JPS63192667A - Rear wheel steering device for vehicle - Google Patents

Rear wheel steering device for vehicle

Info

Publication number
JPS63192667A
JPS63192667A JP2315287A JP2315287A JPS63192667A JP S63192667 A JPS63192667 A JP S63192667A JP 2315287 A JP2315287 A JP 2315287A JP 2315287 A JP2315287 A JP 2315287A JP S63192667 A JPS63192667 A JP S63192667A
Authority
JP
Japan
Prior art keywords
delay
wheel steering
yaw rate
rear wheel
steering angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2315287A
Other languages
Japanese (ja)
Other versions
JP2518245B2 (en
Inventor
Yoshimune Konishi
吉宗 小西
Yoshihiko Tsuzuki
都築 嘉彦
Tetsushi Haseda
長谷田 哲志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP62023152A priority Critical patent/JP2518245B2/en
Publication of JPS63192667A publication Critical patent/JPS63192667A/en
Application granted granted Critical
Publication of JP2518245B2 publication Critical patent/JP2518245B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D7/00Steering linkage; Stub axles or their mountings
    • B62D7/06Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins
    • B62D7/14Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering
    • B62D7/15Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering characterised by means varying the ratio between the steering angles of the steered wheels
    • B62D7/159Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering characterised by means varying the ratio between the steering angles of the steered wheels characterised by computing methods or stabilisation processes or systems, e.g. responding to yaw rate, lateral wind, load, road condition

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Steering-Linkage Mechanisms And Four-Wheel Steering (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)

Abstract

PURPOSE:To improve substantially rear wheel steering controllability in yaw rate feedback control by applying a response delay suitable for a running condition to a target yaw rate operated depending upon the running condition. CONSTITUTION:A control unit 6 is constituted with a waveform shaping circuit 61 for shaping a speed signal outputted from a vehicle speed sensor 1a and reading the shaped signal into a micro computer 60, a rear wheel steering angle sensor 2, a front wheel steering angle sensor 1b, an analogue buffer 63 for reading in a signal from a yaw rate sensor 1c, and a drive circuit 180 for supplying a servo motor 5 with an electric current corresponding to a signal from the micro computer 60 Target yaw rate gain characteristics corresponding to a vehicle speed are obtained and a front wheel steering angle is thereby multiplied for computing a target yaw rate before delay and saving the rate in a memory. A target yaw rate after delay corresponding to a running condition is computed and then a delay extent corresponding to the running condition is computed. According to the delay extent, a steering angle command position for rear wheels is computed and the servo motor 5 is thereby controlled.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、車両の前輪操舵に供ない、後輪をも操舵する
前後輪操舵車軸の後輪操舵装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a rear wheel steering device for a front and rear wheel steering axle that serves for steering the front wheels of a vehicle and also steers the rear wheels.

