JPS6215850A - Multi-chip package substrate - Google Patents

Multi-chip package substrate

Info

Publication number
JPS6215850A
JPS6215850A JP60154515A JP15451585A JPS6215850A JP S6215850 A JPS6215850 A JP S6215850A JP 60154515 A JP60154515 A JP 60154515A JP 15451585 A JP15451585 A JP 15451585A JP S6215850 A JPS6215850 A JP S6215850A
Authority
JP
Japan
Prior art keywords
substrate
silicon
oxide film
silicon oxide
chip package
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60154515A
Other languages
Japanese (ja)
Other versions
JPH0464467B2 (en
Inventor
Katsuzo Uenishi
上西 勝三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP60154515A priority Critical patent/JPS6215850A/en
Publication of JPS6215850A publication Critical patent/JPS6215850A/en
Publication of JPH0464467B2 publication Critical patent/JPH0464467B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • H01L23/147Semiconductor insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16135Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/16145Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/30107Inductance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3011Impedance
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/05Insulated conductive substrates, e.g. insulated metal substrate
    • H05K1/053Insulated conductive substrates, e.g. insulated metal substrate the metal substrate being covered by an inorganic insulating layer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/4038Through-connections; Vertical interconnect access [VIA] connections

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Waveguides (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To provide low impedance of 50-100OMEGA as the characteristic impedance of the microstrip lines of a multi-chip package substrate even if the width of the line is miniaturized, by providing a very thin silicon oxide film (or silicon nitride film) on a silicon substrate, whose impurity concentration is very high, and using the silicon oxide film as a dielectric material. CONSTITUTION:On a silicon substrate 13, a silicon oxide film 15, whose thickness is, e.g., 1-5mum, is provided. A wiring pattern 21 including microstrip lines 17 and wirings 19 are provided on the silicon oxide film 15. The microstrip lines 17 comprise suitable metal material. The wiring 19 is wider than the microstrip line 17 for external terminals, power source lines and the like. A part of the silicon oxide film 15 is removed in order to reduce grounding inductance, and a through hole 13 reaching the silicon substrate 13 is provided, in a package substrate 11. The desired circuit part can be grounded to the silicon substrate through said through hole 23 are required.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明はシリコン又は化合物半導体からなる超高速デ
バイス(半導体チップ)を実装するためのマルチチップ
パッケージ基板に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a multi-chip package substrate for mounting ultra-high-speed devices (semiconductor chips) made of silicon or compound semiconductors.

(従来の技術) 従来より種々の構造のマルチチップパッケージ基板(以
下、パッケージ基板と称することもある)が提案されて
いる。このようなパッケージ基板は例えば文献(プロシ
ーディング オブ ザカスタム インチグレイテッド 
サーキッツ コン7 x L’ンス(Praceedi
ng af the GuStom Integrat
ed C1rcuits Conference ) 
、 1983 、 p 。
(Prior Art) Multi-chip package substrates (hereinafter sometimes referred to as package substrates) of various structures have been proposed. Such package substrates are described, for example, in the literature (Proceedings of the Custom Ingredients).
Circuits Con7 x L'ance (Praceedi
ng af the GuStom Integrat
ed C1rcuits Conference)
, 1983, p.

142〜146)に開示されている。142-146).

このような従来のパッケージ基板は公知であるが以下、
11JtFiに説明する。
Such conventional package substrates are well known, but as follows:
11JtFi will explain.

先ず、基板として0.6〜1.0mmの厚さのセラミッ
ク基板、0.8〜1.6mmの厚さのテフロン(米国デ
ュポン社の商標名)樹脂基板又は0.8〜1.6mmの
厚さのガラスエポキシ基板を用い、コノ基板1にCr、
NiCr、Au、Cu等の中から所望とする材料を用い
て、外部接続端子、電源ライン及び高速信号を伝達する
ためのマイクロストリップ線路を含む配線バタンか形成
されている。又、必要に応じ、この基板には配線パタン
を形成した基板面から、この基板面とは反対側の而(裏
面と称する)に達するスルーホールが設けである。さら
に、この裏面には、一般に、前述したような金属薄膜か
らなるアースラインが形成されている。
First, as a substrate, a ceramic substrate with a thickness of 0.6 to 1.0 mm, a Teflon (trade name of DuPont, USA) resin substrate with a thickness of 0.8 to 1.6 mm, or a resin substrate with a thickness of 0.8 to 1.6 mm are used. Using a glass epoxy substrate, the substrate 1 is coated with Cr,
A wiring button including external connection terminals, a power supply line, and a microstrip line for transmitting high-speed signals is formed using a desired material such as NiCr, Au, or Cu. Further, if necessary, a through hole is provided in this substrate to reach the opposite side (referred to as the back surface) from the substrate surface on which the wiring pattern is formed. Further, on this back surface, generally, an earth line made of a metal thin film as described above is formed.

