JPS62157870A - Power steering device for vehicle - Google Patents

Power steering device for vehicle

Info

Publication number
JPS62157870A
JPS62157870A JP29954685A JP29954685A JPS62157870A JP S62157870 A JPS62157870 A JP S62157870A JP 29954685 A JP29954685 A JP 29954685A JP 29954685 A JP29954685 A JP 29954685A JP S62157870 A JPS62157870 A JP S62157870A
Authority
JP
Japan
Prior art keywords
steering
force
reaction force
control
steering shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29954685A
Other languages
Japanese (ja)
Inventor
Hiroyuki Ikemoto
池本 浩之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP29954685A priority Critical patent/JPS62157870A/en
Publication of JPS62157870A publication Critical patent/JPS62157870A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D7/00Steering linkage; Stub axles or their mountings
    • B62D7/06Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins
    • B62D7/14Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering
    • B62D7/15Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering characterised by means varying the ratio between the steering angles of the steered wheels
    • B62D7/159Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering characterised by means varying the ratio between the steering angles of the steered wheels characterised by computing methods or stabilisation processes or systems, e.g. responding to yaw rate, lateral wind, load, road condition

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Steering Mechanism (AREA)
  • Steering-Linkage Mechanisms And Four-Wheel Steering (AREA)

Abstract

PURPOSE:To improve steering stability of a vehicle, by compounding the first control quantity on the basis of steering force with the second control quantity on the basis of steering reaction force and obtaining a steering shaft rotation control signal which controls a steering shaft actuator rotating a steering shaft to be driven. CONSTITUTION:A device is equipped with the first control quantity determining means 9 which determines the first control quantity controlling rotation of a steering shaft 3 on the basis of an output of a steering force sensor 6. While the device is equipped with the second control quantity determining means 11 which determines the second control quantity rotating the steering shaft 3 in the resetting direction on the basis of a steering reaction force detection signal removing a component in a high frequency region from the output of a steering reaction force sensor 7 by a high frequency component removing means 10. And a steering shaft rotation control signal, being obtained by compounding the first and second control quantities by a steering shaft rotation control signal output means 12, controls a steering shaft actuator 4. While a target steering quantity is determined in a target steering quantity determining means 13 on the basis of an output from a steering displacement quantity sensor 8, and a steered wheel 2 is steered by a steering control means 5 in accordance with the value of said target steering quantity.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、操舵ハンドルの回動に応じて操向車輪を転舵
する車両用舵取装置に係り、特に操舵ハンドルに結合し
た操舵軸と操向車輪を転舵する転舵機構を機械的に分離
してそれらの連係を電気的制御装置で置換するようにし
た車両用動力舵取装置に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a steering device for a vehicle that steers steering wheels in accordance with the rotation of a steering wheel, and particularly relates to a steering shaft connected to a steering wheel. The present invention relates to a power steering system for a vehicle in which a steering mechanism for steering steering wheels is mechanically separated and the linkage thereof is replaced by an electrical control device.

〔従来技術〕[Prior art]

従来、この種の技術は、実開昭51−19428号公報
及び実開昭56−42469号公報に示されるように、
操舵軸の回転角を電気的に検出する角度センサと、検出
角度信号によって操向車輪転舵機構の転舵角を電気的に
制御する電気制御装置を設け、操向車輪を操舵ハンドル
の回動に応じて転舵するようにして、操舵軸と操向車輪
転舵機構とを機械的に連結する連結機構をなくしかつ連
結機構の配設に必要な空間を有効に利用するようにして
いる。
Conventionally, this type of technology has been disclosed in Japanese Utility Model Application Publication No. 51-19428 and Japanese Utility Model Application Publication No. 56-42469,
An angle sensor that electrically detects the rotation angle of the steering shaft and an electric control device that electrically controls the steering angle of the steering wheel steering mechanism based on the detected angle signal are installed, and the steering wheel is controlled by the rotation of the steering wheel. This eliminates the need for a coupling mechanism that mechanically connects the steering shaft and the steering wheel turning mechanism, and makes effective use of the space required for disposing the coupling mechanism.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかるに、上記従来の装置にあっては、上記連結機構を
単に操向車輪転舵機構の転舵角と操舵軸の回転角の一致
制御を行う電気制御装置で置換したために、操向車輪が
路面から受ける路面反力が操舵ハンドルに伝達されなく
なるので、操向車輪から操舵ハンドルに適切な操舵反力
、保舵反力及び操舵ハンドルの復元力が逆送されなくな
って車両の操安性が悪くなる。そこで、本出願人は下記
の特許出願において、操舵ハンドルに付与される操舵力
及び操向車輪が路面から受ける転舵反力に基き相互の力
が均合う位置にて停止するように操舵軸の回動を制御し
、かつ操舵軸の回動位置に応じて操向車輪の転舵角を制
御することによって、操舵ハンドルの回動に応じて操向
車輪を転舵しかつ操向車輪からの転舵反力に応じた操舵
反力、保舵反力及び操舵ハンドルの復元力が操舵ハンド
ルに発生するようにした車両用動力舵取装置を提案した
However, in the conventional device described above, the coupling mechanism is simply replaced with an electric control device that controls the steering angle of the steering wheel steering mechanism to match the rotation angle of the steering shaft. Since the road reaction force received from the steering wheel is no longer transmitted to the steering wheel, the appropriate steering reaction force, steering reaction force, and restoring force of the steering wheel are not transmitted from the steering wheel to the steering wheel, resulting in poor vehicle steering performance. Become. Therefore, in the following patent application, the present applicant has proposed that the steering shaft be stopped at a position where the mutual forces are balanced based on the steering force applied to the steering wheel and the steering reaction force that the steering wheel receives from the road surface. By controlling the rotation and the turning angle of the steering wheels according to the rotation position of the steering shaft, the steering wheels can be turned according to the rotation of the steering wheel, and the steering wheels can be turned in accordance with the rotation of the steering wheel. We have proposed a power steering system for a vehicle in which a steering reaction force, a steering reaction force, and a restoring force of the steering wheel are generated in the steering wheel according to the turning reaction force.

特願昭60−133483号 特願昭60−152831号 特願昭60−178782号 特願昭60−186498号 しかしながら、上記提案装置においては、路面から操向
車輪に伝達される全ての力が転舵反力として検出され、
該検出転舵反力に基づく力が操舵ハンドルに付与される
ので、当該車両が路面に凹凸のある道路を中高速にて走
行し、運転者が反応できないような速さで変化する力が
路面から操向車輪に伝達されると、操舵ハンドルにも前
記速さで変化する力が付与されることになる。その結果
、運転者はこの力に反応して操舵ハンドルを操作できず
、操舵ハンドルは運転者の怠に反して回動され、それに
伴って操向車輪も運転者の意に反して転舵されるので、
当該車両の操安性が悪化する。
Japanese Patent Application No. 60-133483 No. 152831 No. 60-178782 No. 186498 No. 1987 However, in the above proposed device, all the force transmitted from the road surface to the steering wheels is transferred. Detected as rudder reaction force,
A force based on the detected steering reaction force is applied to the steering wheel, so when the vehicle is traveling at a medium to high speed on a road with uneven road surfaces, the force that changes at a speed that the driver cannot react is applied to the road surface. When the force is transmitted from the force to the steering wheel, a force that changes at the speed described above is also applied to the steering wheel. As a result, the driver cannot operate the steering wheel in response to this force, the steering wheel is turned against the driver's inaction, and the steering wheels are accordingly turned against the driver's will. Because
The handling stability of the vehicle deteriorates.

すなわち、上記提案装置は、上記従来装置に比べて運転
者が路面から操向車輪に伝達される転舵反力を感じなが
ら操舵ハンドルを操作できる利点を有するが、その反面
運転者が反応できないような速さで変化する力が路面か
ら操向車輪に伝達された場合には当該車両の操安性が悪
化するという欠点がある。
That is, the proposed device has an advantage over the conventional device in that the driver can operate the steering wheel while feeling the steering reaction force transmitted from the road surface to the steered wheels. When a force that changes at a fast speed is transmitted from the road surface to the steering wheel, there is a drawback that the steering stability of the vehicle deteriorates.

本発明は、上記利点を害することなく、上記欠点を改善
して、運転者が反応できないような速さで変化する力が
路面から操向車輪に伝達された場合でも当該車両の操安
性を良好に保つようにした車両用動力舵取装置を提供し
ようとするものである。
The present invention improves the above-mentioned disadvantages without detracting from the above-mentioned advantages, and improves the steering stability of the vehicle even when forces that change at such a speed that the driver cannot react are transmitted from the road surface to the steered wheels. It is an object of the present invention to provide a power steering device for a vehicle that is maintained in good condition.

〔問題点を解決するための手段〕[Means for solving problems]

かかる問題の解決にあたり、本発明の構成上の特徴は第
1図に示すように、操舵ハンドル1の回動に応じて操向
車輪2を転舵する車両用舵取装置において、操舵ハンド
ル1に結合した操舵軸3と、該操舵軸3を回転駆動する
操舵軸アクチュエータ4と、操向車輪2に結合され同車
輪2を転舵する転舵制御手段5と、操舵ハンドル1から
前記操舵軸3に付与される操舵力を検出して該検出操舵
力を表す操舵力検出信号を出力する操舵力センサ6と、
操向車輪2から前記転舵制御手段5に付与される転舵反
力を検出して該検出転舵反力を表ず転舵反力検出信号を
出力する転舵反力センサ7と、前記操舵軸3の基準位置
からの回転角を操舵変位量として検出して該検出操舵変
位量を表す操舵変位量検出信号を出力する操舵変位量セ
ンサ8と、前記操舵力検出信号に基づいて前記検出操舵
力の増加に応じて増加しかつ前記操舵軸3を操舵力の付
与される方向へ回転させる第1制御量を決定する第1制
御量決定手段9と、前記転舵反力検出信号に含まれる周
波数成分のうち高い周波数領域にある周波数成分を除去
する高域成分除去手段10と、咳高域成分除去手段10
により高い周波数領域にある成分の除去された前記転舵
反力検出信号に基づいて前記検出転舵反力の増加に応じ
て増加しかつ前記操舵軸3を前記基準位置に復帰させる
方向へ回転させる第2制御量を決定する第2制御量決定
手段11と、前記第1制御量及び第2制御量を合成した
操舵軸回転制御信号を前記操舵軸アクチュエータ4に出
力して前記操舵軸3の回転を制御する操舵軸回転制御信
号出力手段12と、前記操舵変位量検出信号に基づいて
前記検出操舵変位量の増加に応じて増加しかつ操舵ハン
ドル1の操舵方向と対応する方向に操向車輪2を転舵す
る目標転舵量を決定する目標転舵量決定手段13と、前
記決定目標転舵量に応じた転舵制御信号を前記転舵制御
手段5に出力して、操向車輪2の転舵量が前記決定目標
転舵量になるように前記転舵制?]■手段5を制御する
転舵制御信号出力手段14とを備えたことにある。
In order to solve this problem, the structural feature of the present invention is as shown in FIG. A coupled steering shaft 3, a steering shaft actuator 4 that rotationally drives the steering shaft 3, a steering control means 5 that is coupled to the steering wheel 2 and steers the wheel 2, and a steering shaft actuator 4 that rotates the steering shaft 3, a steering control means 5 that is coupled to the steering wheel 2 and steers the wheel 2, and a steering shaft actuator 4 that rotates the steering shaft 3. a steering force sensor 6 that detects the steering force applied to the steering force and outputs a steering force detection signal representing the detected steering force;
a steering reaction force sensor 7 that detects the steering reaction force applied to the steering control means 5 from the steering wheel 2 and outputs a steering reaction force detection signal without indicating the detected steering reaction force; a steering displacement amount sensor 8 that detects the rotation angle of the steering shaft 3 from a reference position as a steering displacement amount and outputs a steering displacement amount detection signal representing the detected steering displacement amount; a first control amount determining means 9 for determining a first control amount that increases in accordance with an increase in steering force and rotates the steering shaft 3 in the direction in which the steering force is applied; a high-frequency component removing means 10 for removing frequency components in a high frequency region from among the frequency components to be detected; and a cough high-frequency component removing means 10.
Based on the turning reaction force detection signal from which components in a higher frequency range have been removed, the steering shaft 3 is rotated in a direction in which the steering shaft 3 is increased in accordance with an increase in the detected turning reaction force and returns the steering shaft 3 to the reference position. a second control amount determination means 11 that determines a second control amount; and outputs a steering shaft rotation control signal, which is a combination of the first control amount and the second control amount, to the steering shaft actuator 4 to rotate the steering shaft 3. and a steering shaft rotation control signal output means 12 for controlling the steering wheel 2, which increases in accordance with an increase in the detected steering displacement amount based on the steering displacement amount detection signal and in a direction corresponding to the steering direction of the steering handle 1. and outputs a steering control signal corresponding to the determined target steering amount to the steering control means 5 to determine a target steering amount for steering the steered wheels 2. Is the steering control so that the amount of steering becomes the determined target amount of steering? ] (2) A steering control signal output means 14 for controlling the means 5 is provided.

〔発明の作用〕[Action of the invention]

上記のように構成した本発明においては、運転者が車両
を旋回させるために操舵ハンドル1を回動しようとする
と、操舵ハンドルlに結合した操舵軸2には操舵ハンド
ル1から操舵力が伝達される。操舵力センサ6はこの操
舵力を検出して操舵力検出信号を出力し、この操舵力検
出信号に基づいて第1制御量決定手殴9が操舵軸3を操
舵力の付与される方向に回転させる第1制御量を決定し
、この第1制御量により操舵軸回転制御信号出力手段1
2が操舵軸アクチュエータ4に操舵軸回転制御信号を出
力して、操舵軸アクチュエータ4が操舵軸3を操舵力の
付与される方向に回転させる。
In the present invention configured as described above, when the driver attempts to turn the steering wheel 1 to turn the vehicle, the steering force is transmitted from the steering wheel 1 to the steering shaft 2 coupled to the steering wheel l. Ru. The steering force sensor 6 detects this steering force and outputs a steering force detection signal, and based on this steering force detection signal, the first control amount determining hand 9 rotates the steering shaft 3 in the direction in which the steering force is applied. The first control amount is used to control the steering shaft rotation control signal output means 1.
2 outputs a steering shaft rotation control signal to the steering shaft actuator 4, and the steering shaft actuator 4 rotates the steering shaft 3 in the direction in which the steering force is applied.

この操舵軸3の基準位置からの回転角を操舵変位量とし
て操舵変位量センサ8が検出して操舵変位量検出信号を
出力し、この操舵変位量検出信号に基づいて目標転舵量
決定手段13、転舵制御信号出力手段14及び転舵制御
手段5が操向車輪2を転舵するので、操向車輪2は操舵
ハンドル1の回ill操作に応じて転舵される。このと
き、操向車輪2は路面から転舵方向とは逆方向の転舵反
力を受ける。転舵反力センサ7はこの転舵反力を検出し
て転舵反力検出信号を出力し、高域成分除去手段lOが
この転舵反力検出信号に含まれる周波数成分のうち、高
い周波数領域にある周波数成分を除去する。この高い周
波数成分の除去された転舵反力検出信号に基づいて第2
制御量決定手段11が操舵軸3を基準位置に復帰させる
方向に回転させるための第2制御量を決定し、操舵軸回
転制御信号出力手段12が操舵軸3を互いに逆方向に回
転させる第1制御量及び第2制御量を合成した操舵軸回
転制御信号を操舵軸アクチュエータ4に出力するので、
操舵軸アクチュエータ4は、第1制御量と第2制御量が
一致するように操舵軸3の回転を制御する。これにより
、操舵軸回転制御信号出力手段12及び操舵軸アクチュ
エータ4は、第1制御量が第2制御量より大きいときそ
れらの差に応じた力で操舵軸3を操舵力の付与される方
向に回転させ、第1制御量が第2制御量より小さいとき
それらの差に応じた力で、操舵軸3を基準位置に復帰さ
せる方向に回転させ、第1制御量が第2制御量に等しい
とき操舵軸3を静止させる。
The steering displacement amount sensor 8 detects the rotation angle of the steering shaft 3 from the reference position as the amount of steering displacement, outputs a steering displacement amount detection signal, and based on this steering displacement amount detection signal, the target turning amount determining means 13 Since the steering control signal output means 14 and the steering control means 5 steer the steering wheel 2, the steering wheel 2 is steered in accordance with the turning operation of the steering handle 1. At this time, the steering wheels 2 receive a steering reaction force from the road surface in a direction opposite to the steering direction. The steering reaction force sensor 7 detects this steering reaction force and outputs a steering reaction force detection signal, and the high-frequency component removing means lO detects a high frequency among the frequency components included in this steering reaction force detection signal. Remove frequency components in the region. Based on this steering reaction force detection signal from which high frequency components have been removed, the second
The control amount determining means 11 determines a second control amount for rotating the steering shaft 3 in a direction to return it to the reference position, and the steering shaft rotation control signal output means 12 determines a first control amount for rotating the steering shaft 3 in opposite directions. Since the steering shaft rotation control signal which is a combination of the control amount and the second control amount is output to the steering shaft actuator 4,
The steering shaft actuator 4 controls the rotation of the steering shaft 3 so that the first control amount and the second control amount match. As a result, when the first control amount is larger than the second control amount, the steering shaft rotation control signal output means 12 and the steering shaft actuator 4 move the steering shaft 3 in the direction in which the steering force is applied with a force corresponding to the difference between them. When the first controlled variable is smaller than the second controlled variable, the steering shaft 3 is rotated in a direction that returns the steering shaft 3 to the reference position with a force corresponding to the difference between them, and when the first controlled variable is equal to the second controlled variable. The steering shaft 3 is made stationary.

〔発明の効果〕〔Effect of the invention〕

このように、転舵反力に基づく第2制御量が操舵力に基
づく第1制御量に対して際舵@3を際舵力の付与される
方向とは逆方向に回転させるように作用するので、操舵
軸3に連結した操舵ハンドル1には操向車輪2が路面か
ら受ける転舵反力に応じた操舵反力、保舵反力及び操舵
ハンドル1の復元力が発生することになり、運転者はこ
れらの力を操舵感覚として感じながら当該車両を運転で
きるので当該車両の操安性が向上する。
In this way, the second control amount based on the steering reaction force acts on the first control amount based on the steering force so as to rotate the steering wheel @3 in the opposite direction to the direction in which the steering force is applied. Therefore, a steering reaction force, a steering reaction force, and a restoring force of the steering handle 1 corresponding to the turning reaction force that the steering wheel 2 receives from the road surface are generated on the steering handle 1 connected to the steering shaft 3. Since the driver can drive the vehicle while feeling these forces as a steering sensation, the steering stability of the vehicle is improved.

また、高域成分除去手段10が転舵反力検出信号に含ま
れる高い周波数領域の周波数成分を除去するので、これ
らの周波数成分の発生の原因となる運転者が反応できな
いような速さで変化する転舵反力が第2制御量には客響
しなくなり、操舵ハンドル1には前記のような速さで変
化する転舵反力が伝達されなくなる。これにより、操舵
ハンドル1が運転者の怠に反して回動されることがなく
なると同時に、操向車輪2も運転者の意に反して転舵さ
れることがなくなるので、上記提案装置を採用した車両
、及び壕向車輪と操舵ハンドルとを機械的に連結して全
ての転舵反力が操舵ハンドルに伝達されるような既存の
車両に比べ、当該車両の操安性が向上する。
Furthermore, since the high-frequency component removing means 10 removes the frequency components in the high frequency range included in the steering reaction force detection signal, the changes occur at such a speed that the driver cannot react, which is the cause of the generation of these frequency components. The steering reaction force that changes at such a speed no longer affects the second control amount, and the steering reaction force that changes at the above-mentioned speed is no longer transmitted to the steering wheel 1. This prevents the steering wheel 1 from being turned against the driver's negligence, and at the same time prevents the steering wheel 2 from being turned against the driver's will, so the proposed device is adopted. The steering stability of the vehicle is improved compared to existing vehicles in which the steering wheel is mechanically connected to the steering wheel so that all the steering reaction force is transmitted to the steering wheel.