〔従来の技術] 従来、車両の操舵性と安定性を向上させるための後輪操
舵装置が種々提案されている。例えば、車速をパラメー
タとした所定の前後輪操舵比で後輪を操舵することによ
り、車両の横滑り角を小さくすると共に、高速時のヨー
レイトゲインの増大を抑制して車両の操縦性と安定性を
両立させようとするものであり、これは前輪舵角入力に
対して車両の定常的なヨーレイトゲイン特性を、例えば
第5図に示すように、前二輪操舵車のヨーレイトゲイン
特性aに対して、前後輪操舵によるヨーレイトゲイン特
性すを得ようとするものである。ここで、ヨーレイトゲ
インとは前輪舵角に対するヨーレイトの比であり、ヨー
レイトとは操縦によって発生する車軸上方から見た車両
重心点まわりの回転角速度(ヨー角速度)のことである
。しかるに前述所定の前後輪操舵比で後輪を操舵した場
合、車重の変化や路面摩擦係数の変化時には第5図すに
示すような目標とするヨーレイトゲイン特性を得ること
ができず、当初所望した操縦安定性が得られないとう問
題があった。これに対して、特開昭60−124572
号公報では、與輪舵轡と車速とから直接目標ヨーレイト
ψ、を算出し1.この目標ヨーレイトを実際に発生する
実ヨーレイトψとが常に一致するよう後輪を操舵するい
わゆるヨーレイトフィードバック制御による後輪操舵装
置が提案されている。この装置においては、目標ヨーレ
イトψ6に対する実ヨーレイトψがφ7〉ψのときは実
ヨーレイトψを大きくするよう前輪の操舵方向とは逆方
向に後輪を操舵(逆相操舵)し、ψ、くψのときは実ヨ
ーレイトψを小さくするよう前輪の操舵方向と同じ方向
に後輪を操舵(同相操舵)することによって目標とする
ヨーレイトを得るものである。
[Prior Art] Conventionally, various rear wheel steering devices have been proposed for improving the steering performance and stability of a vehicle. For example, by steering the rear wheels at a predetermined front and rear wheel steering ratio using the vehicle speed as a parameter, the sideslip angle of the vehicle can be reduced, and the increase in yaw rate gain at high speeds can be suppressed to improve vehicle maneuverability and stability. This aims to achieve both, and this means that the steady yaw rate gain characteristic of the vehicle with respect to the front wheel steering angle input is changed to the yaw rate gain characteristic a of the front two-wheel steered vehicle, for example, as shown in FIG. The objective is to obtain yaw rate gain characteristics by front and rear wheel steering. Here, the yaw rate gain is the ratio of the yaw rate to the front wheel steering angle, and the yaw rate is the rotational angular velocity (yaw angular velocity) around the center of gravity of the vehicle as seen from above the axle, which is generated by steering. However, when the rear wheels are steered using the aforementioned predetermined front and rear wheel steering ratios, when the vehicle weight changes or the road surface friction coefficient changes, the target yaw rate gain characteristics as shown in Figure 5 cannot be obtained, and the initially desired yaw rate gain characteristics cannot be obtained. There was a problem that the steering stability could not be achieved. On the other hand, JP-A-60-124572
In the publication, the target yaw rate ψ is calculated directly from the steering wheel and vehicle speed, and 1. A rear wheel steering device using so-called yaw rate feedback control has been proposed, which steers the rear wheels so that the target yaw rate always matches the actual yaw rate ψ. In this device, when the actual yaw rate ψ with respect to the target yaw rate ψ6 is φ7>ψ, the rear wheels are steered in the opposite direction to the steering direction of the front wheels (reverse phase steering) so as to increase the actual yaw rate ψ. In this case, the target yaw rate is obtained by steering the rear wheels in the same direction as the front wheels (in-phase steering) so as to reduce the actual yaw rate ψ.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、前輪を操舵した後、車輪に横滑り角が発
生してコーナリングパワーを生じ、これによって実際に
車両が旋回し始めてヨーレイトが発生するまでに若干の
時間遅れがあり、またヨーレイトセンサそのものにも検
出応答遅れが存在する。したがって、定常走行状態で前
輪を操舵した場合、それに応じた目標ヨーレイトψ8が
設定されるが、しかるにヨーレイトセンサから検出され
る実ヨーレイト信号は上述時間遅れを持っているため、
この間はψ8〉ψとなって後輪は必ず逆相操舵されるこ
とになる。前述したように、一般に高速時にはヨーレイ
トゲインの増大を抑えるべく後輪は同相操舵されるが、
この場合は一旦不要な逆相操舵された後、同相操舵され
ることとなり、当初目的とした車両の操舵安定性が得ら
れないという問題があった。
However, after the front wheels are steered, a sideslip angle occurs in the wheels and cornering power is generated, and as a result there is a slight time delay before the vehicle actually starts turning and the yaw rate occurs, and the yaw rate sensor itself also detects this. There is a response delay. Therefore, when the front wheels are steered in a steady running state, the target yaw rate ψ8 is set accordingly, but since the actual yaw rate signal detected from the yaw rate sensor has the above-mentioned time delay,
During this period, ψ8>ψ, and the rear wheels are always steered in the opposite phase. As mentioned above, the rear wheels are generally steered in phase to suppress the increase in yaw rate gain at high speeds, but
In this case, after unnecessary anti-phase steering is performed, in-phase steering is performed, and there is a problem in that the originally intended steering stability of the vehicle cannot be obtained.