このような構造のパッケージ基板は通常、基板の補強と
デバイスからの熱の放熱を目的として、支持体に固定さ
れている。
A package substrate having such a structure is usually fixed to a support for the purpose of reinforcing the substrate and dissipating heat from the device.

マイクロストリップ線路(以F、線路と称することもあ
る)の特性インピーダンスZoは、文献(日本マイクロ
エレクトロニクス協会編「IC化実装技術J  (19
84−2−20)工業調査会p、202)に記載されて
いる式によれば、ZO= 377/(W/h) G r
 [Dl、735 εr 001’X(W/h) 0.
8361  (Ω)で与えられる。ここで、hは誘電体
基板の厚さくm)、 Wはマイクロストリップ線路の幅
(ffi)、(rは誘電体基板の誘電率をそれぞれ示す
。従って、特性インピーダンスZoは、誘電体の厚さが
厚くなる程、又、誘電体の誘電率が小さくなる程犬きく
なる。又、誘電体上に設けたマイクロストリップ線路の
線幅が狭くなる程、この線路の特性インピダンスは大き
くなる。従来のパッケージ基板では、用いている基板が
誘電体であり、その厚みが非常に厚いこと、実装密度の
制約により基板上に形成する線路の線幅をあまり広く出
来ないこととにより、マイクロストリップ線路の特性イ
ンピーダンスは200Ω以上となってしまう。
The characteristic impedance Zo of a microstrip line (hereinafter sometimes referred to as F line) can be found in the literature (edited by the Japan Microelectronics Association, "IC Mounting Technology J (19)
84-2-20) According to the formula described in Kogyo Kenkyukai p, 202), ZO=377/(W/h) G r
[Dl, 735 εr 001'X (W/h) 0.
It is given by 8361 (Ω). Here, h is the thickness of the dielectric substrate (m), W is the width of the microstrip line (ffi), and (r is the dielectric constant of the dielectric substrate. Therefore, the characteristic impedance Zo is the thickness of the dielectric The thicker the dielectric, and the smaller the permittivity of the dielectric, the higher the resistance becomes.Also, the narrower the line width of the microstrip line provided on the dielectric, the greater the characteristic impedance of this line. In package substrates, the substrate used is a dielectric material, which is very thick, and the line width formed on the substrate cannot be made very wide due to restrictions on mounting density, so the characteristics of the microstrip line are The impedance becomes 200Ω or more.

(発明が解決しようとする問題点) このような従来のマルチチップパッケージ基板に、超高
速信号を扱うガリウム砒素IC、シリコンバイポーラ素
子等の超高速デバイスを実装すると、これらのデバイス
に対してマイクロストリップ線路の特性インピーダンス
は負荷となる。高速信号を忠実に伝達するためには、信
号伝達に用いる線路の特性インピーダンスは50〜10
0Ωである必要がある。従って、従来の線路のようにそ
の特性インピーダンスが200Ω以丑もあると、デバイ
スと線路との間でインピーダンス不整合が生じる。この
ため、不整合部分での信号の反射による損失及び信号波
形の歪により信号の伝達が正確に行えないという問題点
があった。
(Problem to be solved by the invention) When ultra-high-speed devices such as gallium arsenide ICs that handle ultra-high-speed signals and silicon bipolar elements are mounted on such conventional multi-chip package substrates, microstrip The characteristic impedance of the line becomes a load. In order to faithfully transmit high-speed signals, the characteristic impedance of the line used for signal transmission must be between 50 and 10.
It needs to be 0Ω. Therefore, if the characteristic impedance of a conventional line is 200Ω or more, an impedance mismatch occurs between the device and the line. For this reason, there is a problem in that the signal cannot be accurately transmitted due to loss due to signal reflection at the mismatched portion and distortion of the signal waveform.