〔実施例〕〔Example〕

a、基本構成 以下、本発明に係る車両用動力舵取装置により左右前後
輪を全て独立に転舵するようにした本発明の一実施例の
基本構成を図面を用いて説明する。
a. Basic Configuration The basic configuration of an embodiment of the present invention in which the left and right front and rear wheels are all independently steered by the vehicle power steering device according to the present invention will be described below with reference to the drawings.

第2図は、運転者が操作するマスク部Aと、左前輪を転
舵する第1スレーブ部B1と、右前輪を転舵する第2ス
レーブ部B2と、左後輪を転舵する第3スレーブ部B3
と、右後輪を転舵する第4スレーブ部B4と、マスク部
A、第1スレーブ部B1乃至第4スレーブ部B4を電気
的に制御する電気制御装置Cから成る車両用動力舵取装
置の概略を示している。
FIG. 2 shows a mask part A operated by the driver, a first slave part B1 that steers the left front wheel, a second slave part B2 that steers the right front wheel, and a third slave part B2 that steers the left rear wheel. Slave part B3
A power steering system for a vehicle is comprised of a fourth slave section B4 that steers the right rear wheel, and an electric control device C that electrically controls the mask section A and the first slave section B1 to fourth slave section B4. An outline is shown.

マスク部Aは、操舵ハンドル20に固着された操舵軸2
1と、同軸21の下端に設けられ操舵軸21を回転駆動
する操舵軸モータ22とを備え、操舵軸21には、操舵
軸モータ22による同軸21の基準位置からの回転角を
検出し同回転角に比例した操舵変位量Ymを表わす信号
を発生する操舵変位量センサ23と、操舵ハンドル20
から操舵軸21に付与される操舵力Fmに比例して同軸
21に発生する捩れ量を検出する歪みゲージより成り、
操舵力Fmを表す信号を発生する操舵力センサ24が取
付けられている。なお、この場合、操舵ハンドル20及
び操舵軸21が左(又は右)回転したとき、操舵力Fm
及び深舵変位fil Y mは各々正(又は負)となる
The mask portion A is connected to the steering shaft 2 fixed to the steering handle 20.
1, and a steering shaft motor 22 which is provided at the lower end of the coaxial shaft 21 and rotates the steering shaft 21. A steering displacement amount sensor 23 that generates a signal representing a steering displacement amount Ym proportional to the angle, and a steering handle 20
It consists of a strain gauge that detects the amount of torsion generated in the steering shaft 21 in proportion to the steering force Fm applied to the steering shaft 21 from
A steering force sensor 24 is attached that generates a signal representing the steering force Fm. In this case, when the steering wheel 20 and the steering shaft 21 rotate to the left (or right), the steering force Fm
and deep rudder displacement fil Y m are each positive (or negative).

第1スレーブ部Blは、電気制御装置Cにより回転制御
される左前輪転舵軸モータ30と、同モータ30により
一端が結合され他端にピニオン31を有する左前輪転舵
軸32と、ピニオン31に噛合して左前輪33を転舵制
御するランク軸34を備えている。ラック軸34は、タ
イロッド35及びナックルアーム36を介して左前輪3
3に接続されて、同軸34の車体横方向への往復運動に
より、左前輪33を転舵する。左前輪転舵軸32には、
左前輪転舵軸モータ30による同軸32の基準位置から
の回転角を検出して同回転角に比例した左前輪転舵変位
量Ysflを表す信号を発生する左前輪転舵変位量セン
サ37と、左前輪33から左前輪転舵軸32に付与され
る左前輪転舵反力Fsflに比例して左前輪転舵軸32
に発生する捩れ量を検出する歪みゲージより成り、左前
輪転舵反力Fsflを表す信号を発生する左前輪転舵反
力センサ38が取付けられている。
The first slave section Bl is engaged with a left front wheel steering shaft motor 30 whose rotation is controlled by an electric control device C, a left front wheel steering shaft 32 connected at one end by the motor 30 and having a pinion 31 at the other end, and the pinion 31. A rank shaft 34 is provided to control the steering of the left front wheel 33. The rack shaft 34 connects to the left front wheel 3 via a tie rod 35 and a knuckle arm 36.
3, and the left front wheel 33 is steered by the reciprocating motion of the coaxial shaft 34 in the lateral direction of the vehicle body. The left front wheel steering shaft 32 includes
a left front wheel steering displacement amount sensor 37 that detects the rotation angle of the coaxial shaft 32 from a reference position by the left front wheel steering shaft motor 30 and generates a signal representing a left front wheel steering displacement amount Ysfl proportional to the rotation angle; and a left front wheel 33 The left front wheel steering shaft 32 is proportional to the left front wheel steering reaction force Fsfl applied to the left front wheel steering shaft 32 from
A left front wheel steering reaction force sensor 38 is installed, which is made up of a strain gauge that detects the amount of twist occurring in the steering wheel, and generates a signal representing the left front wheel steering reaction force Fsfl.

第2スレーブ部B2は、第1スレーブ部B1と同様に構
成され、第1スレーブ部B1の各構成要素に各々対応す
る右前輪転舵軸モータ40、ピニオン41、右前輪転舵
軸42、右前輪43、ラック軸44、タイロッド45、
ナックルアーム46、右前輪転舵変位量センサ47及び
右前輪転舵反力センサ48を備えている。右前輪転舵変
位量センサ47は右前輪転舵軸42の基準位置からの回
転角に比例した右前輪転舵変位量Ysf2を表す信号を
発生し、右前輪転舵反力センサ48は右前輪転舵軸42
に付与される右前輪転舵反力FS「2を表す信号を発生
する。
The second slave part B2 is configured in the same manner as the first slave part B1, and has a right front wheel steering shaft motor 40, a pinion 41, a right front wheel steering shaft 42, and a right front wheel 43, which correspond to each component of the first slave part B1. , rack shaft 44, tie rod 45,
It includes a knuckle arm 46, a front right wheel steering displacement sensor 47, and a front right wheel steering reaction force sensor 48. The right front wheel steering displacement amount sensor 47 generates a signal representing the right front wheel steering displacement amount Ysf2 proportional to the rotation angle of the right front wheel steering shaft 42 from the reference position, and the right front wheel steering reaction force sensor 48 generates a signal representing the right front wheel steering displacement amount Ysf2 proportional to the rotation angle of the right front wheel steering shaft 42 from the reference position.
A signal representing the front right wheel steering reaction force FS "2" is generated.

また、第3スレーブ部B3及び第4スレーブ部B4も、
第1スレーブ部B1と同様に構成され、第1スレーブ部
B1の各構成要素に各々対応する左右後輪転舵軸モータ
50,60、ピニオン51゜61、左右後輪転舵軸52
,62、左右後輪53゜63、ラック軸54,64、ク
イロッド55,65、ナックルアーム56,66、左右
後輪転舵変位量センサ57,67及び左右後輪転舵反力
センサ58.68を備えている。左右後輪転舵変位量セ
ンサ57.67は各々左右後輪転舵軸52,62の基準
位置からの回転角に比例した左右後輪転舵変位量Ysr
l、Ysr2を表す信号を発生し、左右後輪転舵反力セ
ンサ58,68は各々左右後輪転舵軸52,62に付与
される左右後輪転舵反力Fsrl、Fsr2を表す信号
を発生する。
In addition, the third slave section B3 and the fourth slave section B4 are also
Left and right rear wheel steering shaft motors 50, 60, pinions 51° 61, and left and right rear wheel steering shafts 52, which are configured similarly to the first slave section B1 and correspond to each component of the first slave section B1, respectively.
, 62, left and right rear wheels 53° 63, rack shafts 54, 64, quirods 55, 65, knuckle arms 56, 66, left and right rear wheel steering displacement amount sensors 57, 67, and left and right rear wheel steering reaction force sensors 58, 68. ing. The left and right rear wheel steering displacement amount sensors 57 and 67 measure the left and right rear wheel steering displacement amount Ysr proportional to the rotation angle from the reference position of the left and right rear wheel steering shafts 52 and 62, respectively.
The left and right rear wheel steering reaction force sensors 58 and 68 generate signals representing left and right rear wheel steering reaction forces Fsrl and Fsr2 applied to the left and right rear wheel steering shafts 52 and 62, respectively.

なお、これらの場合、各転舵軸32,42,52.62
が右(又は左)回転し、各ラック軸34゜44.54.
64が左(又は右)方向に変位して。
In addition, in these cases, each steering shaft 32, 42, 52.62
rotates to the right (or left), and each rack axis rotates 34°44.54.
64 is displaced in the left (or right) direction.

各々車輪33.43,53.63が左(又は右)方向に
転舵されたとき、各転舵変位量Ysfl。
When each wheel 33.43, 53.63 is steered in the left (or right) direction, each steering displacement amount Ysfl.

Ysf2.Ysrl、Ysr’l及び各転舵反力Fsf
l、Fsf2.Fsrl、Fsr2は各々正(又は負)
となる。
Ysf2. Ysrl, Ysr'l and each steering reaction force Fsf
l, Fsf2. Fsrl and Fsr2 are each positive (or negative)
becomes.

電気制御装置Cは、操舵変位量センサ23に接続されて
操舵変位量Ymに各係数Kmpf、Kmprを乗じて前
輪目標転舵量Kmpf−Ym及び後輪目標転舵!tKm
p r−Ymを各々算出する前輪目標転舵量演算器70
及び後輪目標転舵量演算器71と、F?fA舵カセフカ
センサ24されて操舵力Fmに係数Kmfを乗じた制御
量Kmf−Fmを算出する操舵力演算器72と、各転舵
変位量センサ37,47.57.67に各々接続されて
各々転舵変位IYs f 1.Ys f 2.Ys r
 1+ Ysr2に各係数Kspf、Kspf、Ksp
r、Ksprを乗じた各制御iKs p f−Ys f
 1.  Kspf−Ysf2’、Kspr−Ysrl
、Kspr−Ysr2を各々算出する左前輪転舵変位量
演算器73、右前輪転舵変位量演算器74、左後輪転舵
変位量演算器75及び右後輪転舵変位量演算器76と、
操舵軸21の回転を制御する制御信号を操舵軸モータ2
2に出力する操舵軸モーフ制御回路77と、各々転舵軸
32.42,52.62の回転を制御する各制御信号を
各モータ3o、40.50.60に各々出力する左前輪
転舵軸モータ制御回路78、右前輪転舵軸モータ制御回
路79、左後輪転舵軸モータ制御回路8o及び右後輪転
舵軸モータ制御回路81とを備えている。操舵軸モータ
制御回路77は、操舵力演算器72がらの制御iKmf
−Fmと、各転舵反力センサ38゜48.58.68か
らの各転舵反力Fsfl、Fsf2.Fsrl、Fsr
2を表t 各信号に含まれる周波数成分のうち、低域通
過フィルタ82a。
The electric control device C is connected to the steering displacement amount sensor 23 and multiplies the steering displacement amount Ym by each coefficient Kmpf, Kmpr to obtain the front wheel target turning amount Kmpf-Ym and the rear wheel target turning amount! tKm
Front wheel target steering amount calculator 70 that calculates p r-Ym respectively
and rear wheel target steering amount calculator 71, and F? fA rudder deflection sensor 24 is connected to a steering force calculator 72 which calculates a control amount Kmf-Fm by multiplying the steering force Fm by a coefficient Kmf, and is connected to each steering displacement amount sensor 37, 47, 57, 67, respectively. Rudder displacement IYs f 1. Ys f 2. Ys r
1+ Ysr2 each coefficient Kspf, Kspf, Ksp
Each control iKs p f−Ys f multiplied by r and Kspr
1. Kspf-Ysf2', Kspr-Ysrl
, Kspr-Ysr2, respectively, a left front wheel steering displacement amount calculator 73, a right front wheel steering displacement amount calculator 74, a left rear wheel steering displacement amount calculator 75, and a right rear wheel steering displacement amount calculator 76.
A control signal for controlling the rotation of the steering shaft 21 is sent to the steering shaft motor 2.
a steering shaft morph control circuit 77 that outputs to each motor 3o, 40, 50, 60 a steering shaft morph control circuit 77 that outputs each control signal to each motor 3o, 40, 50, 60, and a left front wheel steering shaft motor that outputs each control signal that controls the rotation of the steering shaft 32, 42, 52, 62, respectively to each motor 3o, 40, 50, 60; It includes a control circuit 78, a right front wheel steered shaft motor control circuit 79, a left rear wheel steered shaft motor control circuit 8o, and a right rear wheel steered shaft motor control circuit 81. The steering shaft motor control circuit 77 controls iKmf from the steering force calculator 72.
-Fm, and each steering reaction force Fsfl, Fsf2. from each steering reaction force sensor 38°48.58.68. Fsrl, Fsr
2 as table t Among the frequency components included in each signal, the low-pass filter 82a.

82b、82c、82dにより各々高周波数領域にある
、例えば1〜10ヘルツ程度以上にある周波数成分が除
去された各信号によって表された各転舵反力Fsfl*
、Fsf2*、Fsrl*。
Each steering reaction force Fsfl* represented by each signal from which frequency components in a high frequency range, for example, approximately 1 to 10 Hz or more are removed by 82b, 82c, and 82d.
, Fsf2*, Fsrl*.

Fsr2*を合成した制御11Ks f f ・(Fs
 f1*+Fsf2*)+Ksfr・ (Fsrl*+
Fsr2*)とを入力して、その値が正(又は負)のと
き操舵軸21を左(又は右)回転させる回転制御iMm
=Km f −Fm −K s f f −(F s 
f1*+Fsf2*) −Ksfr・ (Fsrl*+
Fsr2*)を表す制御信号を出力する。この制御’f
f1lKs f f −(Fs r l*+Fs f 
2*) +Ksfr・ (Fsrl*+)’sr2*)
は、加算器83から供給されるもので、この加算器83
は、左右前輪転舵反力センサ38.48から低域通過フ
ィルタ82a、82bを介して各々出力される左右前輪
転舵反力Fsfl*、Fsf2*を加算器84により加
算した合成前輪転舵反力Fsfl*+Fsr2*に係数
Fsffを乗じる前輪転舵反力演算器85の出力Ksf
f−(Fsfl*+Fsf2*)と、左右後輪転舵反力
センサ58゜68から低域通過フィルタ82C,82d
を介して各々出力される左右後輪転舵反力Fsrl*。
Control 11Ks f f ・(Fs
f1*+Fsf2*)+Ksfr・(Fsrl*+
Rotation control iMm that inputs Fsr2*) and rotates the steering shaft 21 to the left (or right) when the value is positive (or negative).
=Km f −Fm −K s f f −(F s
f1*+Fsf2*) −Ksfr・ (Fsrl*+
Fsr2*) is output. This control'f
f1lKs f f −(Fs r l*+Fs f
2*) +Ksfr・ (Fsrl**)'sr2*)
is supplied from the adder 83, and this adder 83
is a composite front wheel steering reaction obtained by adding the left and right front wheel steering reaction forces Fsfl* and Fsf2* output from the left and right front wheel steering reaction force sensors 38 and 48 via low-pass filters 82a and 82b, respectively, by an adder 84. Output Ksf of front wheel steering reaction force calculator 85 that multiplies force Fsfl*+Fsr2* by coefficient Fsff
f-(Fsfl*+Fsf2*) and the left and right rear wheel steering reaction force sensors 58°68 to low-pass filters 82C, 82d
The left and right rear wheel steering reaction forces Fsrl* are respectively outputted via the left and right rear wheel steering reaction forces Fsrl*.

Fsr2*を加算器86により加算した合成後輪転舵反
力Fsrl*+Fsr2*に係数Ksfrを乗じる後輪
転舵反力演算器87の出力Ksfr・(Fsrl+lc
+Fsr2*)とを加算して、制御WkKsff−(F
sfl*+Fsf2*)+Ksf r ・(Fs r 
l *+Fs r2*)を算出する。
The output of the rear wheel steering reaction force calculator 87 which multiplies the composite rear wheel steering reaction force Fsrl*+Fsr2* obtained by adding Fsr2* by the adder 86 by the coefficient Ksfr.
+Fsr2*) and control WkKsff-(F
sfl*+Fsf2*)+Ksf r ・(Fs r
l*+Fs r2*) is calculated.

左前輪転舵軸モータ制御回路7日は、前輪目標転舵量演
算器70からの制御lKmpf−Ymと左前輪転舵変位
量演算器73からの制御量Kspf・YSflとを入力
して、その値が正(又は負)のとき左前輪転舵軸32を
右(又は左)回転させる回転制御JiMs f 1 =
Kmp f−Ym −K s p f ・Ysflを表
す制御信号を出力する。右前輪転舵軸モータ制御回路7
9は、前輪目標転舵量演算器70からの制御量Kmpf
−Ymと右前輪転舵変位置演算器74からの制御量Ks
pf−Ysf2とを入力して、その値が正(又は負)の
とき右前輪転舵軸42を右(又は左)回転させる回転制
御量Msf2=Krnpf−Ym−Kspf ・Ysf
2を表す制御信号を出力する。左後輪転舵軸モータ制御
回路80は、後輪目標転舵量演算器71からの制御量K
mpr−Ymと左後輪転舵変位量演算器75からの制御
量Kspr−Ysrlとを入力して、その値が正(又は
負)のとき左後輪転舵軸52を右(又は左)回転させる
回転制御量Msrl=Kmpr−Ym−Kspr−Ys
rlを表す制御信号を出力する。
The left front wheel turning shaft motor control circuit 7 inputs the control lKmpf-Ym from the front wheel target turning amount calculator 70 and the control amount Kspf·YSfl from the left front wheel turning displacement amount calculator 73, and calculates the value. Rotation control that rotates the left front wheel steering shaft 32 to the right (or left) when positive (or negative) JiMs f 1 =
A control signal representing Kmp f - Ym - K sp f ·Ysfl is output. Right front wheel steering shaft motor control circuit 7
9 is a control amount Kmpf from the front wheel target steering amount calculator 70.
−Ym and the control amount Ks from the right front wheel steering position calculator 74
pf - Ysf2 is input, and when the value is positive (or negative), the rotation control amount Msf2 for rotating the right front wheel steering shaft 42 to the right (or left) = Krnpf - Ym - Kspf ・Ysf
Outputs a control signal representing 2. The left rear wheel turning shaft motor control circuit 80 receives the control amount K from the rear wheel target turning amount calculator 71.
mpr-Ym and the control amount Kspr-Ysrl from the left rear wheel steering displacement amount calculator 75 are input, and when the value is positive (or negative), the left rear wheel steering shaft 52 is rotated to the right (or left). Rotation control amount Msrl=Kmpr-Ym-Kspr-Ys
Outputs a control signal representing rl.

右後輪転舵軸モータ制御回路81は、後輪目標転舵量演
算器71からの制御量Kmpr−Ymと右後輪転舵変位
量演算器76からの制御量)(apr・Ys「2とを入
力して、その値が正(又は負)のとき右後輪転舵軸62
を右(又は左)回転させる回転制御量Msr2=Kmp
r−Ym−Kspr・Ysr2を表す制御信号を出力す
る。
The right rear wheel turning shaft motor control circuit 81 calculates the control amount Kmpr-Ym from the rear wheel target turning amount calculator 71 and the control amount Kmpr-Ym from the right rear wheel turning displacement amount calculator 76) (apr・Ys "2"). input, and if the value is positive (or negative), the right rear wheel steering shaft 62
Rotation control amount Msr2 = Kmp to rotate clockwise (or counterclockwise)
A control signal representing r-Ym-Kspr·Ysr2 is output.

