m H without sanding.

そして乾燥、脱ワツクス後の鋳型をsoo”cで焼成後
、1200℃の銅合金を鋳込んだ。得られた鋳物につい
て実施例1と同様な試験を行なった。得られた結果を第
4表に示す。
After drying and removing wax, the mold was fired at soo'c, and a copper alloy was cast at 1200°C. The obtained castings were subjected to the same tests as in Example 1. The results are shown in Table 4. Shown below.

比較例 実施例1と同様のワックスツリー、スラリー及びスタッ
コ材を使用して、第1層及び第2rfIは、スラ+7 
 Aに浸漬した後、サンFFでサンディングして形成し
、第3層及び第4層は、スラリーBに浸漬した後、サン
ドEでサンディングして形成し、第5層及び第6層(d
、スラIJ −Bに浸1した後、サンドってコーティン
グして形成し、第7層は、スラリ+Bに浸漬しただけで
サンディングを行なわずに形成した。
COMPARATIVE EXAMPLE Using the same wax tree, slurry and stucco materials as in Example 1, the first and second rfI were coated with slurry +7
The third and fourth layers are formed by dipping in slurry B and then sanding with sand E, and the fifth and sixth layers (d
The seventh layer was formed by dipping it in Slurry IJ-B and then sanding it, and the seventh layer was formed by just dipping it in Slurry +B without sanding.

これを実施例1と同様に処理して同様にして鋳造を行な
い、得られた鋳物について実施例1と同様な試験を行な
った。得られた結果を第4表に示す。
This was treated and cast in the same manner as in Example 1, and the obtained casting was subjected to the same tests as in Example 1. The results obtained are shown in Table 4.

【図面の簡単な説明】[Brief explanation of drawings]

図は、各種材料の温度と熱膨張率との関係を示す図であ
る。 横 軸:温 度(’C,) 縦 @:熱膨張係数(憾) 特許出願人 住友金属鉱山株式会社 二、&(’C)
The figure is a diagram showing the relationship between temperature and coefficient of thermal expansion of various materials. Horizontal axis: Temperature ('C,) Vertical @: Coefficient of thermal expansion ('C) Patent applicant Sumitomo Metal Mining Co., Ltd. II &('C)

Claims (1)

【特許請求の範囲】[Claims] MgOが30重量%以上、FeOが13重量%以下、C
aOが5重量%以下の水砕フェロニッケルスラグを最大
粒径5mm以下に粒度調整してなる精密鋳造用鋳型材料
MgO is 30% by weight or more, FeO is 13% by weight or less, C
A mold material for precision casting made by adjusting the particle size of granulated ferronickel slag with an aO content of 5% by weight or less to a maximum particle size of 5mm or less.
JP60298698A 1985-12-30 1985-12-30 Precision casting mold material Expired - Lifetime JPH069728B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60298698A JPH069728B2 (en) 1985-12-30 1985-12-30 Precision casting mold material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60298698A JPH069728B2 (en) 1985-12-30 1985-12-30 Precision casting mold material

Publications (2)

Publication Number Publication Date
JPS62158547A true JPS62158547A (en) 1987-07-14
JPH069728B2 JPH069728B2 (en) 1994-02-09

Family

ID=17863121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60298698A Expired - Lifetime JPH069728B2 (en) 1985-12-30 1985-12-30 Precision casting mold material

Country Status (1)

Country Link
JP (1) JPH069728B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6095935B2 (en) * 2012-10-09 2017-03-15 三菱日立パワーシステムズ株式会社 Precision casting mold manufacturing method

Also Published As

Publication number Publication date
JPH069728B2 (en) 1994-02-09

Similar Documents

Publication Publication Date Title
US4873209A (en) Insulating lightweight refractory materials
CN100590098C (en) Environment-protection dry type vibrating material and production method thereof
PL190727B1 (en) Moulding sand mix suitable for making cores and permanent moulds
JPS62207771A (en) Heat insulative composition and manufacture of formed body therefrom
JPH04251629A (en) Carbon cast sand and casting method therefor
JPH05169184A (en) High siliceous spherical molding sand and its production
US3567667A (en) Mould linings composition comprising ball mill dust and calcium silicate,aluminum silicate or calcium alumino silicate fibrous refractory material
JP2016026989A (en) Ultrahigh strength concrete
JP3253579B2 (en) Sand for mold
CN112250435A (en) Forsterite spherical sand and preparation method and application thereof
JP2011025310A (en) Spherical refractory particle, casting sand composed thereof and mold obtained using the same
JPS62158547A (en) Molding material for precision casting
US4536216A (en) Cement for the manufacture of cores and moulds and method for preparing same
EP0785835B1 (en) Moulds and cores made of crushed and graded magnetite ore and process for casting metal using them
US4430441A (en) Cold setting sand for foundry moulds and cores
US1713580A (en) of dayton
WO2009046128A1 (en) Material used to combat thermal expansion related defects in the metal casting process
JPS5927753A (en) Production of base material for additive for casting of steel
SU876249A1 (en) Composition for making intermediate and outer layers of casting multilayer cyramic moulds obtained by investment patterns
JP2965782B2 (en) Manufacturing method of artificial sand using waste silica sand
SU1364386A1 (en) Sprinkling material
CN108160913A (en) A kind of precoated sand additive
JPS591233B2 (en) High zircon vibration molding material
US2389542A (en) Foundry composition
CN106673674A (en) Tundish dry material and preparation method thereof

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term