例えば、ガリウム砒素ICやシリコンバイポーラ素子で
は、これらIC及び素子が超高速用となるとそのデザイ
ンルールはIJLm以下となり、又、そのIC及び素子
内部の高速信号線の線幅も2〜4gmと微細になる。従
って、特性インピーダンスが50Ωのマイクロストリッ
プ線路を構成するためには、誘電体の誘電率にもよるが
、2〜4pmとした高速信号線の線幅と同様にgmオー
ダの線幅でマイクロストリップ線路を形成する必要があ
る。従来のパッケージ基板にこのように微細な線路を形
成したのでは、特性インピーダンス50Ωのマイクロス
トリップ線路の実現は不可能であった。
For example, in the case of gallium arsenide ICs and silicon bipolar devices, when these ICs and devices are used for ultra-high speeds, the design rules are less than IJLm, and the line widths of high-speed signal lines inside the ICs and devices are as fine as 2 to 4 gm. Become. Therefore, in order to construct a microstrip line with a characteristic impedance of 50Ω, it is necessary to create a microstrip line with a line width on the order of gm, similar to the line width of a high-speed signal line of 2 to 4 pm, depending on the permittivity of the dielectric material. need to be formed. By forming such fine lines on a conventional package substrate, it was impossible to realize a microstrip line with a characteristic impedance of 50Ω.

この発明の目的は、マルチチップパッケージ基板のマイ
クロストリップ線路の線幅を微細にしてもこの線路の特
性インピーダンスを50〜100Ωの低インピーダンス
とすることが出来る、マルチチップパッケージ基板を提
供することにある。
An object of the present invention is to provide a multi-chip package substrate that can maintain a low characteristic impedance of 50 to 100 Ω even if the line width of the microstrip line on the multi-chip package substrate is made fine. .

(問題点を解決するための手段) この目的の達成を図るため、この発明によれば、超高速
デバイス実装用のマルチチップパッケージ基板において
、 マルチチップパッケージは、導電性を有するように高濃
度に不純物添加されたシリコン基板と、このシリコン基
板の表面に形成したシリコン酸化膜又はシリコン窒化膜
と、このシリコン酸化膜又はシリコン窒化膜に設けたス
ルーホールと、このシリコン酸化膜又はシリコン窒化膜
に形成されマイクロストリップ線路を有する配線パタン
とを含むことを特徴とする。
(Means for Solving the Problems) In order to achieve this object, according to the present invention, in a multi-chip package substrate for ultra-high-speed device mounting, the multi-chip package is highly doped to have conductivity. A silicon substrate doped with impurities, a silicon oxide film or silicon nitride film formed on the surface of this silicon substrate, a through hole formed in this silicon oxide film or silicon nitride film, and a through hole formed in this silicon oxide film or silicon nitride film. and a wiring pattern having a microstrip line.

(作用) このような構成によれば、導電性を有するシリコン基板
がマルチチップパッケージ基板の基板として機能し、シ
リコン酸化膜又はシリコン窒化膜が誘−電体として機能
する。さらに、このシリコン酸化膜又はシリコン窒化膜
は非常に薄い膜厚で形成出来るため、配線パターンの下
地となる誘電体の厚みを非常に薄く出来る。
(Function) According to such a configuration, the conductive silicon substrate functions as the substrate of the multi-chip package substrate, and the silicon oxide film or silicon nitride film functions as the dielectric. Furthermore, since this silicon oxide film or silicon nitride film can be formed with a very thin film thickness, the thickness of the dielectric material underlying the wiring pattern can be made very thin.

(実施例) 以下、第1図及び第2図を参照して、この発明の一実施
例につき説明する。尚、これら図はこの発明が理解出来
る程度に概略的に示しであるにすぎずその形状、寸法及
び配置関係は図示例に限定されるものではない。
(Example) Hereinafter, an example of the present invention will be described with reference to FIGS. 1 and 2. It should be noted that these drawings are merely schematic illustrations to facilitate understanding of the present invention, and the shapes, dimensions, and arrangement relationships are not limited to the illustrated examples.