なお、係数Kmf、係数Ksff及び係数Ksfrは、
操舵力Fm、合成前輪転舵反力FsfL*+Fs f 
2*及び合成後輪転舵反力Fs r l *― +Fsr2*が各々操舵軸21の回転トルクにもたらす
Yv度合を示すものであって、係数Kmf及び係数Ks
ffは常に正であり、係数KSrrは、左右後輪53.
63が左右前輪33.43に対し同相に転舵されるとき
正となり、左右後輪53.63が左右前輪33.43に
対し逆相に転舵されるとき負となる。また、係数Kmp
f及び係数Kspfは操舵変位量Ym及び左右前輪転舵
変位量Ysfl、Ysf2が各々左右前輪転舵軸32.
42の回転角にもたらす影響度合を示すものであり、係
数Kmp f及び係数Kspfはともに正である。さら
に、係数Kmpr及び係数Ksprは操舵変位量Ym及
び左右後輪転舵変位量Ysrl、Ysr2が各々左右後
輪転舵軸52.62の回転角にもたらす影響度合を示す
ものであり、係数Ksprは常に正である。また、係数
Kmprは、左右後輪53.63が左右前輪33.43
に対し同相に転舵されるとき正となり、左右後輪53.
63が左右前輪33.43に対し逆相に転舵されるとき
負となる。
Note that the coefficient Kmf, the coefficient Ksff, and the coefficient Ksfr are as follows:
Steering force Fm, composite front wheel steering reaction force FsfL*+Fs f
2* and the composite rear wheel steering reaction force Fs r l *- +Fsr2* respectively indicate the degree of Yv brought to the rotational torque of the steering shaft 21, and the coefficient Kmf and the coefficient Ks
ff is always positive, and the coefficient KSrr is the left and right rear wheels 53.
63 becomes positive when the left and right front wheels 33.43 are steered in the same phase, and becomes negative when the left and right rear wheels 53.63 are steered in the opposite phase to the left and right front wheels 33.43. Also, the coefficient Kmp
f and the coefficient Kspf are the steering displacement amount Ym and the left and right front wheel turning displacement amounts Ysfl and Ysf2, respectively, at the left and right front wheel turning shafts 32.
The coefficient Kmp f and the coefficient Kspf are both positive. Furthermore, the coefficient Kmpr and the coefficient Kspr indicate the degree of influence that the steering displacement amount Ym and the left and right rear wheel turning displacement amounts Ysrl and Ysr2 respectively have on the rotation angle of the left and right rear wheel turning shafts 52 and 62, and the coefficient Kspr is always positive. It is. In addition, the coefficient Kmpr is 53.63 for the left and right rear wheels and 33.43 for the left and right front wheels.
It becomes positive when the wheels are steered in the same phase as the left and right rear wheels 53.
63 becomes negative when the left and right front wheels 33 and 43 are steered in the opposite phase.

上記のように構成した動力舵取装置の動作を、係数1<
mpr及び係数Ksfrが正に設定されている場合につ
いて説明すると、車両が直進中、操舵ハンドル20がそ
の回転角Xmだけ左(又は右)方向に回動されると、操
舵ハンドル20の回動開始時においては操舵軸モータ2
2が操舵軸21を回転させていない、すなわち操舵軸2
1は基準位置にあるので、操舵軸21には操舵ハンドル
20の回動によって捩れが生じる。この操舵軸21の捩
れは歪みゲージより成る操舵力センサ24によって検出
されて、操舵力(又は反作用としての操舵反力)Fmと
して操舵力演算器72に供給される。操舵力演算器72
は操舵力Fmに係数Kmfを乗じた制御量Kmf−Fm
を操舵軸モータ制御回路77に出力する。操舵軸モータ
制御回路77は、操舵力演算器72から入力される制御
量Kmf−Fmと加算器83から入力される制御1Ks
(C・ (Fsfl+に+Fsf2*)+Ksfr・(
Fsrl*+Fsr2*)に基づいて操舵軸21の回転
制御JiMm=Kmf −Fm−Ks f f −(F
s  f  1*+Fs  [2*)  −Ks f 
r ・(Fsrllk+Fsr2*)を表わす制御信号
を出力するが、操舵ハンドル200回動開始時において
は左右前輪転舵軸32,42の合成前輪、転舵反力Fs
fl*+Fsf2*及び左右後輪転舵軸52゜62の合
成後輪転舵反力Fsrl*+Fsr2*が零であるので
、操舵軸モータ22には操舵軸21の回転制御iiMm
=Kmf・Fmを表す制御信号が供給される。この制御
信号に応じて、操舵軸モータ22は操舵軸21を左(又
は右)方向に回転させるので、操舵軸21は操舵ハンド
ル20の回動方向に回転し始める。
The operation of the power steering device configured as described above is determined by a coefficient of 1<
To explain the case where mpr and the coefficient Ksfr are set to positive, when the steering wheel 20 is turned in the left (or right) direction by the rotation angle Xm while the vehicle is traveling straight, the steering wheel 20 starts turning. Sometimes the steering shaft motor 2
2 does not rotate the steering shaft 21, that is, the steering shaft 2
1 is at the reference position, the steering shaft 21 is twisted by rotation of the steering handle 20. This torsion of the steering shaft 21 is detected by a steering force sensor 24 consisting of a strain gauge, and is supplied to a steering force calculator 72 as a steering force (or a steering reaction force as a reaction) Fm. Steering force calculator 72
is the control amount Kmf - Fm, which is the steering force Fm multiplied by the coefficient Kmf
is output to the steering shaft motor control circuit 77. The steering shaft motor control circuit 77 uses the control amount Kmf-Fm inputted from the steering force calculator 72 and the control amount 1Ks inputted from the adder 83.
(C・(Fsfl++Fsf2*)+Ksfr・(
Rotation control of the steering shaft 21 based on Fsrl*+Fsr2*) JiMm=Kmf −Fm−Ks f f −(F
s f 1*+Fs [2*) −Ks f
A control signal representing r・(Fsrllk+Fsr2*) is output, but at the start of rotation of the steering wheel 200, the composite front wheel and steering reaction force Fs of the left and right front wheel steering shafts 32 and 42 is output.
Since the synthetic rear wheel steering reaction force Fsrl*+Fsr2* of fl*+Fsf2* and the left and right rear wheel steering shafts 52°62 is zero, the steering shaft motor 22 has a rotation control function iiMm of the steering shaft 21.
A control signal representing =Kmf·Fm is supplied. In response to this control signal, the steering shaft motor 22 rotates the steering shaft 21 in the left (or right) direction, so that the steering shaft 21 begins to rotate in the rotation direction of the steering handle 20.

この回転により、操舵変位量センサ23からの操舵軸2
1の検出操舵変位量Ymは前輪目標転舵量演算器70に
入力され、前輪目標転舵量演算器70は、係数Kmp(
を上記検出操舵変位量Ymに乗じた制御量Kmpf−Y
mを左右前輪転舵軸モータ制御回路18.19に各々出
力する。このとき、左右前輪転舵軸32,42の各転舵
変位量Ys f 1. Ys f 2は零であるので、
左右前輪転舵軸モーフ制御回路78.79は左右前輪転
舵軸32.42の各回転制御量Ms r 1=Kmp 
f ・Ym、Ms r 2=Kmp f−Ymを表す制
御信号を左右前輪転舵軸モータ30,40に各々出力し
、左右前輪転舵軸モータ30,40が左右前輪転舵軸3
2,42を右(又は左)方向に各々回転させ始める。こ
の回転により、左右前輪転舵!1b32゜42の各回転
に伴う各左右前輪転舵変位1Ysf1、Ysr2が各々
零より大きく (又は小さく)なって、左右前輪転舵変
位量演算器73.74は各左右前輪転舵変位量Ysfl
、Ysf2に係数Kspfを各々乗じた各制御量Ksp
f−Ysf1、Kspf−Ysr2を左右前輪転舵軸モ
ータ制御回路78.79に各々出力し、これらの制御量
Kspf−Ysf 1.Kspf−Ysr2は各左右前
輪転舵変位量Ysf1.Ysf2の各増加(又は減少)
に従って各々除々に大きく (小さく)なるので、左右
前輪転舵軸32.42の各回転制御量Ms f 1−K
mp f ・Ym−Ksp f−Ysfl、Msf2=
Kmpf  −Ym−Kspf−Ysr2を各々表す制
御信号の正(又は負)のレベルが除々に小さくなり、左
右前輪転舵軸32,42の各転舵変位量YSfl、Ys
f2が各々Ysf 1 =Kmp f−Ym/Ks p
 f、 Ys f 2=Kmp f−Ym/Ks p 
fの関係になった回転位置にて左右前輪転舵軸32,4
2の各回転は停止する。これらの左右前輪転舵軸32,
42の各右(又は左)回転はビニオン31.41を介し
てラック軸34.44に各々伝達されて、ラック軸34
゜44を各々左(又は右)方向に変位させる。ランク軸
34.44の各人(又は右)方向の変位は各々タイロッ
ド35.45及びナックルアーム36゜46を介して左
右前輪33.43に各々伝達されて、左右前輪33.4
3を各々左(又は右)方向に転舵する。
Due to this rotation, the steering shaft 2 from the steering displacement amount sensor 23
The detected steering displacement amount Ym of 1 is input to the front wheel target turning amount calculator 70, and the front wheel target turning amount calculator 70 calculates the coefficient Kmp(
The control amount Kmpf-Y is obtained by multiplying the detected steering displacement amount Ym by
m is output to the left and right front wheel steering shaft motor control circuits 18 and 19, respectively. At this time, each steering displacement amount Ys f 1. of the left and right front wheel steering shafts 32, 42. Since Ys f 2 is zero,
The left and right front wheel steering shaft morph control circuits 78.79 each control the rotation amount of the left and right front wheel steering shafts 32.42 Ms r 1=Kmp
A control signal representing f・Ym, Ms r 2=Kmp f−Ym is output to the left and right front wheel steering shaft motors 30 and 40, respectively, and the left and right front wheel steering shaft motors 30 and 40 control the left and right front wheel steering shaft 3.
2 and 42 in the right (or left) direction. This rotation allows left and right front wheels to be steered! The respective left and right front wheel turning displacements 1Ysf1 and Ysr2 accompanying each rotation of 1b32°42 each become larger (or smaller) than zero, and the left and right front wheel turning displacement amount calculators 73 and 74 calculate the left and right front wheel turning displacement amounts Ysfl.
, each control amount Ksp obtained by multiplying Ysf2 by the coefficient Kspf.
f-Ysf1 and Kspf-Ysr2 are respectively output to the left and right front wheel steering shaft motor control circuits 78 and 79, and these control amounts Kspf-Ysf1. Kspf-Ysr2 is each left and right front wheel steering displacement amount Ysf1. Each increase (or decrease) in Ysf2
Accordingly, each rotation control amount Ms f 1-K of the left and right front wheel steering shafts 32.42 gradually increases (decreases).
mp f ・Ym−Ksp f−Ysfl, Msf2=
The positive (or negative) level of the control signal representing Kmpf - Ym - Kspf - Ysr2 gradually becomes smaller, and the respective steering displacement amounts YSfl, Ys of the left and right front wheel steering shafts 32, 42
f2 is Ysf 1 =Kmp f-Ym/Ks p
f, Ys f2=Kmp f-Ym/Ks p
The left and right front wheel steering shafts 32, 4 at the rotational position where the relationship of f
Each rotation of 2 is stopped. These left and right front wheel steering shafts 32,
Each right (or left) rotation of 42 is transmitted to the rack shaft 34.44 via the pinion 31.41, respectively, and the rack shaft 34
44 in the left (or right) direction. The displacement of the rank shaft 34.44 in the individual (or right) direction is transmitted to the left and right front wheels 33.43 via the tie rods 35.45 and knuckle arms 36°46, respectively, and the left and right front wheels 33.4
3 to the left (or right) direction.

また、操舵変位量センサ23からの操舵軸21の検出操
舵変位量Ymは後輪目標転舵量演算器71にも入力され
、後輪目標転舵量演算器71は、係数Kmp rを上記
検出操舵変位量Ymに乗じた制御量Kmpr−Ymを左
右後輪転舵軸モータ制御回路80.81に各々出力する
。このとき、左右後輪転舵軸52,62の各転舵変位量
Ys r 1゜Ysr2は零であるので、左右後輪転舵
軸モータ制御回路80.81は左右後輪転舵軸52,6
2の各回転制御量Ms r 1 =Kmp r ’ Y
m、 Msr2=Kmpr−Ymを各々表す制御信号を
左右後輪転舵軸モータ50,60に各々出力し、左右後
輪転舵軸モータ50,60が左右後輪転舵軸52.62
を各々右(又は左)方向に回転させ始める。これらの回
転により、左右後輪転舵軸52゜62の各回転に伴う各
左右後輪転舵変位量Ysr1、Ysr2が各々零より大
きく (又は小さく)なって、左右後輪転舵変位量演算
器75.76は、各左右後輪転舵変位量Ysrl、Ys
r2に係数Kaprを各々乗じた各制御量Kspr−Y
sr1、Kspr−Ysr2を左右後輪転舵軸モータ制
御回路80.81に各々出力し、これらの制御量Ksp
r−Ysrl、Kspr・Ysr2は各々左右後輪転舵
変位iYs r 1.Ys r 2の増加(又は減少)
に従って除々に太きく (又は小さく)なるので、左右
後輪転舵軸52,62の各回転制御量Msrl=Kmp
r−Ym−Kspr−Ysr 1. Ms r 2=K
mp r−Ym−Ks p r −Ysr2を各々表す
各制御信号の正(又は負)のレベルが除々に小さくなり
、左右後輪転舵軸52゜62の各転舵変位量Ysrl、
Ysr2が各々Ysrl=Kmpr−Ym/Kspr、
 Ysr2=Kmp r −Ym/K s p rの関
係になった各回転位置にて左右後輪転舵軸52,62の
各回転は各々停止する。これらの左右後輪転舵軸52,
62の各右(又は左)回転は各々ピニオン51.61を
介してラック軸54.64に各々伝達されて、ラック軸
54.64を各々左(又は右)方向に変位させる。ラッ
ク軸54.64の各人(又は右)方向の変位はタイロッ
ド55.65及びナックルアーム56.66を介して左
右後輪53.63に各々伝達されて、左右後輪53.6
3を各々左(又は右)方向に転舵する。
Further, the detected steering displacement amount Ym of the steering shaft 21 from the steering displacement amount sensor 23 is also inputted to the rear wheel target turning amount calculator 71, and the rear wheel target turning amount calculator 71 calculates the coefficient Kmpr as described above. The control amount Kmpr-Ym multiplied by the steering displacement amount Ym is output to the left and right rear wheel turning shaft motor control circuits 80 and 81, respectively. At this time, since the respective steering displacement amounts Ysr1°Ysr2 of the left and right rear wheel steered shafts 52, 62 are zero, the left and right rear wheel steered shaft motor control circuits 80.81 control the left and right rear wheel steered shafts 52, 62.
2 each rotation control amount Ms r 1 = Kmp r 'Y
m, Msr2=Kmpr-Ym are outputted to the left and right rear wheel steered shaft motors 50 and 60, respectively, and the left and right rear wheel steered shaft motors 50 and 60 respectively represent the left and right rear wheel steered shafts 52 and 62.
Start rotating each to the right (or left). Due to these rotations, the respective left and right rear wheel turning displacement amounts Ysr1 and Ysr2 accompanying each rotation of the left and right rear wheel turning shafts 52°62 become larger (or smaller) than zero, and the left and right rear wheel turning displacement amount calculator 75. 76 is each left and right rear wheel steering displacement amount Ysrl, Ys
Each control amount Kspr-Y is obtained by multiplying r2 by the coefficient Kapr.
sr1 and Kspr-Ysr2 are output to the left and right rear wheel steering shaft motor control circuits 80 and 81 respectively, and these control amounts Ksp
r-Ysrl and Kspr/Ysr2 are the left and right rear wheel steering displacements iYs r 1. Increase (or decrease) in Ys r 2
Accordingly, each rotation control amount Msrl of the left and right rear wheel steering shafts 52, 62 becomes thicker (or smaller).
r-Ym-Kspr-Ysr 1. Ms r 2=K
The positive (or negative) level of each control signal representing mp r - Ym - Ks pr - Ysr2 gradually becomes smaller, and each turning displacement amount Ysrl of the left and right rear wheel turning shaft 52°62,
Ysr2 is each Ysrl=Kmpr-Ym/Kspr,
The rotations of the left and right rear wheel steering shafts 52, 62 are stopped at each rotational position where the relationship Ysr2=Kmpr-Ym/Kspr is established. These left and right rear wheel steering shafts 52,
Each right (or left) rotation of 62 is transmitted to the rack shaft 54.64 through the pinion 51.61, respectively, displacing the rack shaft 54.64 in the left (or right) direction, respectively. The displacement of the rack shaft 54.64 in the individual (or right) direction is transmitted to the left and right rear wheels 53.63 via tie rods 55.65 and knuckle arms 56.66, respectively.
3 to the left (or right) direction.

一方、左右前輪33.43は各人(又は右)方向の転舵
により路面から右(又は左)方向への左右前輪転舵反力
Fsfl、Fsf2を各々受けて、これらの左右前輪転
舵反力Fsrl、Fsf2が各々ナックルアーム36,
46、タイ口・ノド35゜45、ラック軸34.44及
びピニオン31,41を介して左右前輪転舵軸32,4
2に各々伝達される。これらの左右前輪転舵反力Fsf
l、Fsf2は、各々左右前輪転舵軸32.42を左(
又は右)方向に回転させるように作用するので、左右前
輪転舵軸モータ30,40が左右前輪転舵軸32,42
を各々回転させる力とは逆方向となり、左右前輪転舵軸
32,42には各々捩れが生じる。これらの捩れは歪み
ゲージよりなる左右前輪転舵反力センサ38,48によ
って各々検出され、同センサ38.48は各捩れ量に比
例した各左右前輪転舵反力(又は反作用としての各左右
前輪転舵力)Fsfl、Fsf2を表す検出信号を各々
出力する。これらの検出信号は各々低域通過フィルタ8
2a、82bに供給され、同フィルタ82a、82bは
これらの検出信号に含まれる周波数成分のうち、高周波
数領域にある、例えば1〜10ヘルツ程度以上にある周
波数成分を除去して該成分が除去された信号により表さ
れる各左右前輪転舵反力Fs f 1*、  Fs f
 2*を加算器84を介して前輪転舵反力演算器85に
供給する。
On the other hand, the left and right front wheels 33.43 receive left and right front wheel steering reaction forces Fsfl and Fsf2 from the road surface in the right (or left) direction due to steering in the individual (or right) direction, and these left and right front wheel steering reactions are The forces Fsrl and Fsf2 are applied to the knuckle arm 36,
46, tie mouth/throat 35° 45, left and right front wheel steering shafts 32, 4 via rack shaft 34, 44 and pinions 31, 41
2, respectively. These left and right front wheel steering reaction forces Fsf
l, Fsf2 respectively move the left and right front wheel steering axes 32.42 to the left (
or to the right), so the left and right front wheel steering shaft motors 30, 40 rotate the left and right front wheel steering shafts 32, 42.
The directions are opposite to the forces that rotate the left and right front wheel steering shafts 32, 42, respectively, and twisting occurs in each of the left and right front wheel steering shafts 32, 42. These torsions are detected by the left and right front wheel steering reaction force sensors 38 and 48, each of which is a strain gauge. Detection signals representing wheel steering force) Fsfl and Fsf2 are output respectively. These detection signals are each passed through a low pass filter 8.
2a and 82b, and the same filters 82a and 82b remove frequency components in a high frequency region, for example, approximately 1 to 10 Hz or higher, from among the frequency components included in these detection signals. Each left and right front wheel steering reaction force Fs f 1 *, Fs f expressed by the signal
2* is supplied to a front wheel steering reaction force calculator 85 via an adder 84.

前輪転舵反力演算器85は、加算器84により合成され
た合成前輪転舵反力(転舵力)Fsfl*+Fsf2*
に係数Ksffを乗じた制御fiKsf f’  (F
s f 1 *+l”s’f 2*)を加算器83に出
力する。
The front wheel steering reaction force calculator 85 calculates the combined front wheel steering reaction force (steering force) Fsfl*+Fsf2* synthesized by the adder 84.
control fiKsf f' (F
s f 1 *+l"s'f 2 *) is output to the adder 83.