本発明は上記問題点に鑑み、高速時には上述不要な逆相
操舵を回避して目的とする操舵安定性を得るとともに、
低中速時にも車両の走行状態に応じた後輪操舵制御を可
能とし、よってより優れた車両の操縦安定性を得ること
が可能な車両用後輪操舵装置の提供を目的とするもので
ある。
In view of the above-mentioned problems, the present invention avoids the above-mentioned unnecessary reverse phase steering at high speeds and obtains the desired steering stability.
The object of the present invention is to provide a rear wheel steering device for a vehicle that enables rear wheel steering control according to the driving condition of the vehicle even at low and medium speeds, thereby achieving superior vehicle steering stability. .

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上記目的を達成するために、第1図に示す様に 電気的指令値をうけて、車両の後輪舵角を調整する後輪
操舵機構M7と、 車両の走行状態を検出し、少なくとも車速を検出する車
速センサ1aと、前輪の操舵角の検出する前輪操舵角セ
ンサ1bと、ヨーレイトを検出するヨーレイトセンサI
Cと、から成る走行状態検出手段Mlと、 前記走行状態検出手段M1から検出された走行状態に応
じて目標ヨーレイトを算出する目標ヨーレイト演算手段
M2と、 前記走行状態検出手段M1から検出される走行状態に応
じた遅延度Nを算出するとともに、前記目標ヨーレイト
演算手段M2にて算出された目標ヨーレイトが出力され
る際に前記遅延度Nに応じた応答遅れを持たせる遅延手
段M3と、この遅延手段M3にて応答遅れを持った遅延
後の目標ヨーレイトと、前記走行状態検出手段Ml内の
ヨーレイトセンサICから検出される実ヨーレイトとの
誤差を小さくするよう後輪の操舵角指令位置を算出する
後輪操舵角演算手段M45と、この後輪操舵角指令位置
に後輪を操舵位置決めするよう前記操舵機構M7に電気
的指令値を発生する後輪位置決め制御手段6と、 を備えることを特徴とする。
In order to achieve the above object, the present invention includes a rear wheel steering mechanism M7 that adjusts the rear wheel steering angle of the vehicle in response to an electrical command value as shown in FIG. At least a vehicle speed sensor 1a that detects the vehicle speed, a front wheel steering angle sensor 1b that detects the steering angle of the front wheels, and a yaw rate sensor I that detects the yaw rate.
A driving state detecting means Ml comprising: C; a target yaw rate calculating means M2 for calculating a target yaw rate according to the driving state detected by the driving state detecting means M1; and a traveling state detected by the driving state detecting means M1. a delay means M3 that calculates a delay degree N according to the state and provides a response delay corresponding to the delay degree N when the target yaw rate calculated by the target yaw rate calculation means M2 is output; The means M3 calculates the steering angle command position of the rear wheels so as to reduce the error between the delayed target yaw rate having a response delay and the actual yaw rate detected from the yaw rate sensor IC in the driving state detecting means M1. It is characterized by comprising: a rear wheel steering angle calculation means M45; and a rear wheel positioning control means 6 that generates an electrical command value to the steering mechanism M7 so as to steer and position the rear wheels to the rear wheel steering angle command position. do.

〔作用〕[Effect]

本発明は上記構成によれば、目標ヨーレイトは車両の走
行状態に応じて変化する応答遅れをもって出力される。
According to the above configuration of the present invention, the target yaw rate is output with a response delay that changes depending on the driving state of the vehicle.

例えば、高速時の同相操舵時で前輪操舵角の比較的小さ
いときは、前述実ヨーレイトの検出遅れに見合った応答
遅れをもって目標ヨーレイトは出力されるので、前述し
た様な不要な後輪の過渡的逆相操舵を回避できる。また
、前輪の操舵角が大きくなったとき、あるいは、例えば
前輪操舵角速度が大きいときは前記時間遅れを小さくす
ることによって、車両のヨーレイトゲイン周波数特性上
の位相遅れを小さくすることができる。さらに、低中速
時の逆相操舵時には前記応答遅れを小さく(中速時に最
も小さく)設定することによって、前輪の操舵にともな
い応答性のよい逆相操舵を得るものである。
For example, when the front wheel steering angle is relatively small during in-phase steering at high speeds, the target yaw rate is output with a response delay commensurate with the detection delay of the actual yaw rate described above. It is possible to avoid reverse phase steering. Further, when the steering angle of the front wheels becomes large or, for example, when the front wheel steering angular velocity is large, by reducing the time delay, it is possible to reduce the phase delay in the yaw rate gain frequency characteristic of the vehicle. Furthermore, by setting the response delay to a small value (minimum at medium speed) during reverse phase steering at low and medium speeds, reverse phase steering with good responsiveness can be obtained as the front wheels are steered.