第1図はこの発明のマルチチップパッケージ基板tiの
一実施例を示す断面図である。この図を参照してこのパ
ッケージ基板11の構造につき説明する。
FIG. 1 is a sectional view showing an embodiment of the multi-chip package substrate ti of the present invention. The structure of this package substrate 11 will be explained with reference to this figure.

図において、13はキャリア濃度の高いp型シリコン基
板(n型でも勿論良い)を示し、この場合、基板を例え
ばアースラインとして用いる際にこの基板で高速信号の
損失が生じないよう、この基板の抵抗率が0.1Ω以下
となるように不純物を入れである。このシリコン基板1
3):には好適な手段により例えば1〜5μmの膜厚の
シリコン酸化71415が設けである。このシリコン酸
化M15上には従来と同様に好適な金属材料によりマイ
クロストリップ線路!7と、外部接続端子や電源ライン
等のマイクロストリップ線路より幅広の配線18とを含
む配線パタン21が設けである。さらに、このパッケー
ジ基板11は、接地インダクタンスを低減するため、シ
リコン酸化膜15の一部分を除去しシリコン基板13に
達するスルーホール23を有しており、必要に応じて、
所望とする回路部分をこのスルーホール23を経てシリ
コン基板13に接地出来る。
In the figure, reference numeral 13 indicates a p-type silicon substrate with a high carrier concentration (of course, an n-type silicon substrate is also acceptable). Impurities are added so that the resistivity is 0.1Ω or less. This silicon substrate 1
3): For example, silicon oxide 71415 with a thickness of 1 to 5 μm is provided by a suitable means. On this silicon oxide M15, a microstrip line is formed using a suitable metal material as before! 7, and a wiring pattern 21 including wiring 18 wider than the microstrip line such as an external connection terminal or a power supply line. Furthermore, this package substrate 11 has a through hole 23 that reaches the silicon substrate 13 by removing a portion of the silicon oxide film 15 in order to reduce grounding inductance.
A desired circuit portion can be grounded to the silicon substrate 13 through this through hole 23.

このような構造のパッケージ基板11では、シリフン酸
化II!15が誘電体となるため、従来のパッケージ基
板で用いられていたセラミック等の誘電体の厚さと比較
して、このシリコン酸化膜15からなる誘電体の厚さは
非常に薄い。
In the package substrate 11 having such a structure, silicon oxide II! Since 15 is a dielectric material, the thickness of the dielectric material made of silicon oxide film 15 is extremely thin compared to the thickness of dielectric materials such as ceramics used in conventional package substrates.

以下に、この発明のマルチチップパッケージ基板11の
製造方法につき説明する。
Below, a method for manufacturing the multi-chip package substrate 11 of the present invention will be explained.

先ず、シリコン酸化膜15の形成方法であるが、   
   1シリコン基板!3の表面に、例えば半導体製造
技術である気相成長法によりシリコン酸化膜15を形成
する。又は、シリコン基板表面に熱酸化処理を行って二
酸化シリコン層をシリコン基板13に形成しても良い。
First, regarding the method of forming the silicon oxide film 15,
1 silicon substrate! A silicon oxide film 15 is formed on the surface of the silicon oxide film 3 by, for example, vapor phase growth, which is a semiconductor manufacturing technique. Alternatively, a silicon dioxide layer may be formed on the silicon substrate 13 by performing thermal oxidation treatment on the surface of the silicon substrate.

このシリコン酸化膜15の膜厚は、この膜が絶縁膜とし
て良好な特性が得られる膜厚であること。
The thickness of this silicon oxide film 15 is such that this film has good characteristics as an insulating film.

さらに、このシリコン酸化膜15上に形成する配線パタ
ーン21、特に、実装密度の点から要求されるマイクロ
ストリップ線路の線幅と、この線路に要求される特性イ
ンピーダンスとを考慮して、適切な膜厚となるように形
成する。
Further, the wiring pattern 21 to be formed on the silicon oxide film 15, in particular, the line width of the microstrip line required from the viewpoint of packaging density and the characteristic impedance required for this line, are taken into consideration to select an appropriate film. Form it so that it is thick.