また、左右後輪53.63はそれらの各人(又は右)方
向の転舵により路面から右(又は左)方向への左右後輪
転舵反力Fsrl、Fsr2を受けて、これらの後輪転
舵反力Fsrl、Fsr2は1.各々ナックルアーム5
6,66、タイロッド55.65、ラック軸54.64
及びビニオン51.61を介して左右後輪転舵軸52.
62を各々左(または右)方向に回転させるように作用
するので、左右後輪転舵軸モータ50,60が左右後輪
転舵軸52.62を各々回転させる力とは逆方向となり
左右後輪転舵軸52,62には各々捩れが生じる。これ
らの捩れは歪みゲージよりなる左右後輪転舵反力センサ
58.68によって各々検出され、同センサ58,68
は各捩れ量に各々比例した左右後輪転舵反力(又は反作
用としての後輪転舵力)Fsrl、Fsf2を表す検出
信号を各々出力する。これらの検出信号は各々低領域通
過フィルタ82c、82dに供給され、同フィルタ82
c、82dはこれらの検出信号に含まれる周波数成分の
うち、高周波数領域にある、例えば1〜10ヘルツ程度
以上にある周波数成分を除去して該成分が除去された信
号により表される各左右後輪転舵反力Fsrl*、Fs
r2*を加算器86を介して後輪転舵反力演算器87に
供給する。後輪転舵反力演算器87は、加算器86によ
り合成された合成後輪転舵反力(後輪転舵力)FSrl
*+Fsr2*に係数Ksfrを乗じた制御1tKs 
f r −(Fs r 1*+Fs r2*)を加算器
83に出力する。
In addition, the left and right rear wheels 53.63 receive left and right rear wheel steering reaction forces Fsrl and Fsr2 from the road surface in the right (or left) direction due to steering in the respective (or right) directions, and these rear wheels are steered. The reaction forces Fsrl and Fsr2 are 1. Knuckle arm 5 each
6, 66, tie rod 55.65, rack shaft 54.64
and left and right rear wheel steering shafts 52. through binions 51.61.
62 in the left (or right) direction, the left and right rear wheel steering shaft motors 50, 60 rotate the left and right rear wheel steering shafts 52, 62 in the opposite direction, and the left and right rear wheel steering shafts are rotated in the opposite direction. Each of the shafts 52 and 62 is twisted. These torsions are detected by left and right rear wheel steering reaction force sensors 58 and 68 each consisting of a strain gauge;
outputs detection signals representing left and right rear wheel steering reaction forces (or rear wheel steering forces as reactions) Fsrl and Fsf2, respectively, which are proportional to each twist amount. These detection signals are supplied to low pass filters 82c and 82d, respectively.
c and 82d are the left and right signals represented by the signals from which frequency components in the high frequency range, for example 1 to 10 hertz or higher, are removed from among the frequency components included in these detection signals. Rear wheel steering reaction force Fsrl*, Fs
r2* is supplied to a rear wheel steering reaction force calculator 87 via an adder 86. The rear wheel steering reaction force calculator 87 calculates the combined rear wheel steering reaction force (rear wheel steering force) FSrl synthesized by the adder 86.
Control 1tKs obtained by multiplying *+Fsr2* by the coefficient Ksfr
f r -(Fs r 1*+Fs r2*) is output to the adder 83.

そして、加算器83が前輪転舵反力演算器85からの制
御ff1Ks f f ・(Fs f 1*+Fs f
 2*)及び後輪転舵反力演算器87からの制御量Ks
ft・ (Fsrl*+Fsr2*)を加算合成シテ、
合成シタ制御量Ksfr−(Fsfl*+Fsf2*)
+Ksfr・ (Fsrl*+Fsr2*)を操舵軸モ
ータ制御回路77に出力する。
Then, the adder 83 receives the control ff1Ks f f from the front wheel steering reaction force calculator 85 (Fs f 1*+Fs f
2*) and the control amount Ks from the rear wheel steering reaction force calculator 87
ft・(Fsrl*+Fsr2*) is added and synthesized,
Synthetic shift control amount Ksfr-(Fsfl*+Fsf2*)
+Ksfr·(Fsrl*+Fsr2*) is output to the steering shaft motor control circuit 77.

操舵軸モータ制御回路77は、操舵力演算器72から入
力される制御量Kmf−Fmと加算器83から入力され
る制御量Ksff・ (Fsfl*+Fsf2*)+K
sfr・ (Fsrl*+Fsr2*)に基づいて、操
舵軸21の回転制御量Mm=Kmf−Fm−Ksf f
 ・ (Fsf 1*+Fsf2’l’)−Ksfr・
 (Fsrl*+Fsr2*)を表す制御信号を操舵軸
モータ22に出力して、操舵軸モータ22がこの制御信
号に基づいて操舵軸21の回転を制御する。この操舵軸
21の左(又は右)方向の回転動作において、制御量K
mf・Fmは操舵軸21を左(又は右)方向に回転させ
るように作用して操舵軸21が左(又は右)方向に回転
すると、操舵軸21の捩れ量は減少するので、この捩れ
量に比例する操舵力(操舵反力)Fs、43に付与され
る各左右前輪転舵反力(転舵力)Fsfl、Fsf2及
び左右後輪53.63に付与される各左右後輪転舵反力
(後輪転舵力)Fsrl、Fsr2は各左右前輪転舵変
位量Ys[1,Ysf2及び各左右後輪転舵変位量Ys
r1、Ysr2が各々増加(又は減少)するに従って大
きく (又は小さく)なるので、操舵軸21を右(又は
左)方向に回転させるように作用する制御量Ksff・
 (Fsfl*+Fsf2*)+Ksfr−(Fsrl
*+Fsr2*)は大きく (又は小さく)なる。その
結果、操舵軸21を左(又は右)回転させるための回転
制御量Mm=Kmf−Fm−Ksff・ (Fsfl*
+Fsf2*)−Ksrr−(Fsrl*’+Fsr2
*)は除々に小さく (又は大きく)なり、制御量Km
f−Fmとff1ll?311EtKs f f ・(
Fs f 1 *+Fs r 2*)+Ksfr−(F
srl*+Fsr2*)が等しくなった回転位置にて操
舵軸21の回転は停止する。
The steering shaft motor control circuit 77 calculates the control amount Kmf−Fm input from the steering force calculator 72 and the control amount Ksff・(Fsfl*+Fsf2*)+K input from the adder 83.
Based on sfr・(Fsrl*+Fsr2*), the rotation control amount Mm of the steering shaft 21=Kmf−Fm−Ksf f
・(Fsf 1*+Fsf2'l')-Ksfr・
A control signal representing (Fsrl*+Fsr2*) is output to the steering shaft motor 22, and the steering shaft motor 22 controls the rotation of the steering shaft 21 based on this control signal. In this rotational movement of the steering shaft 21 in the left (or right) direction, the control amount K
mf and Fm act to rotate the steering shaft 21 in the left (or right) direction, and when the steering shaft 21 rotates in the left (or right) direction, the amount of twist of the steering shaft 21 decreases, so this amount of twist Steering force (steering reaction force) proportional to Fs, each left and right front wheel turning reaction force (steering force) applied to 43, Fsfl, Fsf2, and each left and right rear wheel turning reaction force applied to left and right rear wheels 53.63 (Rear wheel steering force) Fsrl and Fsr2 are each left and right front wheel steering displacement amount Ys [1, Ysf2 and each left and right rear wheel steering displacement amount Ys
As r1 and Ysr2 each increase (or decrease), they become larger (or smaller), so the control amount Ksff that acts to rotate the steering shaft 21 in the right (or left) direction.
(Fsfl*+Fsf2*)+Ksfr-(Fsrl
*+Fsr2*) becomes larger (or smaller). As a result, the rotation control amount Mm for rotating the steering shaft 21 to the left (or right) = Kmf - Fm - Ksff (Fsfl*
+Fsf2*)-Ksrr-(Fsrl*'+Fsr2
*) gradually becomes smaller (or larger), and the control amount Km
f-Fm and ff1ll? 311EtKs f f ・(
Fs f 1 *+Fs r 2*)+Ksfr-(F
The rotation of the steering shaft 21 stops at the rotational position where srl*+Fsr2*) becomes equal.

そして、この状態にて運転者が操舵ハンドル20をさら
に左(又は右)回転させるために操舵ハンドル20に左
(又は右)回転方向の力をさらに付与すると、制御量K
mf−Fmが制御量Ksff・ (Fsfl*+Fsf
2*)+Ksfr−(Fsrl*+Fsr2*)より太
き((又は小さく)なって操舵軸21はさらに左(又は
右)方向に回転する。また、運転者が操舵ハンドル20
に付与する力を弱めると、制御1iKsff・ (Fs
fl*+Fsf2*)+Ksfr・ (Fsrl’l’
+p’sr2*)が制御量Kmf−Fmより大きく(又
は小さく)なって操舵軸21は右(又は左)方向に回転
し始める。
In this state, when the driver further applies a force in the left (or right) rotation direction to the steering wheel 20 in order to further rotate the steering wheel 20 left (or right), the control amount K
mf−Fm is the control amount Ksff・(Fsfl*+Fsf
2*)+Ksfr-(Fsrl*+Fsr2*), and the steering shaft 21 further rotates to the left (or right).
When the force applied to is weakened, the control 1iKsff・(Fs
fl*+Fsf2*)+Ksfr・ (Fsrl'l'
+p'sr2*) becomes larger (or smaller) than the control amount Kmf-Fm, and the steering shaft 21 begins to rotate in the right (or left) direction.

また、係数pCmp r及び係数Ksfrが負に設定さ
れている場合について説明する。操舵ハンドル20が左
(又は右)方向に回動されると、左右前輪33.43は
上述の場合と同様、左(又は右)方向に転舵されるが、
左右後輪53.63は、係数Kmprが負なので上述の
場合とは逆に、右(又は左)方向すなわち左右前輪33
.43に対し逆相に転舵される。この転舵により、左右
後輪53.63に働く各左右後輪転舵反力Fsrl、F
sr2は各々上述の場合とは逆方向に働くことになり、
左右後輪転舵反力Fsrl*、Fsr2*は上述の場合
とは正負の符号が各々逆となるが、係数Ksfrが負に
設定されているので各制御量Ksfr−Fsrl(Ks
fr−Fsr2*の正負の符号は上述の場合と同じにな
り、各制御量Ksfr−Fsrl*、Ksfr−Fsr
2*は上述の場合と同様操舵軸21を右(又は左)方向
に回転させるように作用する。
Furthermore, a case will be described in which the coefficient pCmp r and the coefficient Ksfr are set to negative values. When the steering wheel 20 is turned to the left (or right), the left and right front wheels 33, 43 are steered to the left (or right) as in the case described above.
The left and right rear wheels 53.63 have a negative coefficient Kmpr, so contrary to the above case, the right (or left) direction, that is, the left and right front wheels 33
.. It is steered in the opposite phase to 43. Due to this steering, each left and right rear wheel steering reaction force Fsrl, F
sr2 will work in the opposite direction to the above case,
The left and right rear wheel steering reaction forces Fsrl*, Fsr2* have opposite signs to those in the above case, but since the coefficient Ksfr is set to negative, each control amount Ksfr−Fsrl(Ks
The positive and negative signs of fr-Fsr2* are the same as in the above case, and each control amount Ksfr-Fsrl*, Ksfr-Fsr
2* acts to rotate the steering shaft 21 in the right (or left) direction as in the above case.

このように、運転者が操舵ハンドル20を回動操作して
いるとき、操舵ハンドル20を回動位置に保持している
とき、及び操舵ハンドル20を中立位置に戻すとき、左
右前輪転舵反力Fsfl。
In this way, when the driver rotates the steering wheel 20, when the driver holds the steering wheel 20 in the rotational position, and when the driver returns the steering wheel 20 to the neutral position, the left and right front wheel steering reaction force Fsfl.

Fsf2及び左右後輪転舵反力Fsrl、Fsr2に基
づく制御量Ksfr・ (Fsfl*+Fsf2*) 
 +Ksfr  ・ (Fsrl*+Fsr2*)が操
舵ハンドル20を中立位置に戻すように作用するので、
操舵ハンドル20には左右前輪転舵反力Fsfl、Fs
f2及び左右後輪転舵反力Fsrl、Fsr2に応じた
操舵反力、保舵反力及び操舵ハンドル20の復元力が付
与される。
Fsf2 and left and right rear wheel steering reaction force Fsrl, control amount Ksfr・(Fsfl*+Fsf2*) based on Fsr2
+Ksfr (Fsrl*+Fsr2*) acts to return the steering wheel 20 to the neutral position, so
The steering handle 20 has left and right front wheel steering reaction forces Fsfl and Fs.
A steering reaction force, a steering reaction force, and a restoring force of the steering handle 20 are applied according to f2, left and right rear wheel steering reaction forces Fsrl, and Fsr2.

また、路面から各車輪33,43,53.63に運転者
が反応できない速さで変化する転舵反力が付与された場
合、各低域通過フィルタ82a。
Furthermore, when a steering reaction force that changes at a speed that the driver cannot react to is applied to each wheel 33, 43, 53, 63 from the road surface, each low-pass filter 82a.

82b、82c、82dが該転舵反力に基づいて各転舵
反力センサ38,48,58.68から発生される高い
周波数成分の検出信号を除去するので、加算器84.8
5には高い周波数成分を含まない検出信号により表わさ
れた各転舵反力Fsf1*、Fsf’l*、Fsrl*
、Fsr2’l’が供給される。これにより、操舵軸モ
ータ制御回路77に供給される制御1Ksff・ (F
sfl*+Fsf2*)+Ksfr・ (Fsrl*+
Fsr2*)は、各車輪33,43,53.63に路面
から付与される運転者が反応できない速さで変化する転
舵反力の影響を受けないものとなり、條舵ハンドル20
には該転舵反力が操舵反力、保舵反力及び操舵ハンドル
20の復元力として伝達されなくなる。
Since adders 82b, 82c, and 82d remove high frequency component detection signals generated from each steering reaction force sensor 38, 48, and 58.68 based on the steering reaction force, adder 84.8
5 indicates each steering reaction force Fsf1*, Fsf'l*, Fsrl* expressed by a detection signal that does not include high frequency components.
, Fsr2'l' are supplied. As a result, the control 1Ksff・(F
sfl*+Fsf2*)+Ksfr・ (Fsrl*+
Fsr2*) is not affected by the steering reaction force applied from the road surface to each wheel 33, 43, 53.
Then, the turning reaction force is no longer transmitted as a steering reaction force, a steering reaction force, and a restoring force of the steering handle 20.

b、変数の決定及びその意味 上記基本構成に示された本発明の具体的実施例について
説明する前に、上記基本構成の係数Kmf、Ks f 
f、Ks f r、Kmp f、Kmp r。
b. Determination of variables and their meanings Before explaining the specific embodiments of the present invention shown in the above basic structure, the coefficients Kmf, Ks f of the above basic structure
f, Ks f r, Kmp f, Kmp r.

Kspf、Kspr及び具体的実施例にて計算される諸
変数の算出方法及びその性質について図面を用いて説明
すると、第3図は第2図の本発明の基本構成から低域通
過フィルタ82a、82b。
The calculation method and properties of Kspf, Kspr, and various variables calculated in specific embodiments will be explained with reference to the drawings. FIG. 3 shows the basic configuration of the present invention shown in FIG. .

82c、82dを除いた部分を等価回路で表した制御ブ
ロック図である。なお、後述するように、低域通過フィ
ルタ82 a、  82 b、  82 c、  82
dを省略した制御ブロック図に基づいて上記各係数Km
f、 Ks f f、 Ks f r、 Kmp f、
 Kmpr、Kspf、Ksprを算出するようにして
も、これらの係数は本来マスタ一部Aと第1乃至第4ス
リーブ部B1.B2.B3.84間の力の伝達特性を示
すものであって、低域通過フィルタ82a、82b、8
2c、82dを通過する信号に関するものであるので、
何ら問題ない。
It is a control block diagram showing the portion excluding 82c and 82d as an equivalent circuit. Note that, as described later, low-pass filters 82 a, 82 b, 82 c, 82
Each of the above coefficients Km is calculated based on the control block diagram in which d is omitted.
f, Ks f f, Ks f r, Kmp f,
Even if Kmpr, Kspf, and Kspr are calculated, these coefficients are originally based on the master part A and the first to fourth sleeve parts B1. B2. B3.84 shows the force transfer characteristics between the low-pass filters 82a, 82b, 8
Since it is related to the signal passing through 2c and 82d,
There's no problem.

乗算器70a、71a、72a、73a、?4a、  
75 a、  76 a、  85 a、  87 a
は各々前輪目標転舵量演算器70、後輪目標転舵量演算
器71、操舵力演算器72、左前輪転舵変位量演算器7
3、右前輪転舵変位量演算器74、左後輪転舵変位量演
算器75、右後輪転舵変位量演算器76、前輪転舵反力
演算器85及び後輪転舵反力演算器87に対応してそれ
らの乗算作用を示すもので、減算器??a、78a、7
9a、80a、81aは各々操舵軸モータ制御回路77
、左前輪転舵軸モーフ制御回路78.右前輪転舵軸モー
タ制御回路79.左後輪転舵軸モータ制御回路80.及
び右後輪転舵軸モータ制御回路81に対応してそれらの
減算作用を示すもので、加算器83a、84a、86a
は各々加算器83.84.86に対応するものである。
Multipliers 70a, 71a, 72a, 73a, ? 4a,
75 a, 76 a, 85 a, 87 a
are the front wheel target turning amount calculator 70, the rear wheel target turning amount calculator 71, the steering force calculator 72, and the left front wheel turning displacement amount calculator 7, respectively.
3. Corresponds to the right front wheel steering displacement amount calculator 74, the left rear wheel steering displacement amount calculator 75, the right rear wheel steering displacement amount calculator 76, the front wheel steering reaction force calculator 85, and the rear wheel turning reaction force calculator 87. What shows their multiplication action and subtraction? ? a, 78a, 7
9a, 80a, and 81a are respective steering shaft motor control circuits 77;
, left front wheel steering shaft morph control circuit 78. Right front wheel steering shaft motor control circuit 79. Left rear wheel steering shaft motor control circuit 80. and the right rear wheel steering shaft motor control circuit 81, and show their subtractive actions, and the adders 83a, 84a, 86a
correspond to adders 83, 84, and 86, respectively.

また、ブロック22a、30a。Also, blocks 22a and 30a.

40a、50a、60aは各々操舵軸モータ22゜左前
輪転舵軸モータ30、右前輪転舵軸モータ40、左後輪
転舵軸モータ50及び右後輪転舵軸モータ60に対応す
るものであり、関数K m / S 。
40a, 50a, and 60a correspond to the steering shaft motor 22°, the left front wheel steering shaft motor 30, the right front wheel steering shaft motor 40, the left rear wheel steering shaft motor 50, and the right rear wheel steering shaft motor 60, and have a function K. m/s.

Ks f/S、Ks f/S、Ks r/S、Ks r
/Sは各々モータ22.30,40,50.60の回転
特性を示すものである。
Ks f/S, Ks f/S, Ks r/S, Ks r
/S indicates the rotational characteristics of the motors 22.30, 40, and 50.60, respectively.

減算器90は操舵ハンドル20に付与される操舵力Fm
によって回転する操舵軸21の回転変位量Xmと操舵軸
モータ22によって回転する操舵軸21の操舵変位量Y
mとの差に応じて操舵軸21に生じている捩れ量X m
 −Y mを表す等価回路であり、乗算器91は捩れl
fiXm−Ymに比例する操舵力及び操舵力の反作用と
して操舵軸モータ22から操舵軸21に付与される操舵
反力を算出する等価回路であり、定数1 / Cmは操
舵軸21の弾性係数である。減算器92.93は各々左
右前輪転舵軸モータ30,40の転舵力によって回転す
る左右前輪転舵軸32,42の各前輪転舵変位@Ys 
f 1. Ys r 2と、左右前輪33.43の各前
輪転舵量に応じた左右前輪転舵軸32,42の回転変位
量X5fl、X5f2との冬着に応じて各々左右前輪転
舵軸32,42に生じている捩れ量Ys f 1−Xs
 f 1. Ys f 2−Xs f 2を表す等価回
路であり、乗算器94.95は各捩れ1iYs f 1
−Xs f 1. Ys f 2−Xs f 2に各々
比例する左右前輪転舵力及び左右前輪転舵力の反作用と
して左右前輪33.43から各々左右前輪転舵軸32,
42に付与される各左右前輪転舵反力Fsfl、Fsf
2を算出する等価回路であり、定数1/Ctfは左右前
輪転舵軸32.42の弾性係数である。
The subtracter 90 calculates the steering force Fm applied to the steering wheel 20.
The amount of rotational displacement Xm of the steering shaft 21 rotated by the steering shaft 21 and the amount of steering displacement Y of the steering shaft 21 rotated by the steering shaft motor 22
The amount of twist occurring in the steering shaft 21 according to the difference between
-Y m, and the multiplier 91 is twisted l
This is an equivalent circuit that calculates a steering force proportional to fiXm-Ym and a steering reaction force applied from the steering shaft motor 22 to the steering shaft 21 as a reaction to the steering force, and the constant 1/Cm is the elastic coefficient of the steering shaft 21. . Subtractors 92 and 93 calculate each front wheel steering displacement @Ys of the left and right front wheel steering shafts 32 and 42 rotated by the steering force of the left and right front wheel steering shaft motors 30 and 40, respectively.
f1. Ys r 2 and the rotational displacement amounts X5fl and X5f2 of the left and right front wheel steering shafts 32, 42 according to the respective front wheel steering amounts of the left and right front wheels 33.43. The amount of twist Ys f 1−Xs
f1. This is an equivalent circuit representing Ys f 2 - Xs f 2, and the multiplier 94.95 is for each twist 1iYs f 1
-Xs f 1. As a reaction of the left and right front wheel steering force and the left and right front wheel steering force, which are each proportional to Ys f 2 - Xs f 2, the left and right front wheel steering shafts 32,
Each left and right front wheel steering reaction force Fsfl, Fsf applied to 42
2, where the constant 1/Ctf is the elastic coefficient of the left and right front wheel steering shafts 32.42.