〔実施例〕〔Example〕

本発明の実施例を図面に基づいて説明する。 Embodiments of the present invention will be described based on the drawings.

第2図において、後輪操舵機構3内に取付けられた直流
サーボモータ5は電気的制御装置6の電気的指令値信号
を受けて正逆方向に回転し、減速ギア4を通して油圧パ
ワーアシスト付きラック・アンド・ピニオン機構3つま
り操舵機構の入力軸(図示しないトーションバー)に連
結されている。
In FIG. 2, a DC servo motor 5 installed in a rear wheel steering mechanism 3 rotates in forward and reverse directions in response to an electrical command value signal from an electrical control device 6, and is passed through a reduction gear 4 to a rack with hydraulic power assist. - It is connected to the input shaft (torsion bar, not shown) of the and pinion mechanism 3, that is, the steering mechanism.

トーションバーの他端にはビニオンギア3bが装着され
ており、パワーピストン3aの一端に形成されたラック
3cと噛み合っている。すなわち、モータ5によりトー
ションバーの一端がまわされ、トーションバーがねじれ
、油圧バルブ4aの絞り面積が変化し、トーションバー
のねじれを修正する方向に油圧を供給してパワーピスト
ン3aを動かす機構となっている。パワーピストン3a
の両端は、各々タイロッド3bを介してナックルアーム
3cに連結されている。後輪8はナックルアーム3cに
よって左右方向へ揺動自在に支持されている。
A pinion gear 3b is attached to the other end of the torsion bar, and meshes with a rack 3c formed at one end of the power piston 3a. That is, one end of the torsion bar is rotated by the motor 5, the torsion bar is twisted, the throttle area of the hydraulic valve 4a is changed, and hydraulic pressure is supplied in a direction to correct the twist of the torsion bar to move the power piston 3a. ing. power piston 3a
Both ends of are connected to knuckle arms 3c via tie rods 3b, respectively. The rear wheel 8 is supported by a knuckle arm 3c so as to be swingable in the left-right direction.

したがって、図中の矢印方向にパワーピストン3aが動
くことで、後輪8は左右に操舵される。
Therefore, by moving the power piston 3a in the direction of the arrow in the figure, the rear wheels 8 are steered left and right.

トーションバーのねじれがなくなると油圧バルブ4aの
絞り面積は0となり、パワーピストンを動かす油圧は0
となってパワーピストンは停止する。
When the torsion bar is no longer twisted, the throttle area of the hydraulic valve 4a becomes 0, and the oil pressure that moves the power piston becomes 0.
The power piston stops.

ここで後輪操舵角センサ2は、パワーピストン3aの位
置を検出し信号を出力する。電気的制御装置6は、この
信号に基づいて、パワーピストン3aの位置と後輪実舵
角との関係から、後輪軸舵角を求めるとともに、後輪実
舵角のその変化率より操舵角速度も求める。サーボモー
タ5を含む操舵機構3と制御装置6とによって、後輪操
舵角指令位置に後輪実舵角が一致するよう後輪を位置決
め制御する位置決めサーボ系を構成している。尚、7a
は油圧バルブ4aを介してパワーピストン3aに油圧を
供給する油圧ポンプ、7bはオイルタンクを示す。
Here, the rear wheel steering angle sensor 2 detects the position of the power piston 3a and outputs a signal. Based on this signal, the electric control device 6 determines the rear wheel shaft steering angle from the relationship between the position of the power piston 3a and the rear wheel actual steering angle, and also calculates the steering angular velocity from the rate of change of the rear wheel actual steering angle. demand. The steering mechanism 3 including the servo motor 5 and the control device 6 constitute a positioning servo system that positions and controls the rear wheels so that the actual rear wheel steering angle matches the rear wheel steering angle command position. Furthermore, 7a
7b indicates a hydraulic pump that supplies hydraulic pressure to the power piston 3a via a hydraulic valve 4a, and an oil tank.