次に、フォトエツチング技術により、二のシリコン酸化
I+!15の所望とする個所にシリコン酸化膜15の表
面からシリコン基板13に達するスルホール23を形成
する。
Next, using photoetching technology, the second silicon oxide I+! A through hole 23 is formed at a desired location of the silicon oxide film 15 to reach the silicon substrate 13 from the surface of the silicon oxide film 15 .

次に、このシリコン酸化膜15及びスルーホール23に
より露出したシリコン基板13の部分上に真空蒸着法そ
の他好適な方法により、従来と同様なNiCr、Au等
の金属薄膜を形成する。続いて、この金属薄膜をフォト
エツチング技術等の好適な方法により加工を行い配線パ
タン21を形成する。
Next, on the silicon oxide film 15 and the portion of the silicon substrate 13 exposed by the through hole 23, a thin metal film of NiCr, Au, etc., similar to the conventional method, is formed by vacuum evaporation or other suitable method. Subsequently, this metal thin film is processed by a suitable method such as photoetching technique to form a wiring pattern 21.

この際、高速信号の伝達を行うマイクロストリップ線路
17の線幅は、この線路17の特性インピーダンスが5
0−100Ωの値となるような線幅に形成する。又、幅
広の配!ff119の線幅は各部分で要求される電流容
量及び電圧降下を考慮して決定し、外部接続端子部の大
きさはポンディング条件の制限から決定し、それぞれの
寸法に応じて形成する。
At this time, the line width of the microstrip line 17 that transmits high-speed signals is such that the characteristic impedance of this line 17 is 5.
The line width is formed to have a value of 0-100Ω. Also, the width is wide! The line width of the ff119 is determined in consideration of the current capacity and voltage drop required in each portion, and the size of the external connection terminal portion is determined based on the restrictions of the bonding conditions, and is formed according to the respective dimensions.

尚、この実施例で形成した酸化シ・リコン膜を窒化シリ
コン膜としても、この発明の効果の達成が出来る。この
場合の窒化シリコン膜の形成は気相成長法等の好適な方
法で行えば良い。
Note that the effects of the present invention can also be achieved by using a silicon nitride film instead of the silicon oxide film formed in this embodiment. In this case, the silicon nitride film may be formed by a suitable method such as a vapor phase growth method.

第2図はこの発明のマルチチップパッケージ基板11の
理解を深めるために、このパッケージ基板11に半導体
チップ25を実装した状態の一例を示す平面図である。
FIG. 2 is a plan view showing an example of a state in which a semiconductor chip 25 is mounted on the multi-chip package board 11 of the present invention in order to better understand the multi-chip package board 11 of the present invention.

マルチチップパッケージ基板11へ半導体チップ25を
実装する方法は、例えば従来から行われているフーリ、
ブチツブポンディング法により行えばよい。
The method for mounting the semiconductor chip 25 on the multi-chip package substrate 11 is, for example, the conventional Fouri method.
This may be done by the bump pounding method.

尚、このマルチチップパッケージ基板11には−個又は
複数個の超高速デバイスを実装出来ることは勿論である
。又、このマルチチップパッケージ基板は通常の半導体
デバイスの実装用基板として用いても好適である。
It goes without saying that one or more ultra-high-speed devices can be mounted on this multi-chip package substrate 11. This multi-chip package substrate is also suitable for use as a mounting substrate for ordinary semiconductor devices.

第3図は、超高速デバイスを実装したマルチチップパッ
ケージ基板11を、基板の補強とデバイスで発生する熱
の放熱とを目的として、アルミナ等で形成した支持体2
7に固定した状態を示す。この場合、マルチチップパッ
ケージ基板11を支持体27にダイポンディングした後
、パッケージ基板11に設けた外部接続端子部と支持体
27との間を金線29でワイヤポンディングした様子を
示す。この例の他に、例えば、端子を有するフレームに
、このマルチチップパンケージ基板11を固定した後、
樹脂モールドして支持する方法も考えられる。
FIG. 3 shows a support 2 made of alumina or the like for the purpose of reinforcing the board and dissipating heat generated by the device.
7 is shown. In this case, after the multi-chip package substrate 11 is die-bonded to the support body 27, wire bonding is performed using a gold wire 29 between the external connection terminal portion provided on the package substrate 11 and the support body 27. In addition to this example, for example, after fixing this multi-chip pan cage board 11 to a frame having terminals,
A method of supporting by resin molding is also considered.