減算器96.97は各々左右後輪転舵軸モータ50.6
0の転舵力によって回転する左右後輪転舵軸52,62
の各転舵変位量Ysrl、Ysr2と、左右後輪53.
63の各後輪転舵■に応じた左右後輪転舵軸52,62
の各回転変位量X5rl、X5r2との冬着に応じて各
々左右後輪転舵軸52,62に、生じている各捩れ量Y
srl−Xsrl、Ysr2−Xsr2を各々表す等価
回路であり、乗算器98.99は各捩れ量Ysrl−−
Xs r 1.  Ys r 2−Xs r 2に各々
比例する左右後輪転舵力及び左右後輪転舵力の反作用と
して左右後輪53.63から各々左右後輪転舵軸52.
62に付与される各左右後輪転舵反力Fsr1、Fsr
2を算出する等価回路であり、定数1/ Ct rは左
右後輪転舵軸52,62の弾性係数である。
The subtractors 96 and 97 are the left and right rear wheel steering shaft motors 50 and 6, respectively.
Left and right rear wheel steering shafts 52, 62 rotate with zero steering force.
The respective steering displacement amounts Ysrl and Ysr2, and the left and right rear wheels 53.
Left and right rear wheel steering shafts 52, 62 corresponding to each rear wheel steering of 63■
The amounts of torsion Y occurring in the left and right rear wheel steering shafts 52 and 62, respectively, in accordance with the winter wear of the respective rotational displacement amounts X5rl and X5r2.
These are equivalent circuits representing srl-Xsrl and Ysr2-Xsr2, respectively, and the multipliers 98.99 each represent the torsion amount Ysrl--
Xs r 1. As a reaction to the left and right rear wheel steering forces and the left and right rear wheel steering forces, which are each proportional to Ys r 2 - Xs r 2 , the left and right rear wheel steering shafts 52 .
Each left and right rear wheel steering reaction force Fsr1, Fsr applied to 62
2, where the constant 1/Ctr is the elastic coefficient of the left and right rear wheel steering shafts 52, 62.

上記のように構成された制御ブロックにおいて、第1及
び第2スレーブ部Bl、B2の左右前輪転舵反力Fsf
l、Fsf2は各々次式のように表される。
In the control block configured as described above, the left and right front wheel steering reaction force Fsf of the first and second slave portions Bl and B2 is
l and Fsf2 are each expressed as in the following equations.

Fs f 1= (Ys f 1−Xs f 1) /
Ct f・・・ (式1) %式% ・・・ (式2) 一方、左右前輪転舵反力Fsfl、Fsf2の合成前輪
転舵反力Fsfは、 Fsf=Fsfl+Fsf2・・・ (式3)のように
表され、左右前輪33.43の合成転舵量は左右前輪3
3.43の各転舵量の平均となるので、同合成転舵量に
応じた左右前輪転舵軸32゜42の合成前輪回転変位l
 X S fは、X5f=(Xsfl+X5f2)/2 ・・・ (式4) のように表され、左右前輪転舵軸モータ30,4は同一
特性なので、同モータ30,40により回転する左右前
輪転舵軸32,42の各左右前輪転舵変位iYs f 
1. Ys f 2は各々同じ値となりYsfl=Ys
f2=Ysf ・・・ (式5)のように表される。な
お、この値Ysfを合成前輪転舵変位量Ysfと定義す
る。上記(式1)〜(式5)より、合成前輪転舵反力F
s f、合成前輪回転変位量Xsf及び合成前輪転舵変
位17Ysfの関係は、合成前輪弾性係数CsfをC3
r=Ctf/2・・・ (式6) と定義すれば、 Fsf= (Ysf−Xsf)/Csf・・・ (式7
) また、第3及び第4スレーブ部B3.B4についても、
上記第1及び第2スレーブ部Bl、B2と同様に、次式
が成立する。
Fs f 1 = (Ys f 1 - Xs f 1) /
Ct f... (Formula 1) % Formula %... (Formula 2) On the other hand, the composite front wheel steering reaction force Fsf of the left and right front wheel steering reaction forces Fsfl and Fsf2 is: Fsf=Fsfl+Fsf2... (Formula 3) The combined steering amount of the left and right front wheels is 33.43.
Since it is the average of each steering amount of 3.43, the composite front wheel rotational displacement l of the left and right front wheel steering axes 32°42 according to the same composite steering amount
X S f is expressed as X5f = (Xsfl + Each left and right front wheel steering displacement of the rudder shafts 32 and 42 iYs f
1. Ys f 2 has the same value, so Ysfl=Ys
f2=Ysf... It is expressed as (Formula 5). Note that this value Ysf is defined as a composite front wheel turning displacement amount Ysf. From the above (Formula 1) to (Formula 5), the composite front wheel steering reaction force F
s f, the composite front wheel rotational displacement amount Xsf, and the composite front wheel steering displacement 17Ysf, the composite front wheel elastic coefficient Csf is
r=Ctf/2... (Formula 6) If defined, Fsf= (Ysf-Xsf)/Csf... (Formula 7
) Also, the third and fourth slave sections B3. Regarding B4,
Similarly to the first and second slave units Bl and B2, the following equation holds true.

Fs r 1= (Ys r 1−Xs r 1) /
Ct r・・・ (弐8) Fsr2= (Ysf2−Xsf2)/Ctr・・・ 
(式9) Fsr=Fsrl+Fsr2・+ +  (式10)x
sr=(xsrl+X5r2)/2・・・ (式Ysr
l=Ysr2=Ysr  −(式12)なお、値Fsr
は合成後輪転舵反力であり、値Xsrは合成後輪回転変
位量であり、値Ysrは合成後輪転舵変位量である。そ
して、合成後輪弾性係数Csrを、 C3r=Ctr/2・・・ (式13)と定義すれば、
合成後輪転舵反力Fsr、合成後輪回転変位量Xsr及
び合成後輪転舵変位量Ysrの関係は、 Fs  r=  (Ys  r−Xs  r)  /C
s  r・・・ (式14) これらの(式7)及び(式14)の関係を用いて、第3
図の制御ブロック図を単純化すると第4図のようになり
、ブロック22a1乗算器70a。
Fs r 1 = (Ys r 1 - Xs r 1) /
Ctr... (28) Fsr2= (Ysf2-Xsf2)/Ctr...
(Formula 9) Fsr=Fsrl+Fsr2・+ + (Formula 10)x
sr=(xsrl+X5r2)/2... (Formula Ysr
l = Ysr2 = Ysr - (Formula 12) Note that the value Fsr
is the composite rear wheel steering reaction force, the value Xsr is the composite rear wheel rotational displacement amount, and the value Ysr is the composite rear wheel steering displacement amount. Then, if the composite rear wheel elastic coefficient Csr is defined as C3r=Ctr/2... (Equation 13),
The relationship between the composite rear wheel steering reaction force Fsr, the composite rear wheel rotational displacement amount Xsr, and the composite rear wheel steering displacement amount Ysr is Fs r = (Ys r - Xs r) /C
s r... (Formula 14) Using these relationships of (Formula 7) and (Formula 14), the third
If the control block diagram in the figure is simplified, it becomes as shown in FIG. 4, where the block 22a1 is a multiplier 70a.

71a、72a、85a、87a、91、減算器77a
、90及び加算器83aは第3図の同一符号を付したも
のと同一である。ブロック30b、乗算器73b及び減
算器78bは各々第3図のブロック30a、40a、乗
算器73a、74a及び減算器78a、79aに対応し
てそれらの等1i1ti回路を示しており、減算器92
b及び乗算器94bは(式7)内の関係に基づいて第3
図の加算器84a、減算器92.93及び乗算器94.
95の等価回路を示している。また、ブロック50b、
乗算器75b及び減算器80bは各々第3図のブC17
り50a、60a、乗算器75a、76a及び減算器8
0a、81aに対応してそれらの等価回路を示しており
、減算器96b及び乗算器98bは(式14)の関係に
基づいて第3図の加算器86a、減算器96.97及び
乗算器98.99の等価回路を示している。
71a, 72a, 85a, 87a, 91, subtractor 77a
, 90 and the adder 83a are the same as those given the same reference numerals in FIG. Block 30b, multiplier 73b and subtractor 78b correspond to blocks 30a, 40a, multipliers 73a, 74a and subtractors 78a, 79a in FIG.
b and the multiplier 94b are the third
Adder 84a, subtracter 92, 93, and multiplier 94.
95 equivalent circuit is shown. In addition, block 50b,
The multiplier 75b and the subtracter 80b are each block C17 in FIG.
multipliers 75a, 76a and subtractor 8
0a and 81a, and the subtracter 96b and multiplier 98b are the adder 86a, subtracter 96, 97, and multiplier 98 in FIG. 3 based on the relationship of (Equation 14). .99 equivalent circuit is shown.

上記のように構成された第4図の制御ブロックにおいて
、システムの均合い(定常状態)を考えると次式が成立
する。
In the control block of FIG. 4 configured as described above, considering the balance (steady state) of the system, the following equation holds true.

Kmf−Fm−Ks f f−Fs f+Ks rr−
Fsr−=  (式15) %式% (式16) Kmpr−Ym=Kspr−Ysr−・−(式17) また、操舵軸21.左右前輪転舵軸32.42゜左右後
輪転舵軸52,62に各々付与される操舵力(iffi
舵反力)Fm、合成前輪転舵力(合成前輪転舵反力)F
sf  (−Fsfl+Fsf2)、合成後輪転舵力(
合成後輪転舵反力)Fsr(=Fsrl+Fsr2)と
、上記各軸21,32.  (42)、52 (62)
に発生する各捩れii X m −Ym、  Ys f
−Xs r、  Ys r−Xs rとの関係を各弾性
係数1/Cm、1/Cs f、1/Cs rを用いて表
すと次のようになる。
Kmf-Fm-Ks f f-Fs f+Ks rr-
Fsr-= (Formula 15) % formula % (Formula 16) Kmpr-Ym=Kspr-Ysr-.- (Formula 17) In addition, the steering shaft 21. Left and right front wheel steering shafts 32.42° Steering forces applied to left and right rear wheel steering shafts 52 and 62, respectively (iffi
Rudder reaction force) Fm, composite front wheel steering force (composite front wheel steering reaction force) F
sf (-Fsfl+Fsf2), composite rear wheel steering force (
Synthetic rear wheel steering reaction force) Fsr (=Fsrl+Fsr2) and each of the above-mentioned axes 21, 32 . (42), 52 (62)
Each twist occurring in ii X m −Ym, Ys f
-Xs r and Ys r - Xs r are expressed as follows using the elastic coefficients 1/Cm, 1/Cs f, and 1/Cs r.

Fm−(1/Cm)・ (Xm−Ym)・・(式18) %式% f)・・・ (式19) F s r= (1/Cs r)  −(Ys r−X
sr)・・・ (式20) ここで、左右前輪33.43及び左右後輪53゜63が
路面に接触していない、すなわち路面から各左右前輪転
舵反力及び左右後輪転舵反力を受けない状態(Fsf=
0.Fsr=O)において、マスク部Aから第1.第2
スレーブ部B1. B2及び第3.第4スレーブB3.
B4へ各々伝達される回転角の比、すなわち操舵ハンド
ル2oの同動量に応じた操舵軸21の回転変位量Xmに
対する左右前輪33.43及び左右後輪53.63の各
合成転舵量に応じた左右前輪転舵軸32,42及び左右
後輪転舵軸52,62の各合成回転変位量Xsf、Xs
rの比を、各々前輪ステアリングギヤ比αf及び後輪ス
テアリングギヤ比αrとして定義すれば、これらのギヤ
比αf、αrは(式15)〜(式20)より次式で表さ
れる。
Fm-(1/Cm) (Xm-Ym) (Formula 18) % formula % f) (Formula 19) F s r= (1/Cs r) - (Ys r-X
sr)... (Formula 20) Here, the left and right front wheels 33.43 and the left and right rear wheels 53.63 are not in contact with the road surface, that is, the left and right front wheel steering reaction force and the left and right rear wheel steering reaction force are applied from the road surface. State of not receiving (Fsf=
0. Fsr=O), the first . Second
Slave part B1. B2 and 3rd. Fourth slave B3.
According to the ratio of the rotation angles respectively transmitted to B4, that is, the respective composite steering amounts of the left and right front wheels 33.43 and the left and right rear wheels 53.63 to the rotational displacement amount Xm of the steering shaft 21 according to the co-movement amount of the steering handle 2o. The respective composite rotational displacement amounts Xsf, Xs of the left and right front wheel steering shafts 32, 42 and the left and right rear wheel steering shafts 52, 62
If the ratio of r is defined as a front wheel steering gear ratio αf and a rear wheel steering gear ratio αr, these gear ratios αf and αr are expressed by the following equations from (Equations 15) to (Equations 20).

ex f =X s f /Xm=Kmp f /K 
s p f・・・ (式21) %式% ・・・ (式22) なお、上記(式22)で示されるように、後輪ステアリ
ングギヤ比αrは、係数Kmp rが正(又は負)のと
き、正(又は負)となる。そして、これらのギヤ比α「
、αrの値を変更することは、操舵ハンドル20の同−
同動量に対し、各々左右前輪33.43及び左右後輪5
3.63の各合成転舵量を変更することを意味し、後述
の実施例では、これらのギヤ比αf、αrは操舵特性を
示しかつ車速に応じて変化するパラメータとして扱われ
る。
ex f =X s f /Xm=Kmp f /K
s p f... (Formula 21) % formula %... (Formula 22) As shown in the above (Formula 22), the rear wheel steering gear ratio αr is determined by the coefficient Kmp r being positive (or negative). When , it becomes positive (or negative). And these gear ratios α'
, αr can be changed by changing the value of the steering wheel 20.
For the same amount of movement, the left and right front wheels are 33.43, and the left and right rear wheels are 5.
In the embodiment described later, these gear ratios αf and αr represent steering characteristics and are treated as parameters that change depending on the vehicle speed.

また、左右前輪33.43が固定され(Xsf=0)か
つ左右後輪53.63が路面に接触していない(Fsr
=Q)状態において、第1.第2スレーブ部Bl、B2
からマスク部Aへ伝達される力の比、すなわち合成前輪
転舵反力Fsfに対する操舵反力Fmの比を前輪力逆送
比βfとして定義すれば、この力逆送比βfは(式15
)より次式で表される。
In addition, the left and right front wheels 33.43 are fixed (Xsf=0) and the left and right rear wheels 53.63 are not in contact with the road surface (Fsr
=Q) state, the first. Second slave part Bl, B2
If the ratio of the force transmitted from the front wheel to the mask part A, that is, the ratio of the steering reaction force Fm to the composite front wheel steering reaction force Fsf, is defined as the front wheel force reverse transmission ratio βf, this force reverse transmission ratio βf is expressed as (Equation 15
), it is expressed by the following formula.

βf=Fm/Fs f=Ks f f/Kmf −−・
 (式23) そして、この力逆送比βrを変更することは、同一合成
前輪転舵反力Fsfに対し、操舵反力Fmを変更するこ
とを意味し、後述の実施例では、この力逆送比βfは操
舵特性を示しがっ車速に応じて変化するパラメータとし
て扱われる。
βf=Fm/Fs f=Ks f f/Kmf ---
(Equation 23) Changing this force reversal ratio βr means changing the steering reaction force Fm with respect to the same composite front wheel steering reaction force Fsf. The feed ratio βf is treated as a parameter that indicates steering characteristics and changes depending on the vehicle speed.

また、左右前輪33.43が路面に接触しておらず(F
sf=Q)かつ左右後輪53.63が固定された(Xs
r=Q)状態において、第3.第4スレーブB3.B4
からマスク部Aへ伝達される力の比、すなわち合成後輪
転舵反力Fsrに対する操舵反力Fmの比を後輪力逆送
比βrとして定義すれば、この力逆送比βrは(式15
)より次式で表わされる。
In addition, the left and right front wheels 33.43 were not in contact with the road surface (F
sf=Q) and the left and right rear wheels 53.63 were fixed (Xs
r=Q) state, the third. Fourth slave B3. B4
If the ratio of the force transmitted from the rear wheel to the mask part A, that is, the ratio of the steering reaction force Fm to the composite rear wheel steering reaction force Fsr, is defined as the rear wheel force reverse transmission ratio βr, this force reverse transmission ratio βr is expressed as (Equation 15
), it is expressed by the following formula.

βr=Fm/Fs r=Ks  f  r/Kmf  
・ −・ (式24) なお、上記(式24)で示されるように、この力逆送比
βrは、係数K s f rが正(又は負)のとき、正
(又は負)となる。そして、この力逆送比βrを変更す
ることは、同一合成後輪転舵反力Fsrに対し操舵反力
Fmを変更することを意味し、後述の実施例では、この
力逆送比βrは操舵特性を示しかつ車速に応じて変化す
るパラメータとして扱われる。
βr=Fm/Fs r=Ks f r/Kmf
- - (Formula 24) Note that as shown in the above (Formula 24), this force reversal ratio βr becomes positive (or negative) when the coefficient K s f r is positive (or negative). Changing this force reversal ratio βr means changing the steering reaction force Fm with respect to the same composite rear wheel steering reaction force Fsr. In the embodiment described later, this force reversal ratio βr It is treated as a parameter that indicates characteristics and changes depending on vehicle speed.

さらに、操舵反力Fmと回転変位ffl X mとの比
を操舵弾性係数Qmとし、合成前輪転舵反力(前輪転舵
力)Fsfと合成前輪回転変位量Xsfとの比を前輪転
舵弾性係数Qsfとし、かつ合成後輪転舵反力(後輪転
舵力) Fsrと合成後輪回転変位量Xsrとの比を後
輪転舵弾性係数Qsrとすれば、次式が成立する Qm=Fm/Xm   ・・・ (式25)Qsf=F
sf/Xsf・−−(式26)QSr=FSr/XSr
・・・ (式27)なお、前輪転舵弾性係数Qsfは左
右前輪33゜43のタイヤと路面との間の摩擦により決
定される定数であり、後輪転舵弾性係数Q s rは左
右後輪53.63のタイヤと路面との間の摩擦により決
定される定数である。一方、回転変位ffl X mは
、(式15)、(式16)、(式18)、(式19)。
Furthermore, the ratio between the steering reaction force Fm and the rotational displacement ffl If the coefficient Qsf is the coefficient, and the ratio between the composite rear wheel steering reaction force (rear wheel steering force) Fsr and the composite rear wheel rotational displacement amount Xsr is the rear wheel steering elastic coefficient Qsr, then the following formula holds: Qm=Fm/Xm ... (Formula 25) Qsf=F
sf/Xsf -- (Formula 26) QSr=FSr/XSr
(Formula 27) Note that the front wheel steering elastic coefficient Qsf is a constant determined by the friction between the left and right front wheels 33°43 tires and the road surface, and the rear wheel steering elastic coefficient Qsr is the left and right rear wheel steering elastic coefficient Qsf. 53.63 is a constant determined by the friction between the tires and the road surface. On the other hand, the rotational displacement ffl

(式21)、(式23)、(式24)に基づき、Xm=
X s f /a f + (Cm−βf+Csf/α
f)  HF s f +Cm−βr−Fsr・・・ 
(式28) のように表され、かつ同回転変位量Xmは、(式15)
、(式17)、(式18)、(式20)。
Based on (Formula 21), (Formula 23), and (Formula 24), Xm=
X s f /a f + (Cm-βf+Csf/α
f) HF s f +Cm-βr-Fsr...
(Equation 28), and the rotational displacement amount Xm is expressed as (Equation 15)
, (Formula 17), (Formula 18), (Formula 20).