(発明の効果) I      上述した説明からも明らかなように、こ
の発明のマルチチップパッケージ基板によれば、不純物
濃度の高いシリコン基板に非常に薄い膜厚の酸化シリコ
ン膜(又は窒化シリコン膜)を有しており、この酸化シ
リコン膜を誘電体としている。従って、従来のパッケー
ジ基板における誘電体の厚みが0.6〜1.6mmに対
してこの発明のパッケージ基板の誘電体の厚みは実施例
の値を引用しても1〜5μmと非常に薄い。このため、
この酸化シリコン膜上に形成するマイクロストリップ線
路の&1@を半導体チップ内部の微細配線の線@11−
1OJLと同程度にしても、このマイクロストリップ線
路の特性インピーダンスを50〜100Ωとすることが
出来る。
(Effects of the Invention) I As is clear from the above description, according to the multi-chip package substrate of the present invention, a very thin silicon oxide film (or silicon nitride film) is coated on a silicon substrate with a high impurity concentration. This silicon oxide film is used as a dielectric. Therefore, while the thickness of the dielectric in the conventional package substrate is 0.6 to 1.6 mm, the thickness of the dielectric in the package substrate of the present invention is extremely thin, at 1 to 5 μm, even if we quote the values of the embodiments. For this reason,
&1@ of the microstrip line formed on this silicon oxide film is connected to the fine wiring line @11- inside the semiconductor chip.
Even if it is about the same as 1 OJL, the characteristic impedance of this microstrip line can be set to 50 to 100 Ω.

又、シリコン基板に酸化シリコン膜又は窒化シリコン膜
を形成すること、酸化シリコン膜又は窒化シリコン膜に
スルーホール及び配線パタンを形成することは従来から
ある方法により容易に行える。又、基板として用いたシ
リコン基板はその表面加工等の信頼性は半導体技術で実
証されているため、その表面に形成する回路パターンは
微細なパターンの形成が可能である。
Furthermore, forming a silicon oxide film or a silicon nitride film on a silicon substrate, and forming through holes and wiring patterns in a silicon oxide film or a silicon nitride film can be easily performed using conventional methods. In addition, since the reliability of the surface processing of the silicon substrate used as the substrate has been proven by semiconductor technology, it is possible to form a fine circuit pattern on the surface of the silicon substrate.

これがため、低い特性インピーダンスを有し。Because of this, it has a low characteristic impedance.

かつ、実装密度の高いマルチチップパッケージ基板を容
易に提供出来る。
Moreover, a multi-chip package substrate with high packaging density can be easily provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明のマルチチップパッケージ基板の一実
施例を示す断面図、 第2図はこの発明のマルチチップパッケージ基板に半導
体チップを実装した状態を示す平面図、第3図はこの発
明のマルチチップパッケージ基板を支持体に実装した状
態を示す断面図である。 11・・・マルチチップパッケージ基板13・・・導電
性を有するンリコン基板15・・・シリコン酸化膜 17・・・マイクロストリップ線路 19・・・幅広の配線 21・・・配線バタン 23・・・スル−ホール 25・・・超高速デバイス(半導体チップ)27・・・
支持体 29・・・金線。
Fig. 1 is a cross-sectional view showing an embodiment of the multi-chip package board of the present invention, Fig. 2 is a plan view showing a state in which semiconductor chips are mounted on the multi-chip package board of the invention, and Fig. 3 is a cross-sectional view showing an embodiment of the multi-chip package board of the present invention. FIG. 3 is a cross-sectional view showing a multi-chip package substrate mounted on a support body. 11...Multi-chip package substrate 13...Conductive silicon substrate 15...Silicon oxide film 17...Microstrip line 19...Wide wiring 21...Wiring button 23...Thru -Hall 25...Ultra high speed device (semiconductor chip) 27...
Support body 29...gold wire.

Claims (1)

【特許請求の範囲】[Claims] (1)半導体チップ実装用のマルチチップパッケージ基
板において、 導電性を有するように高濃度に不純物添加されたシリコ
ン基板と、該シリコン基板の表面に形成したシリコン酸
化膜又はシリコン窒化膜と、該シリコン酸化膜又はシリ
コン窒化膜に設けたスルーホールと、該シリコン酸化膜
又はシリコン窒化膜に形成されマイクロストリップ線路
を有する配線パタンとを含む ことを特徴とするマルチチップパッケージ基板。
(1) A multi-chip package substrate for semiconductor chip mounting includes a silicon substrate doped with impurities at a high concentration so as to have conductivity, a silicon oxide film or silicon nitride film formed on the surface of the silicon substrate, and the silicon substrate. A multi-chip package substrate comprising a through hole provided in an oxide film or a silicon nitride film, and a wiring pattern formed in the silicon oxide film or silicon nitride film and having a microstrip line.
JP60154515A 1985-07-13 1985-07-13 Multi-chip package substrate Granted JPS6215850A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60154515A JPS6215850A (en) 1985-07-13 1985-07-13 Multi-chip package substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60154515A JPS6215850A (en) 1985-07-13 1985-07-13 Multi-chip package substrate

Publications (2)

Publication Number Publication Date
JPS6215850A true JPS6215850A (en) 1987-01-24
JPH0464467B2 JPH0464467B2 (en) 1992-10-15

Family

ID=15585939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60154515A Granted JPS6215850A (en) 1985-07-13 1985-07-13 Multi-chip package substrate

Country Status (1)

Country Link
JP (1) JPS6215850A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03131056A (en) * 1989-10-17 1991-06-04 Toshiba Corp Resin-sealed semiconductor device
EP0685857A1 (en) * 1994-06-03 1995-12-06 Plessey Semiconductors Limited Inductor chip device
US5747870A (en) * 1994-06-30 1998-05-05 Plessey Semiconductors Limited Multi-chip module inductor structure
US6444499B1 (en) * 2000-03-30 2002-09-03 Amkor Technology, Inc. Method for fabricating a snapable multi-package array substrate, snapable multi-package array and snapable packaged electronic components

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03131056A (en) * 1989-10-17 1991-06-04 Toshiba Corp Resin-sealed semiconductor device
EP0685857A1 (en) * 1994-06-03 1995-12-06 Plessey Semiconductors Limited Inductor chip device
US5747870A (en) * 1994-06-30 1998-05-05 Plessey Semiconductors Limited Multi-chip module inductor structure
US6444499B1 (en) * 2000-03-30 2002-09-03 Amkor Technology, Inc. Method for fabricating a snapable multi-package array substrate, snapable multi-package array and snapable packaged electronic components

Also Published As

Publication number Publication date
JPH0464467B2 (en) 1992-10-15

Similar Documents

Publication Publication Date Title
JP3267409B2 (en) Semiconductor integrated circuit device
US5463246A (en) Large scale high density semiconductor apparatus
US6380048B1 (en) Die paddle enhancement for exposed pad in semiconductor packaging
US6759599B2 (en) Circuit board, method for manufacturing same, and high-output module
JPH04336702A (en) Package
US4833521A (en) Means for reducing signal propagation losses in very large scale integrated circuits
JPH0766949B2 (en) IC package
JP2001110942A (en) Constant impedance line of high-performance integrated circuit package
US6507110B1 (en) Microwave device and method for making same
JPS60161641A (en) Circuit package and method of producing same
US5571740A (en) Method of making a capped modular microwave integrated circuit
JP3674780B2 (en) High frequency semiconductor device
JP4010881B2 (en) Semiconductor module structure
US20030006500A1 (en) Circuit board, method for manufacturing same, and high-output module
JPS6215850A (en) Multi-chip package substrate
JP2002009193A (en) Semiconductor device
JPH09213730A (en) High-frequency module substrate and high-frequency power amplification module having it
JP2005209770A (en) Semiconductor device
GB2160707A (en) Integrated circuit package
JPS63271944A (en) Semiconductor device
JP2982441B2 (en) Microwave monolithic integrated circuit
KR100645655B1 (en) Device for connecting an ic terminal to a reference potential
JPS6215849A (en) Multi-chip package substrate
JPH0126109Y2 (en)
JPS6348129Y2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term