(式22)、(式23)、(式24)に基づき、Xm=
X5 r/αr+ (Cm・βr+C3r/αr)  
・F s r +Cm−βf−Fsf・・・ (式29
) のようにも表される。ここで、左右前輪33.43が固
定され、(Xsf=O)かつ左右後輪53゜63が路面
と接触していない(Fsr=O)状態における前輪弾性
係数Qsfを値Q 3 f ooとすれば、値Qsfo
oは、(式15)、(式23)、(式28)より、 Qs foo=αf−βf/(otf・βf−Cm+C
s f +otf ・βr−Cm−FSr/FSf)・
・・ (式30) のように表される。また、左右前輪33.43が路面に
接触しておらず(Fsf=O)かつ左右後輪53.63
が固定された(Xsr=O)状態における後輪弾性係数
Qsrを値Qs rooとすれば、値Qs rooは、
(式15)、(式24)、(式29)より、 Qs roo=otr ・βr/(αr・βr−Cm+
Cs r+txr−βf−Cm−F sf/Fsr)  ・・・ (式31)のように表され
る。そして、操舵弾性係数Qmを前輪弾性係数Qsf及
び後輪弾性係数Qsrを用いて表すと、操舵弾性係数Q
mは、上記(式15)(式23)、(式24)、(式2
6)〜(式31)に基づき のように表される。ここで、値Qsfooが左右前輪3
3.43が固定された状態における前輪弾性係数である
ことを考えると、値Qsfooは通常時の前輪弾性係数
Qsfに比べて極めて太きく  (Qsfoo>>Qs
f)なり、また値Q 3 rooが左右後輪53.63
が固定された状態における後輪弾性係数であることを考
えると、値Qs rooは通常時の後輪弾性係数Qsr
に比べて極めて大きく (Qs roo>>Qs r)
なるので、上記(式32)は次式のように変形される。
Based on (Formula 22), (Formula 23), and (Formula 24), Xm=
X5 r/αr+ (Cm・βr+C3r/αr)
・F s r +Cm-βf-Fsf... (Formula 29
) is also expressed as. Here, let the front wheel elastic coefficient Qsf be the value Q 3 f oo when the left and right front wheels 33.43 are fixed (Xsf=O) and the left and right rear wheels 53.63 are not in contact with the road surface (Fsr=O). For example, the value Qsfo
From (Formula 15), (Formula 23), and (Formula 28), o is Qs foo=αf-βf/(otf・βf-Cm+C
s f +otf ・βr−Cm−FSr/FSf)・
... It is expressed as (Formula 30). In addition, the left and right front wheels 33.43 are not in contact with the road surface (Fsf=O) and the left and right rear wheels 53.63
If the rear wheel elastic modulus Qsr in a state where is fixed (Xsr=O) is the value Qs roo, the value Qs roo is
From (Formula 15), (Formula 24), and (Formula 29), Qs roo=otr ・βr/(αr・βr−Cm+
Csr+txr-βf-Cm-Fsf/Fsr)... It is expressed as (Formula 31). Then, when the steering elastic coefficient Qm is expressed using the front wheel elastic coefficient Qsf and the rear wheel elastic coefficient Qsr, the steering elastic coefficient Q
m is the above (Formula 15), (Formula 23), (Formula 24), (Formula 2
6) to (Equation 31). Here, the value Qsfoo is the left and right front wheel 3.
Considering that 3.43 is the front wheel elastic modulus in a fixed state, the value Qsfoo is extremely thick compared to the front wheel elastic modulus Qsf in normal conditions (Qsfoo>>Qs
f), and the value Q 3 roo is 53.63 for the left and right rear wheels.
Considering that is the rear wheel elastic coefficient in a fixed state, the value Qs roo is the rear wheel elastic coefficient Qsr under normal conditions.
extremely large compared to (Qs roo >> Qs r)
Therefore, the above (Equation 32) is transformed as shown in the following equation.

Qm=αf−’βf−Qsf+ctr−βr−Qsr・
・・ (式33) そして、これらの積αr・βf及び積αr・βrを各々
変更することは、操舵弾性係数Qm、す、なわち操舵軸
21の同一回転変位ilXmに対して必要とされる操舵
力Fmの変更を意味し、後述の実施例では、これらの積
αf・βf及び積αr・βrは各々操舵特性を示しかつ
車速に応じて変化するパラメータとして扱われる。
Qm=αf-'βf-Qsf+ctr-βr-Qsr・
(Formula 33) Then, changing these products αr and βf and αr and βr, respectively, is necessary for the steering elastic coefficient Qm, that is, for the same rotational displacement ilXm of the steering shaft 21. This means a change in the steering force Fm, and in the embodiment described later, the products αf and βf and the products αr and βr each represent a steering characteristic and are treated as parameters that change depending on the vehicle speed.

上記(式21)〜(式24)により逆に係数Kmpf、
Kmpr、Ksff、Ksfrを求めると・係数Kmp
 f、Kmp r、Ks f f、Ks frは次式の
ようになる。
According to the above (Equations 21) to (Equations 24), the coefficient Kmpf,
Calculating Kmpr, Ksff, Ksfr・Coefficient Kmp
f, Kmp r, Ks f f, and Ks fr are as shown in the following equations.

Kmpr−cxf−Kspf ・−−(式34)Kmp
r=txr−Kspr−−−(式35)Ksff−βf
−Kmf・=C式36)Ksfr=βr−Kmf・・・
 (式37)ここで、係数Kspf、Kspr、Kmf
、Kmrは各々係数Kmpf、Kmpr、Ksf f、
Ksfrに対する相対的な値であるので、後述の実施例
において定数として定義し、係数Kmpf。
Kmpr-cxf-Kspf ・--(Formula 34) Kmp
r=txr−Kspr---(Formula 35) Ksff−βf
-Kmf・=C formula 36) Ksfr=βr−Kmf...
(Formula 37) Here, coefficients Kspf, Kspr, Kmf
, Kmr are coefficients Kmpf, Kmpr, Ksf f, respectively.
Since it is a relative value to Ksfr, it is defined as a constant in the embodiment described later, and the coefficient Kmpf.

Kmpr、  Ksff、Ksfrを各々前輪ステアリ
ングギヤ比αf、後輪ステアリングギヤ比αr。
Kmpr, Ksff, and Ksfr are the front wheel steering gear ratio αf and the rear wheel steering gear ratio αr, respectively.

前輪力逆送比βr及び後輪カ逆送比βrにより変化する
値として扱う。
It is treated as a value that changes depending on the front wheel force reverse transmission ratio βr and the rear wheel force reverse transmission ratio βr.

C5具体的実施例 上記のように、前輪ステアリングギヤ比αf。C5 specific example As mentioned above, the front wheel steering gear ratio αf.

後輪ステアリングギヤ比αr、前輪力逆送比βf及び後
輪力逆送比βrに基づいて、係数Kmpr。
Based on the rear wheel steering gear ratio αr, the front wheel force reverse transmission ratio βf, and the rear wheel force reverse transmission ratio βr, the coefficient Kmpr.

Kmpr、Ks f f、Ks f rをマイクロコン
ピュータによって演算して、左右前輪33.43及び左
右後輪53.63を各々転舵制御する本発明の具体的実
施例を図面を用いて説明すると、第5図は運転者が操作
するマスク部Aと、左右前輪33.43を各々転舵する
第1スレーブ部B1及び第2スレーブ部B2と、左右後
輪53.63を各々転舵する第3スレーブ部B3及び第
4スレーブ部B4と、マスク部A1第1乃至第4スレー
ブ部81〜B4を電気的に制御する電気制御装置Cとを
備えた車両用動力舵取装置を示している。マスク部A及
び第1乃至第4スレーブ部81〜B4は、第2図の基本
構成とほぼ同じに構成されているので、同一部分には同
一符号を付して詳述しない。
A specific embodiment of the present invention will be described with reference to the drawings, in which Kmpr, Ks f f, and Ks f r are calculated by a microcomputer to control the steering of the left and right front wheels 33.43 and the left and right rear wheels 53.63, respectively. FIG. 5 shows a mask part A operated by the driver, a first slave part B1 and a second slave part B2 that steer the left and right front wheels 33.43, respectively, and a third slave part B1 and a second slave part B2 that steer the left and right rear wheels 53.63, respectively. A vehicle power steering system is shown that includes a slave section B3, a fourth slave section B4, and an electric control device C that electrically controls the first to fourth slave sections 81 to B4 of the mask section A1. The mask unit A and the first to fourth slave units 81 to B4 have substantially the same basic configuration as that shown in FIG. 2, so the same parts are given the same reference numerals and will not be described in detail.

マスク部Aは操舵ハンドル20.操舵軸21゜操舵軸モ
ータ22.操舵変位量センサ23及び操舵力センサ24
を備えている。操舵変位量センサ23は、操舵軸21の
回転に応じて中点の接地された抵抗器23a上を摺動す
る摺動子23bと、抵抗器23aの両端に接続された電
圧源23cとを備え、摺動子23bの左(又は右)回転
により操舵軸21の基準位置に対する回転角に比例した
操舵変位量Ymを表わす正(又は負)の電圧信号を出力
する。操舵力センサ24は、操舵軸21に貼着され同軸
21の捩れ量に応じて抵抗値の変化する歪みゲージ24
aと、この歪みゲージ24aを一辺として固定抵抗24
b、24c、24dで形成されるブリッジ回路と、歪み
ゲージ24a。
Mask part A is the steering handle 20. Steering shaft 21° Steering shaft motor 22. Steering displacement sensor 23 and steering force sensor 24
It is equipped with The steering displacement sensor 23 includes a slider 23b that slides on a grounded resistor 23a at a midpoint in accordance with the rotation of the steering shaft 21, and a voltage source 23c connected to both ends of the resistor 23a. , a positive (or negative) voltage signal representing a steering displacement amount Ym proportional to the rotation angle of the steering shaft 21 with respect to the reference position is output by left (or right) rotation of the slider 23b. The steering force sensor 24 is a strain gauge 24 that is attached to the steering shaft 21 and whose resistance value changes depending on the amount of twist of the coaxial shaft 21.
a, and a fixed resistor 24 with this strain gauge 24a as one side.
b, 24c, and 24d, and a strain gauge 24a.

抵抗24bの接続点及び抵抗24C,24dの接続点間
に接続された電圧源24eから成る。この操舵力センサ
24は歪みゲージ24a、抵抗24dの接続点から操舵
ハンドル2oの左(又は右)回転に応じ操舵軸21に発
生する捩れ量に比例した操舵力Fmを表す正(又は負)
の電圧信号を出力している。なお、抵抗24b、24c
の接続点は接地されている。
It consists of a voltage source 24e connected between the connection point of the resistor 24b and the connection points of the resistors 24C and 24d. The steering force sensor 24 detects a positive (or negative) steering force Fm proportional to the amount of twist generated in the steering shaft 21 in response to left (or right) rotation of the steering wheel 2o from the connection point between the strain gauge 24a and the resistor 24d.
outputs a voltage signal. Note that the resistors 24b and 24c
The connection point of is grounded.

第1スレーブ部Blは左前輪転舵軸モータ30゜ビニオ
ン31.左前輪転舵軸32.左前輪33、ランク軸34
、クイロッド35、ナックルアーム36、左前輪転舵変
位量センサ37及び左前輪転舵反力センサ38を備えて
いる。左前輪転舵変位量センサ37は、左前輪転舵軸3
2の回転に応じて中点の接地された抵抗器37a上を摺
動する摺動子37bと、抵抗37aの両端に接続された
電圧源37cとを備え、摺動子37bの右(又は左)回
転すなわち左前輪33の左(又は右)転舵により左前輪
転舵軸32の回転角に比例した左前輪転舵変位1Ysf
lを表わす正(又は負)の電圧信号を出力する。左前輪
転舵反力センサ38は、左前輪転舵軸32に貼着され同
軸32の捩れ量に応じて抵抗値の変化する歪みゲージ3
8aと、この歪みゲージ38aを一辺として固定抵抗3
8b。
The first slave part Bl is a left front wheel steered shaft motor 30° pinion 31. Left front wheel steering shaft 32. Left front wheel 33, rank axis 34
, a quirod 35, a knuckle arm 36, a front left wheel steering displacement sensor 37, and a front left wheel steering reaction force sensor 38. The left front wheel steering displacement amount sensor 37 is connected to the left front wheel steering shaft 3.
2, and a voltage source 37c connected to both ends of the resistor 37a. ) rotation, that is, by steering the left front wheel 33 to the left (or right), the left front wheel steering displacement 1Ysf is proportional to the rotation angle of the left front wheel steering shaft 32.
Outputs a positive (or negative) voltage signal representing l. The left front wheel steering reaction force sensor 38 is a strain gauge 3 attached to the left front wheel steering shaft 32 and whose resistance value changes according to the amount of twist of the same shaft 32.
8a and a fixed resistor 3 with this strain gauge 38a as one side.
8b.

38c、38dで形成されるブリッジ回路と、歪みゲー
ジ38a1抵抗38bの接続点及び抵抗33c、38d
の接続点間に接続された電圧源38eから成る。左前輪
転舵反力センサ38は歪みゲージ38a、抵抗38dの
接続点から左前輪33の左(又は右)転舵に応じ前輪転
舵軸32に発生する捩れ量に比例した左前輪転舵反力F
sflを表す正(又は負)の電圧信号を出力している。
The bridge circuit formed by 38c and 38d, the connection point between the strain gauge 38a1 and the resistor 38b, and the resistors 33c and 38d
The voltage source 38e is connected between the connection points of the voltage source 38e. The left front wheel steering reaction force sensor 38 detects a left front wheel steering reaction force F proportional to the amount of twist generated in the front wheel steering shaft 32 in response to left (or right) steering of the left front wheel 33 from the connection point between the strain gauge 38a and the resistor 38d.
A positive (or negative) voltage signal representing sfl is output.

なお、抵抗38b、38Cの接続点は接地されている。Note that the connection point between the resistors 38b and 38C is grounded.

第2スレーブ部B2は第1スレーブ部B1と同様に構成
され、右前輪転舵軸モータ40.ビニオン41.右前輪
転舵軸42.右前輪43、う・ツク軸44、タイロッド
45、ナックルアーム46゜右前輪転舵変位量センサ4
7及び右前輪転舵反力センサ48を備えている。右前輪
転舵変位量センサ47は、抵抗器47a、摺動子47b
及び電圧源47Cにより左前輪転舵変位量センサ37と
同様に構成され、右前輪43の左(又は右)転舵により
右前輪転舵軸42の回転角に比例した右前輪転舵変位量
YSf2を表す正(又は負)の電圧信号を出力する。右
前輪転舵反力センサ48は、歪みゲージ48a、固定抵
抗48b、48c、48d及び電圧源48eにより左前
輪転舵反力センサ38と同様に構成され、右前輪43の
左(又は右)転舵に応じ右前輪転舵軸42に発生する捩
れ量に比例した右前輪転舵反力Fsf2を表す正(又は
負)の電圧信号を出力している。
The second slave section B2 is configured similarly to the first slave section B1, and has a right front wheel steering shaft motor 40. Binion 41. Right front wheel steering shaft 42. Right front wheel 43, steering shaft 44, tie rod 45, knuckle arm 46° Right front wheel steering displacement sensor 4
7 and a right front wheel steering reaction force sensor 48. The front right wheel steering displacement amount sensor 47 includes a resistor 47a and a slider 47b.
The front left wheel steering displacement amount sensor 37 is configured similarly to the left front wheel steering displacement amount sensor 37 by using the voltage source 47C and the left (or right) steering of the right front wheel 43. (or negative) voltage signal. The front right wheel steering reaction force sensor 48 is configured in the same manner as the front left wheel steering reaction force sensor 38, and includes a strain gauge 48a, fixed resistors 48b, 48c, 48d, and a voltage source 48e, and is configured in the same way as the front left wheel steering reaction force sensor 38. Accordingly, a positive (or negative) voltage signal representing a front right wheel steering reaction force Fsf2 proportional to the amount of twist generated in the front right wheel steering shaft 42 is output.

第3スレーブ部B3及び第4スレーブ部B4も各々第1
スレーブ部B1と同様に構成され、各々左右後輪転舵軸
モータ50,60、ビニオン51゜61、左右後輪転舵
軸52,62、左右後輪53゜63、ランク軸54,6
4、タイ口・ノド55,65、ナックルアーム56.6
6、左右後輪転舵変位量センサ57,67及び左右後輪
転舵反力センサ58,68を備えている。左右後輪転舵
変位量センサ57,67は、各々抵抗器57a、67a
、摺動子57b、67b及び電圧源57c、67cによ
り左前輪転舵変位量センサ37と同様に構成され、左右
後輪53.63の各人(又は右)転舵により、左右後輪
転舵軸52,62の各回転角に比例した左右後輪転舵変
位量YS f l、 Ys r 2を表す正(又は負)
の電圧信号を各々出力する。
The third slave section B3 and the fourth slave section B4 are also connected to the first slave section B3 and the fourth slave section B4.
It is configured in the same manner as the slave part B1, and includes left and right rear wheel steering shaft motors 50, 60, binions 51°61, left and right rear wheel steering shafts 52, 62, left and right rear wheels 53°63, and rank shafts 54, 6.
4. Tie mouth/throat 55, 65, knuckle arm 56.6
6. Left and right rear wheel steering displacement amount sensors 57, 67 and left and right rear wheel steering reaction force sensors 58, 68 are provided. The left and right rear wheel turning displacement amount sensors 57, 67 have resistors 57a, 67a, respectively.
, the slider 57b, 67b and the voltage sources 57c, 67c are configured in the same manner as the left front wheel steering displacement amount sensor 37, and the left and right rear wheel steering shaft 52 is configured by each (or right) steering of the left and right rear wheels 53, 63. , 62, positive (or negative) representing the left and right rear wheel steering displacement amounts Ys f l, Ys r 2 proportional to each rotation angle.
output voltage signals respectively.

左右後輪転舵反力センサ58.68は、各々歪みゲージ
58a、613a、固定抵抗58b、58c。
The left and right rear wheel steering reaction force sensors 58 and 68 include strain gauges 58a and 613a, and fixed resistors 58b and 58c, respectively.

58d、68b、68c、68d及び電圧源58e、6
8eにより左前輪転舵反力センサ38と同様に構成され
、左右後輪53.63の各人(又は右)転舵に応じ、左
右後輪転舵軸52.62に発生する捩れ量に比例した各
左右後輪転舵反力Fsrl、Fsr2を表す正(又は負
)の電圧信号を各々出力する。
58d, 68b, 68c, 68d and voltage sources 58e, 6
8e is configured in the same manner as the left front wheel steering reaction force sensor 38, and each sensor is proportional to the amount of torsion generated in the left and right rear wheel steering shafts 52.62 in response to individual (or right) steering of the left and right rear wheels 53.63. Positive (or negative) voltage signals representing left and right rear wheel steering reaction forces Fsrl and Fsr2 are output, respectively.

電気制御装置Cは操舵変位量センサ23からの操舵変位
Hym、tfi舵カセンサ2イカセンサ舵力(又は操舵
反力)Fm、左右前輪転舵変位量センサ37,47から
の各左右前輪転舵変位fiYsf1、Ysf2.左右前
輪転舵反力センサ38.48からの各左右前輪転舵反力
(又は左右前輪転舵力)Fsfl、Fsf2、左右後輪
転舵変位量センサ57,67からの各左右後輪転舵変位
QYsr 1 + Y S r 2 、左右後輪転舵反
力センサ58゜68からの各左右後輪転舵反力(又は後
輪転舵力)Fsrl、Fsr2、及び変速機の出力軸の
回転をビックアンプし、車速に対応したピンクアップ信
号を発生する車速センサ100からの車速■を入力して
、操舵軸モータ22の回転制御量Mm、左右前輪転舵軸
モータ30,40の各回転制御量Msfl、Msf2及
び左右後輪転舵軸モータ50.60の各回転制御量Ms
rl、Msr2を算出するマイクロコンピュータ101
を備えている。
The electric control device C receives the steering displacement Hym from the steering displacement amount sensor 23, the tfi rudder force sensor 2 squid sensor steering force (or steering reaction force) Fm, and each left and right front wheel turning displacement fiYsf1 from the left and right front wheel turning displacement amount sensors 37 and 47. , Ysf2. Each left and right front wheel steering reaction force (or left and right front wheel steering force) Fsfl, Fsf2 from the left and right front wheel steering reaction force sensor 38, 48, each left and right rear wheel steering displacement QYsr from the left and right rear wheel steering displacement amount sensor 57, 67 1 + Y S r 2 , each left and right rear wheel steering reaction force (or rear wheel steering force) Fsrl, Fsr2 from the left and right rear wheel steering reaction force sensor 58°68, and the rotation of the output shaft of the transmission are big-amplified, By inputting the vehicle speed ■ from the vehicle speed sensor 100 that generates a pink-up signal corresponding to the vehicle speed, the rotation control amount Mm of the steering shaft motor 22, each rotation control amount Msfl, Msf2, and Each rotation control amount Ms of left and right rear wheel steering shaft motor 50.60
Microcomputer 101 that calculates rl and Msr2
It is equipped with

マイクロコンピュータ101は、上記各センサ23.2
4,37.3B、47.48.57.58.67.68
,100からの検出値を入力する入力ポート101aと
、第7図に示されたフローチャートに対応するプログラ
ム及びプログラムの実行に必要な定数を記憶する読出し
専用メモリ (以下単にROMという>101bと、プ
ログラムを実行する中央処理装置(以下単にcpuとい
う)101Cと、プログラムの実行に必要な変数を一時
的に記憶する書込み可能メモリ (以下単にRAMとい
う)101dと、プログラムの実行により算出された操
舵軸モータ22の回転制御量Mm、左右前輪転舵軸モー
タ30,40の各回転制御量Msfl、Msf2及び左
右後輪転舵軸モータ50.60の各回転制御11M5 
r 1. Ms r 2を出力する出力ポート101e
と、これらの入力ポート 101a、  ROM101
b、  CPU101c。
The microcomputer 101 controls each of the above-mentioned sensors 23.2.
4, 37.3B, 47.48.57.58.67.68
, 100, a read-only memory (hereinafter simply referred to as ROM) 101b that stores a program corresponding to the flowchart shown in FIG. 7 and constants necessary for executing the program, and a program A central processing unit (hereinafter simply referred to as CPU) 101C that executes the program, a writable memory (hereinafter simply referred to as RAM) 101d that temporarily stores variables necessary for program execution, and a steering shaft motor calculated by executing the program. 22 rotation control amount Mm, each rotation control amount Msfl, Msf2 of the left and right front wheel steered shaft motors 30, 40, and each rotation control amount 11M5 of the left and right rear wheel steered shaft motors 50 and 60.
r1. Output port 101e that outputs Ms r 2
and these input ports 101a, ROM101
b. CPU101c.

RAM101d及び出力ポート101eを各々共通に接
続するハス101fを備えている。人力ボート101a
には、各センサ23,24. 37゜38.47.48
.57.58,67.68,100からマルチプレクサ
102を介して供給されるアナログ信号をディジタル信
号に変換するアナログディジタル変換器(以下単にA/
D変換器という)103が接続され、マルチプレクサ1
02は各センサ23,24,37,38,47,48゜
57.58,67.68,100からのアナログ信号を
、CPUI 01 cから入カポ−1−1018を介し
て供給される制御信号に応じて、時分割的にA 、/ 
D変換器103に選択出力し、A/D変換器103がこ
の制御信号に同期してこの出力信号をディジクル信号に
変換して、入カポ−1−101aに供給している。マル
チプレクサ102と各センサ23,24,37,38,
47.48.57゜58.67.68との間には各々バ
ッファアンプ104 a、  104 b、  104
 c、  104 d、  104e、  104f、
  104g、  104h、  104i。
It includes a lotus 101f that commonly connects the RAM 101d and the output port 101e. Human powered boat 101a
, each sensor 23, 24 . 37°38.47.48
.. An analog-to-digital converter (hereinafter simply referred to as A/
D converter) 103 is connected, and multiplexer 1
02 converts analog signals from each sensor 23, 24, 37, 38, 47, 48°57.58, 67.68, 100 into a control signal supplied from CPU 01c via input capo-1-1018. Accordingly, A, /
The output signal is selectively outputted to the D converter 103, and the A/D converter 103 converts this output signal into a digital signal in synchronization with this control signal and supplies it to the input capo-1-101a. Multiplexer 102 and each sensor 23, 24, 37, 38,
Buffer amplifiers 104 a, 104 b, 104 are provided between 47.48.57° and 58.67.68, respectively.
c, 104 d, 104e, 104f,
104g, 104h, 104i.

104jが接続されている。さらに、バッファアンプ1
04d、104f、104h、104jとマルチプレク
サ102との間には各々低域通過フィルタ (LPF)
105a、105b、105c。
104j is connected. Furthermore, buffer amplifier 1
A low pass filter (LPF) is installed between each of 04d, 104f, 104h, 104j and the multiplexer 102.
105a, 105b, 105c.

105dが接続されている。これらの低域通過フィルタ
105a、105b、105c、105dは、例えば、
第6図に示すようなオペアンプ○P。
105d is connected. These low-pass filters 105a, 105b, 105c, and 105d are, for example,
Operational amplifier ○P as shown in Figure 6.

コンデンサC,C1,及び抵抗R1,R2,R3゜R4
からなる公知の能動型フィルタで各々構成されており、
このフィルタ105a  (105b、105 c、 
 105 d)の電圧伝達関数は下記(式38)〜(式
41)により表されるもので、そのカットオフ周波数は
約1〜10ヘルツ程度に設定されている。
Capacitors C, C1, and resistors R1, R2, R3゜R4
Each is composed of a known active filter consisting of
This filter 105a (105b, 105c,
The voltage transfer function of 105 d) is expressed by the following (Equation 38) to (Equation 41), and its cutoff frequency is set to about 1 to 10 Hertz.

V2/V1=G−bo/ (S”  +b 1・S+b
o)       ・・・ (式38)%式% (式39) bl=  (1−G)/  (R2・ CI)+1/(
R1・ C)  +1/  (R2・ C)・・・ (
式40) G=1+R4/R3・・・ (式41)これにより、各
転舵反力センサ38,48,58゜68から各々出力さ
れる転舵反力検出信号中に含まれる高周波成分が除去さ
れる。
V2/V1=G-bo/ (S” +b 1・S+b
o) ... (Formula 38)%Formula% (Formula 39) bl= (1-G)/(R2・CI)+1/(
R1・C) +1/ (R2・C)... (
Equation 40) G=1+R4/R3... (Equation 41) This removes the high frequency components contained in the turning reaction force detection signals output from each turning reaction force sensor 38, 48, 58°68. be done.

また、マルチプレクサ102と車速センサ100との間
には、車速センサ100からのピッフッノブ信号を矩形
波信号に波形整形する波形整形回路100aと、この矩
形波信号を入力し同信号の周波数に比例した電圧値を示
す電圧信号に変換する周波数/電圧変換器(以下単にf
/V変換器という)100bと、f/V変換器100b
の出力をマルチプレクサ102に供給するバッファアン
プ100cが接続されている。出力ポート101eには
、操舵軸モータ22の回転制御量Mmをディジタルアナ
ログ変換するディジタルアナログ変換器(以下単にD/
A変換器という)106aが接続されて、D/A変換器
106aは回転制御量Mmをアナログ信号に変換してパ
ワーアンプ107aを介して操舵軸モータ22を制御し
ている。
Further, between the multiplexer 102 and the vehicle speed sensor 100, there is a waveform shaping circuit 100a that shapes the piff knob signal from the vehicle speed sensor 100 into a rectangular wave signal, and a waveform shaping circuit 100a that inputs this rectangular wave signal and generates a voltage proportional to the frequency of the signal. A frequency/voltage converter (hereinafter simply referred to as f
/V converter) 100b, and f/V converter 100b.
A buffer amplifier 100c is connected to supply the output of the buffer amplifier 100c to the multiplexer 102. The output port 101e is connected to a digital-to-analog converter (hereinafter simply referred to as D/
The D/A converter 106a converts the rotation control amount Mm into an analog signal and controls the steering shaft motor 22 via the power amplifier 107a.

また、同出力ボート101eには左右前輪転舵軸モータ
30.40の各回転制御量Msfl、Ms「2及び左右
後輪転舵軸モータ50,60の各回転制御量Ms r 
1. Ms r 2を各々ディジタルアナログ変換する
D/A変換器IQ6b、106c。
In addition, the same output boat 101e has respective rotation control amounts Msfl, Ms"2 of the left and right front wheel steered shaft motors 30 and 40, and each rotation control amount Msr of the left and right rear wheel steered shaft motors 50 and 60.
1. D/A converters IQ6b and 106c each convert Ms r 2 into digital to analog.

IQ6d、106eが接続されて、D/A変換器106
b、106c、106d、106eは各回転制御iMs
 r 1.Ms f 2及び各回転制御ff1M5rl
、Msr2を各々アナログ信号に変換してパワーアンプ
107 b、  107 c、  107 d、  1
07eを介して左右前輪転舵軸モータ30,40及び左
右後輪転舵軸モータ50,60を各々制御している。
IQ6d and 106e are connected, and the D/A converter 106
b, 106c, 106d, 106e are each rotation control iMs
r1. Ms f 2 and each rotation control ff1M5rl
, Msr2 are converted into analog signals and power amplifiers 107b, 107c, 107d, 1
07e, the left and right front wheel steering shaft motors 30, 40 and the left and right rear wheel steering shaft motors 50, 60 are controlled, respectively.

上記のように構成された車両用動力舵取装置の動作を第
7図に示されたフローチャートを用いて説明する。イグ
ニ、ツションスイッチの投入により、CPU101cは
プログラムの実行をステップ200から開始し、ステッ
プ201にて操舵変位量センサ23から操舵変位ffi
Ym、Fffi舵カセンサ24から操舵力(又は操舵反
力)Fm、左右前輪転舵変位量センサ37.47から各
左右前輪転舵変位量Ys f 1. Ys f 2、左
右前輪転舵反力センサ38.48からの各左右前輪転舵
反力(又は前輪転舵力)Fsfl、Fsf2を低域通過
フィルタ105a、105bにより加工した左右前輪転
舵反力(又は前輪転舵力)Fsfl*、Fsf2*、左
右後輪転舵変位量センサ57,67から各左右後輪転舵
変位QYs r l、Ys r 2、及び左右後輪転舵
反力センサ58.68からの各左右後輪転舵反力(又は
後輪転舵力)Fsrl、Fsr2を低域通過フィルタ1
05c、105dにより加工した左右前輪転舵反力(又
は前輪転舵力)Fsrl*、Fsr2*を入力してRA
M101dに各々記憶し、ステップ202にて車速セン
サ100から車速■を入力してRAM101dに記憶し
て、プログラムをステップ203に進める。
The operation of the vehicle power steering system configured as described above will be explained using the flowchart shown in FIG. When the ignition switch is turned on, the CPU 101c starts executing the program from step 200, and in step 201, the steering displacement amount sensor 23 detects the steering displacement ffi.
Ym, Fffi Steering force (or steering reaction force) Fm from the rudder force sensor 24, each left and right front wheel turning displacement amount Ys f 1. Ys f 2, left and right front wheel steering reaction force obtained by processing each left and right front wheel steering reaction force (or front wheel steering force) Fsfl, Fsf2 from the left and right front wheel steering reaction force sensor 38.48 using low-pass filters 105a and 105b. (or front wheel steering force) Fsfl*, Fsf2*, left and right rear wheel steering displacement amount sensors 57, 67, left and right rear wheel steering displacements QYs r l, Ys r 2, and left and right rear wheel steering reaction force sensors 58, 68 The respective left and right rear wheel steering reaction forces (or rear wheel steering forces) Fsrl and Fsr2 are filtered through a low-pass filter 1.
Input the left and right front wheel steering reaction force (or front wheel steering force) Fsrl* and Fsr2* processed by 05c and 105d to RA.
In step 202, the vehicle speed ■ is inputted from the vehicle speed sensor 100 and stored in the RAM 101d, and the program proceeds to step 203.

ステップ203にて、CPUl0ICは、車速■をRA
M101dから読出し、この車速■に基づいて、第8A
図乃至第8D図の特性図に示された前輪ステアリングギ
ヤ比αf、後輪ステアリングギヤ比αr、上記比αrと
前輪力逆送比βfとの積αf・βf及び上記比αrと後
輪力逆送比βrとの積αr・βrをROMI Ol b
内に設けられたパラメータテーブルから各々読出して各
氏α[、αrを各々求めるとともに、各氏αf、αrで
各禎αf・βf、αr・βrを除して各氏βf。
At step 203, the CPU 10IC RAs the vehicle speed ■.
Read from M101d and based on this vehicle speed
The front wheel steering gear ratio αf, the rear wheel steering gear ratio αr, the product αf/βf of the above ratio αr and the front wheel force reverse transmission ratio βf, and the product αf and the rear wheel force reverse transmission ratio βf of the above ratio αr and the rear wheel force reverse transmission ratio αf shown in the characteristic diagrams of FIGS. The product αr・βr with the feed ratio βr is ROMI Ol b
Each value α[, αr is obtained by reading each value from the parameter table provided in the internal parameter table, and each value αf·βf, αr·βr is divided by each value αf, αr to obtain each value βf.

βrを算出する。第8A図の特性図は車速■に対する前
輪ステアリング比4・比αfの値の変化を示しており、
同氏α「は車速■が変化してもほぼ一定の値となる。第
8B図の特性図は車速■に対する後輪ステアリングギヤ
αrの値の変化を示しており、同氏αrは、車速■が零
から大きくなるに従って、負から正に連続的に変化し、
かつ同氏αrの絶対値の最大値は前輪ステアリングギヤ
比αrの値の1/3程度の値である。これにより、低車
速領域にて左右後輪53.63は左右前輪33゜43に
対し逆相に転舵され、高車速領域にて左右後輪53.6
3は左右前輪33.43に対し同相に転舵される。なお
、左右後輪53,63の転舵量は左右前輪33,43の
転舵量の1/3程度となる。第8C図及び第8D図の特
性図は車速Vに対する前輪ステアリング比αfと前輪力
逆送比βrとの積αf・βf及び後輪ステアリング比α
rと前輪力逆送比βrとの積α「・βrの各値の変化を
示している。これらの積αf・βf及び積αr・βrは
車速■が小さいときには一定の値となり、車速Vの増加
により除々に増加する。これは車速■の増加により操舵
ハンドル20を回動するために必要とされる操舵力が除
々に大きくなることを意味する。
Calculate βr. The characteristic diagram in Fig. 8A shows the change in the value of the front wheel steering ratio 4/ratio αf with respect to the vehicle speed ■.
Mr. α' remains a nearly constant value even if the vehicle speed ■ changes. The characteristic diagram in Figure 8B shows the change in the value of the rear wheel steering gear αr with respect to the vehicle speed ■. It changes continuously from negative to positive as it increases from
Moreover, the maximum absolute value of αr is approximately 1/3 of the value of the front wheel steering gear ratio αr. As a result, in the low vehicle speed range, the left and right rear wheels 53.63 are steered in the opposite phase to the left and right front wheels 33°43, and in the high vehicle speed range, the left and right rear wheels 53.6
3 is steered in the same phase with respect to the left and right front wheels 33.43. Note that the amount of steering of the left and right rear wheels 53, 63 is approximately 1/3 of the amount of steering of the left and right front wheels 33, 43. The characteristic diagrams in FIGS. 8C and 8D show the product αf/βf of the front wheel steering ratio αf and the front wheel force reversal ratio βr with respect to the vehicle speed V, and the rear wheel steering ratio α
It shows the change in each value of the product α'・βr of r and the front wheel force reverse transmission ratio βr.These products αf・βf and products αr・βr are constant values when the vehicle speed ■ is small, and when the vehicle speed V This means that the steering force required to rotate the steering wheel 20 gradually increases as the vehicle speed increases.

上記ステップ203にて前後輪ステアリングギヤ比αf
、αr及び前後輪力逆送比βf、βrの演算後、プログ
ラムはステップ204に進み、CPUI 01 Cはス
テップ204にて係数Kmpf。
In step 203 above, the front and rear wheel steering gear ratio αf
, αr and the front and rear wheel force reverse transmission ratios βf, βr, the program proceeds to step 204, and the CPU 01 C calculates the coefficient Kmpf in step 204.

Kmpr、Ksrf、Ksfrを、上記前後輪ステアリ
ングギヤ比αf、αrと上記前後輪力逆送比βf、βr
とROMI O1bに記憶されている係数Kspf、K
spr、Kmfに基づいて、(式34)乃至(式37)
に示される演算を実行することにより、算出する。次に
、ステップ205にて、CPUI OI cは操舵軸モ
ータ22の回転制御量Mm、左右前輪転舵軸モータ30
,40の各回転制御量Msfl、Msf2及び左右後輪
転舵軸モータ50,60の各回転制御量Ms r 1゜
Msr2を上記算出係数Kmp f、 Kmp r、 
 Ksrf、Ksfr、上記係数Kspf、Kspr。
Kmpr, Ksrf, Ksfr are the front and rear wheel steering gear ratios αf, αr and the front and rear wheel force reverse transmission ratios βf, βr.
and the coefficients Kspf, K stored in ROMI O1b
Based on spr and Kmf, (Formula 34) to (Formula 37)
Calculate by executing the calculation shown in . Next, in step 205, the CPUI OI c is the rotation control amount Mm of the steering shaft motor 22, and the rotation control amount Mm of the left and right front wheel steering shaft motors 30.
, 40 and each rotation control amount Msr 1°Msr2 of the left and right rear wheel steered shaft motors 50, 60 using the above calculation coefficients Kmp f, Kmp r,
Ksrf, Ksfr, the above coefficients Kspf, Kspr.

Kmf、及び操舵変位量Ym、操舵力(又は操舵反力)
Fm、左右前輪転舵変位量Ysrl、Ysf2、左右後
輪転舵変位fiYs r l、 Ys r 2、左右前
輪転舵反力(又は転舵力)Fsrl*、Fsf2*、及
び左右後輪転舵反力Fsrl*、I;’sr2*に基づ
いて下記(式42) 乃至(式45)に示される演算を実行することにより算
出する。
Kmf, steering displacement Ym, steering force (or steering reaction force)
Fm, left and right front wheel steering displacement amount Ysrl, Ysf2, left and right rear wheel steering displacement fiYs r l, Ys r 2, left and right front wheel steering reaction force (or steering force) Fsrl*, Fsf2*, and left and right rear wheel steering reaction force It is calculated by executing the calculations shown in the following (Formula 42) to (Formula 45) based on Fsrl*, I;'sr2*.

Mm=Kmf HFm−Ks f f −(Fs f 
1*+Fsf2*)−Ksfr−(Fsrl*+Fsr
2*)HH+  (式42) %式% ・・・ (式43) Ms  f 2=Kmp  f−Ym−Ks p  f
−Ys  f  2・・・ (式44) %式% ・・・ (式45) Msr2=Kmpr  Ym−Kspr−Ysr 2・
・・ (式46) ステップ205の演算後、プログラムはステップ206
に進み、CPUl0ICは操舵軸21の回転制御量Mm
、左右前輪転舵I袖32,42の各回転制御量Msfl
、Msf2及び左右後輪転舵軸52,62の各回転制御
量Msrl、Msr2を表す制御信号を出力ボート10
1eを介して各々D/A変換器106 a、  106
 b、  106 c。
Mm=Kmf HFm−Ks f f −(Fs f
1*+Fsf2*)-Ksfr-(Fsrl*+Fsr
2*) HH+ (Formula 42) % formula % ... (Formula 43) Ms f 2 = Kmp f - Ym - Ks p f
-Ys f 2... (Formula 44) % formula %... (Formula 45) Msr2=Kmpr Ym-Kspr-Ysr 2.
... (Formula 46) After the calculation in step 205, the program executes step 206
, CPUl0IC determines the rotation control amount Mm of the steering shaft 21.
, each rotation control amount Msfl of the left and right front wheel steering I sleeves 32, 42
, Msf2 and the control signals representing the respective rotational control amounts Msrl and Msr2 of the left and right rear wheel steering shafts 52 and 62 are output to the boat 10.
D/A converters 106a, 106 respectively via 1e
b, 106 c.

106d、、106eに出力する。D/A変換器106
a、106b、106c、106d、106eは各々パ
ワーアンプ107a、107b、107c、107d、
107eを介して操舵軸モータ22、左右前輪転舵軸モ
ータ30.40及び左右後輪転舵軸モータ50,60の
各回転を制御する。
It outputs to 106d, , 106e. D/A converter 106
a, 106b, 106c, 106d, 106e are power amplifiers 107a, 107b, 107c, 107d, respectively.
The rotations of the steering shaft motor 22, left and right front wheel steering shaft motors 30, 40, and left and right rear wheel steering shaft motors 50 and 60 are controlled via the motor 107e.

操舵軸21の回転が制御される動作、左右前輪転舵軸3
2,42、及び左右後輪転舵軸52,62の各回転が制
御されて左右前輪33.43及び左右後輪53.63が
転舵される動作は基本構成で説明した動作と同じである
Operation in which the rotation of the steering shaft 21 is controlled, the left and right front wheel steering shaft 3
The operation in which the left and right front wheels 33.43 and the left and right rear wheels 53.63 are steered by controlling the respective rotations of the left and right rear wheel steering shafts 52 and 62 is the same as the operation described in the basic configuration.

上記ステップ206の演算後、CPUl0ICはステッ
プ201の演算の実行に戻ってステップ201〜206
の循環演算を実行して操舵軸21、左右前輪転舵!11
132.42及び左右後輪転舵軸52.62の各回転制
御を行う。
After the calculation in step 206, the CPU 10IC returns to execute the calculation in step 201 and performs steps 201 to 206.
Execute the cyclic calculation to steer the steering shaft 21 and left and right front wheels! 11
132.42 and the left and right rear wheel steering shafts 52.62.

上記のような動作説明でも理解されるように、上記実施
例においてはステップ201,204〜206の演算に
より操舵ハンドル20の回動操作に応じて左右前輪33
.43及び左右後輪53゜63を各々独立に転舵し、こ
の左右前輪33,43及び左右後輪53.63の各転舵
により発生する左右前輪転舵反力Fsfl*、Fsf2
*及び左右後輪転舵反力Fsrl*、Fsr2*を操舵
反力として操舵ハンドル20に逆送するようにしたので
、運転者は左右前輪33.43及び左右後輪53.63
の各転舵に応じて、操舵反力、保舵反力及び操舵ハンド
ルの復元力を感しながら車両を運転できる。また、この
操舵反力はステップ202.203の演算により車速■
の増加に従って増加するので、操安性が良好となる。さ
らに上記ステップ201にて読込まれる左右後輪転舵反
力Fsfl*、Fsf2*、Fsrl*、Fsr2*は
、各転舵反力センサ38,48.58゜68から出力さ
れた左右後輪転舵反力Fs f 1゜Fsf2.Fsr
l、l”sr2に含まれる周波数成分のうち、高周波数
領域に含まれる周波数成分を低域通過フィルタ105a
、105b、105c、105dにより各々除去した信
号により表わされるものであるので、左右前後輪33,
43゜53.63が路面から前記成分の発生原因である
運転者が反応できないような速さで変化する転舵反力を
受けても、該転舵反力は操舵ハンドル20に伝達されず
運転者がハンドル20の操作を誤まるとことがなくなる
。そして、このハンドル20の操作に応じて左右前後輪
33,43.53.63が転舵されるので、当該車両の
操安性が向上する。
As can be understood from the above explanation of the operation, in the above embodiment, the left and right front wheels 33 are rotated according to the rotational operation of the steering handle 20 by the calculations in steps 201, 204 to 206.
.. 43 and the left and right rear wheels 53, 63 are independently steered, and the left and right front wheels steering reaction forces Fsfl* and Fsf2 are generated by steering each of the left and right front wheels 33, 43 and the left and right rear wheels 53, 63.
* and the left and right rear wheel steering reaction forces Fsrl* and Fsr2* are sent back to the steering wheel 20 as steering reaction forces, so the driver can steer the left and right front wheels 33.43 and the left and right rear wheels 53.63.
The vehicle can be driven while feeling the steering reaction force, the steering reaction force, and the restoring force of the steering wheel in response to each turning. Also, this steering reaction force is determined by the calculation in steps 202 and 203 to calculate the vehicle speed
Since the value increases as the value increases, the steering stability improves. Furthermore, the left and right rear wheel steering reaction forces Fsfl*, Fsf2*, Fsrl*, and Fsr2* read in step 201 are the left and right rear wheel steering reaction forces output from each steering reaction force sensor 38, 48.58°68. Force Fs f 1°Fsf2. Fsr.
Among the frequency components included in l, l''sr2, the frequency components included in the high frequency region are filtered through the low-pass filter 105a.
, 105b, 105c, and 105d, the left and right front and rear wheels 33,
Even if 43°53.63 receives a turning reaction force from the road surface that changes at such a speed that the driver, who is the cause of the generation of the above-mentioned component, cannot react, the turning reaction force is not transmitted to the steering wheel 20 and the driver is unable to drive. If a person makes a mistake in operating the handle 20, this will not happen. Since the left and right front and rear wheels 33, 43, 53, and 63 are steered in accordance with the operation of the steering wheel 20, the steering stability of the vehicle is improved.

d、変形例 なお、上記実施例においては、路面から左右前後輪33
,43,53.63へ伝達される運転者が反応できない
ような速さで変化する転舵反力が操舵ハンドル20に逆
送されないようにするために、各転舵反力センサ38.
48,58.68からのアナログ形式の検出信号に含ま
れる高周波成分をアナログ回路で構成された低域通過フ
ィルタ105a、105b、105c、105dにより
除去するようにしたが、前記アナログ形式の各検出信号
がA/D変換器103によりディジタル形式の検出信号
に変換された後、該ディジタル形式の検出信号に含まれ
る高周波成分を低域通過型ディジタルフィルタで除去す
るようにしてもよい。
d. Modification In the above embodiment, the left and right front and rear wheels 33 are
, 43, 53, 63, which changes at a speed that the driver cannot react to, is not transmitted back to the steering wheel 20.
48, 58, and 68 are removed by low-pass filters 105a, 105b, 105c, and 105d made up of analog circuits. After the signal is converted into a digital detection signal by the A/D converter 103, high frequency components included in the digital detection signal may be removed by a low-pass digital filter.

この場合、低域通過型ディジタルフィルタをA/D変換
器103と入力ボート1o1aとの間に設けるようにす
るとよい。また、マイクロコンピュータ101にディジ
タル形式の各検出信号を取込んだ後、マイクロコンピュ
ータ101内部で上記ディジタルフィルタと同一機能の
演算を前記取込んだ各検出信号に施すようにしてもよい
In this case, it is preferable to provide a low-pass digital filter between the A/D converter 103 and the input port 1o1a. Further, after each detection signal in digital format is input into the microcomputer 101, an operation having the same function as that of the digital filter described above may be applied to each of the input detection signals inside the microcomputer 101.

また、上記実施例においては各転舵軸32,42.52
.62を各転舵軸モータ30,40.50.60により
回転駆動するようにしたが、特願昭60−186498
号の明細書及び図面に示されるように、油圧ポンプから
の吐出油を、リニアアクチュエータにより切換え制御さ
れるサーボ弁を介して油圧シリンダに供給するようにし
、供給された吐出油によりピストンに結合された転舵軸
を軸方向に往復運動させ、該運動によりタイロツドを駆
動して車輪を転舵するようにしてもよい。
In addition, in the above embodiment, each steering shaft 32, 42, 52
.. 62 is rotationally driven by each steered shaft motor 30, 40, 50, 60.
As shown in the specification and drawings of the issue, the oil discharged from the hydraulic pump is supplied to the hydraulic cylinder via a servo valve that is switched and controlled by a linear actuator, and the oil is coupled to the piston by the supplied discharge oil. The steering shaft may be reciprocated in the axial direction, and the movement may drive the tie rod to steer the wheels.

この場合、転舵変位量センサは転舵軸の軸方向の変位を
検出してマイクロコンピュータに該検出信号を出力し、
転舵反力センサは転舵軸の軸方向の引張り及び圧縮歪み
を検出してマイクロコンピュータに低域通過フィルタを
介して該検出信号を出力するようにするとともに、マイ
クロコンピュータ出力により前記リニアアクチュエータ
が制御されるようにするとよい。
In this case, the steering displacement amount sensor detects the axial displacement of the steering shaft and outputs the detection signal to the microcomputer,
The steering reaction force sensor detects tensile and compressive strain in the axial direction of the steering shaft and outputs the detection signal to the microcomputer via a low-pass filter. It is better to keep it under control.

さらに、上記実施例においては、この発明を、各車輪3
3.43,53.63毎に各々転舵軸モータ30,4.
0,50,60、転舵軸32,42゜52.62等から
なる転舵機構を設けて、各車輪33.43,53.63
を各転舵機構により各々独立に転舵するようにした車両
に通用したが、この発明は特j頭昭60−178782
号の明細書及び図面に示されているように、左右前輪3
3.43を共通の前輪転舵機構により転舵制御するよう
にし又は左右後輪53.63を共通の後輪転舵機構によ
り転舵制御するようにした車両にも通用される。また、
この発明は特願昭60−133483号及び特願昭60
−152831号の明細書及び図面に示されているよう
に左右前輪33.43のみを転舵するようにした車両に
も適用される。
Furthermore, in the above embodiment, this invention is applied to each wheel 3.
3.43, 53.63, steering shaft motor 30, 4.
A steering mechanism consisting of steering shafts 32, 42, 52, 62, etc. is provided, and each wheel 33, 43, 53, 63
This invention was applied to a vehicle in which each steering mechanism independently steered the wheels, but this invention
As shown in the specification and drawings of the issue, the left and right front wheels 3
3.43 is controlled by a common front wheel steering mechanism, or the left and right rear wheels 53.63 are controlled by a common rear wheel steering mechanism. Also,
This invention is disclosed in Japanese Patent Application No. 60-133483 and Japanese Patent Application No. 60-1983.
The present invention is also applied to a vehicle in which only the left and right front wheels 33, 43 are steered as shown in the specification and drawings of No. 152831.

そして、これらの場合にも各転舵機構内の転舵軸の変位
量を転舵変位量として検出して該検出信号をマイクロコ
ンピュータに出力し、同転舵軸の歪み量を、転舵反力と
して検出して該検出信号を低域通過フィルタを介してマ
イクロコンピュータに出力して、マイクロコンピュータ
がこれらの検出信号に基づいて各転舵機構を制御して各
車輪(操向車輪)を転舵するようにすればよい。
In these cases as well, the amount of displacement of the steering shaft in each steering mechanism is detected as the amount of steering displacement, the detection signal is output to the microcomputer, and the amount of distortion of the steering shaft is calculated as the amount of steering displacement. The detection signal is output to the microcomputer via a low-pass filter, and the microcomputer controls each steering mechanism based on these detection signals to rotate each wheel (steering wheel). All you have to do is steer it.

以上のような変形例においても上記実施例と同等な効果
が達成される。
Even in the above-mentioned modifications, effects equivalent to those of the above-mentioned embodiments can be achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は特許請求範囲に記載した発明の構成に対応する
図、第2図は本発明に係る車両用動力舵取装置の基本構
成を示す図、第3図は第2図に示された基本構成におけ
る制御状態を表す制御ブロック図、4図は第3図の制御
ブロック図を簡略化した制御ブロック図、第5図は本発
明の具体的実施例を示す車両用動力舵取装置の概略図、
第6図は第5図の低域通過フィルタの一例を示す図、第
7図は第5図のマイクロコンピュータで実行されるプロ
グラムのフローチャート、及び第8A図乃至第8D図は
本発明の具体的実施例における操舵特性を示す図である
。 符号の説明 20・・・操舵ハンドル、21・・・操舵軸、22・・
・操舵軸モータ、23・・・操舵変位量センサ、24・
・・操舵力センサ、30,40,50.60・・・転舵
軸モータ、32.42,52゜62・・・転舵軸、33
,43,53.63・・・車輪、37.47,57.6
7・・・転舵変位量センサ、38.48,58.68・
・・転舵反力センサ、lOO・・・車速センサ、101
・・・マイクロコンピュータ、105a、105b。 105c、105d・・・低域通過フィルタ。
FIG. 1 is a diagram corresponding to the configuration of the invention described in the claims, FIG. 2 is a diagram showing the basic configuration of the vehicle power steering device according to the present invention, and FIG. 3 is the same as shown in FIG. 2. A control block diagram showing the control state in the basic configuration, FIG. 4 is a control block diagram that is a simplified control block diagram of FIG. 3, and FIG. 5 is a schematic diagram of a power steering system for a vehicle showing a specific embodiment of the present invention. figure,
6 is a diagram showing an example of the low-pass filter of FIG. 5, FIG. 7 is a flowchart of a program executed by the microcomputer of FIG. 5, and FIGS. 8A to 8D are diagrams showing specific examples of the present invention. It is a figure showing the steering characteristic in an example. Explanation of symbols 20... Steering handle, 21... Steering shaft, 22...
・Steering shaft motor, 23...Steering displacement sensor, 24・
・・Steering force sensor, 30, 40, 50.60 ・・Steering shaft motor, 32.42, 52° 62 ・・Steering shaft, 33
,43,53.63...Wheel, 37.47,57.6
7... Steering displacement amount sensor, 38.48, 58.68.
... Steering reaction force sensor, lOO... Vehicle speed sensor, 101
...Microcomputer, 105a, 105b. 105c, 105d...Low pass filter.

Claims (1)

【特許請求の範囲】[Claims] 操舵ハンドルの回動に応じて操向車輪を転舵する車両用
舵取装置において、操舵ハンドルに結合した操舵軸と、
該操舵軸を回転駆動する操舵軸アクチュエータと、操向
車輪に結合され同車輪を転舵する転舵制御手段と、操舵
ハンドルから前記操舵軸に付与される操舵力を検出して
該検出操舵力を表す操舵力検出信号を出力する操舵力セ
ンサと、操向車輪から前記転舵制御手段に付与される転
舵反力を検出して該転舵反力を表す転舵反力検出信号を
出力する転舵反力センサと、前記操舵軸の基準位置から
の回転角を操舵変位量として検出して該検出操舵変位量
を表す操舵変位量検出信号を出力する操舵変位量センサ
と、前記操舵力検出信号に基づいて前記検出操舵力の増
加に応じて増加しかつ前記操舵軸を操舵力の付与される
方向へ回転させる第1制御量を決定する第1制御量決定
手段と、前記転舵反力検出信号に含まれる周波数成分の
うち高い周波数領域にある周波数成分を除去する高域成
分除去手段と、該高域成分除去手段により高い周波数成
分の除去された前記転舵反力検出信号に基づいて前記検
出転舵反力の増加に応じて増加しかつ前記操舵軸を前記
基準位置に復帰させる方向へ回転させる第2制御量を決
定する第2制御量決定手段と、前記第1制御量及び第2
制御量を合成した操舵軸回転制御信号を前記操舵軸アク
チュエータに出力して前記操舵軸の回転を制御する操舵
軸回転制御信号出力手段と、前記操舵変位量検出信号に
基づいて前記検出操舵変位量の増加に応じて増加しかつ
操舵ハンドルの操舵方向と対応する方向に操向車輪を転
舵する目標転舵量を決定する目標転舵量決定手段と、前
記決定目標転舵量に応じた転舵制御信号を前記転舵制御
手段に出力して、操向車輪の転舵量が前記決定目標転舵
量になるように前記転舵制御手段を制御する転舵制御信
号出力手段とを備えたことを特徴とする車両用動力舵取
装置。
In a vehicle steering device that steers steering wheels in response to rotation of a steering handle, a steering shaft coupled to the steering handle;
a steering shaft actuator for rotationally driving the steering shaft; a steering control means coupled to a steering wheel for steering the wheel; and a steering force for detecting a steering force applied to the steering shaft from a steering handle. a steering force sensor that outputs a steering force detection signal representing the steering force; and a steering force sensor that detects a turning reaction force applied to the steering control means from the steering wheel and outputs a turning reaction force detection signal representing the steering reaction force. a steering reaction force sensor that detects a rotation angle of the steering shaft from a reference position as a steering displacement amount and outputs a steering displacement amount detection signal representing the detected steering displacement amount, and the steering force a first control amount determining means for determining a first control amount that increases in accordance with an increase in the detected steering force based on a detection signal and rotates the steering shaft in the direction in which the steering force is applied; High frequency component removing means for removing frequency components in a high frequency region among frequency components included in the force detection signal, and based on the turning reaction force detection signal from which the high frequency components have been removed by the high frequency component removing means. a second control amount determining means for determining a second control amount that increases in accordance with an increase in the detected steering reaction force and rotates the steering shaft in a direction to return the steering shaft to the reference position; Second
a steering shaft rotation control signal output means for outputting a steering shaft rotation control signal that is a composite of control amounts to the steering shaft actuator to control rotation of the steering shaft; a target steering amount determining means for determining a target steering amount that increases in accordance with an increase in the steering wheel and steers the steering wheel in a direction corresponding to the steering direction of the steering wheel; and steering control signal output means for outputting a rudder control signal to the steering control means to control the steering control means so that the amount of turning of the steered wheels becomes the determined target turning amount. A vehicle power steering device characterized by:
JP29954685A 1985-12-28 1985-12-28 Power steering device for vehicle Pending JPS62157870A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29954685A JPS62157870A (en) 1985-12-28 1985-12-28 Power steering device for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29954685A JPS62157870A (en) 1985-12-28 1985-12-28 Power steering device for vehicle

Publications (1)

Publication Number Publication Date
JPS62157870A true JPS62157870A (en) 1987-07-13

Family

ID=17874014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29954685A Pending JPS62157870A (en) 1985-12-28 1985-12-28 Power steering device for vehicle

Country Status (1)

Country Link
JP (1) JPS62157870A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007186100A (en) * 2006-01-13 2007-07-26 Toyota Motor Corp Turning device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007186100A (en) * 2006-01-13 2007-07-26 Toyota Motor Corp Turning device
JP4539866B2 (en) * 2006-01-13 2010-09-08 トヨタ自動車株式会社 Steering device

Similar Documents

Publication Publication Date Title
CN108602529B (en) Method for controlling vehicle steering and vehicle behavior
JPH1134893A (en) Electric power-steering device
CN107031708A (en) Steering controller
WO2010109676A1 (en) Vehicle steering apparatus
JPH0438419A (en) Steering angle detector
JP3901928B2 (en) Control device for electric power steering device
JP6252027B2 (en) Steering control device
US5010971A (en) Steering system for vehicles
JP4243847B2 (en) Vehicle steering system
JPS6212461A (en) Power steering device for car
US20220017143A1 (en) Steering device
JPS62157870A (en) Power steering device for vehicle
JPS61291268A (en) Power steering device for vehicle
JPS6246775A (en) Power steering device for front and rear wheel steering car
JPH0867267A (en) Steering reaction force control device
JPH0739269B2 (en) Front and rear wheel steering vehicle rear wheel steering control device
US20050240327A1 (en) Method for controlling motion of vehicle and motion controller of vehicle
JP2002166844A (en) Control device for motor-driven power steering device
JPH069983B2 (en) Power steering device for front and rear wheel steered vehicles
JP3699870B2 (en) Vehicle steering system
JP2013018354A (en) Steering unit with variable steering angle ratio
JPH0958501A (en) Motor-driven power steering device
JPH0618256A (en) Front wheel steering angle detector for vehicle
JP4730577B2 (en) Vehicle steering system
JPS63192667A (en) Rear wheel steering device for vehicle