la〜ICは車両の運転、走行状態を検出する状態検出
手段となるセンサであって、検出信号を電気的制御装置
6に出力する。lbはステアリングホイールIOの回転
を検出して、前輪9の操舵角θ、に応じた前輪操舵角信
号を出力する前輪操舵角センサ、1aは車軸又は車輪の
回転速度を検出し車速■に応じた車速信号を出力する車
速センサ、1cはジャイロ等で構成されて車両の重心を
中心とした車両の回転角速度(ヨーレイトψ)に応じた
ヨーレイト信号を出力するヨーレイトセンサである。
la~IC is a sensor serving as a state detection means for detecting the driving and running state of the vehicle, and outputs a detection signal to the electrical control device 6. lb is a front wheel steering angle sensor that detects the rotation of the steering wheel IO and outputs a front wheel steering angle signal according to the steering angle θ of the front wheels 9; 1a detects the rotational speed of the axle or wheel and outputs a front wheel steering angle signal according to the steering angle θ of the front wheels 9; The vehicle speed sensor 1c outputs a vehicle speed signal, and is a yaw rate sensor composed of a gyro or the like and outputs a yaw rate signal corresponding to the rotational angular velocity (yaw rate ψ) of the vehicle around the center of gravity of the vehicle.

制御装置6を第3図のブロック図に基づいて説明する。The control device 6 will be explained based on the block diagram of FIG.

制御装置6は、車速センサ1aからの車速信号を波形成
形してマイクロコンピュータ60に取り込むための波形
成形回路61と、後輪操舵角センサ2、前輪操舵角セン
サlb、ヨーレイトセンサICからの各信号を取り込む
ためのアナログバッファ63と、アナログデジタル変換
を行うA/Dコンバータ64と、マイクロコンピュータ
60からの電流指令値信号1.に応じた電流■を直流サ
ーボモータ5に供給する駆動回路180から構成される
The control device 6 includes a waveform shaping circuit 61 for waveform-shaping the vehicle speed signal from the vehicle speed sensor 1a and inputting it into the microcomputer 60, and each signal from the rear wheel steering angle sensor 2, front wheel steering angle sensor lb, and yaw rate sensor IC. an analog buffer 63 for taking in the current command value signal 1. The drive circuit 180 supplies the DC servo motor 5 with a current corresponding to the current.

次に制御装置6とマイクロコンピュータ60の処理手順
を第4図に示すフローチャートに従って説明する。
Next, the processing procedure of the control device 6 and the microcomputer 60 will be explained according to the flowchart shown in FIG.

まずステップS1にて初期化された後、ステップS2に
て、車速センサlaからの車速信号よりその周期を求め
車速■を算出する。次にステップS3にて、所定周期T
s毎に各種A/D変換データを取込む。そして、ステッ
プS4ではこれらA/D変換データより前輪操舵角θ1
、実ヨーレイトψ、後輪実舵角θ1、前輪操舵角速度δ
1、後輪操舵角速度θ、を算出する。ここで、前輪操舵
角速度θ、および後輪操舵角速度θ、は前記A/D変換
周期T3の逓倍周期k T s毎の各々A/D変換デー
タの変化量を周期に’l’sで除算することにより算出
される。
First, after being initialized in step S1, in step S2, the cycle is determined from the vehicle speed signal from the vehicle speed sensor la, and the vehicle speed ■ is calculated. Next, in step S3, a predetermined period T
Various A/D conversion data are taken every s. Then, in step S4, the front wheel steering angle θ1 is determined based on these A/D conversion data.
, actual yaw rate ψ, rear wheel actual steering angle θ1, front wheel steering angular speed δ
1. Calculate the rear wheel steering angular velocity θ. Here, the front wheel steering angular velocity θ and the rear wheel steering angular velocity θ are calculated by dividing the amount of change in the A/D conversion data for each multiplication period k T s of the A/D conversion period T3 by the period 'l's. It is calculated by

ステップS5では、第5図に示す車速Vに応じた目標ヨ
ーレイトゲイン特性すを求め、これに前輪操舵角θ、を
乗ずことにより、遅延前の目標ヨーレイトψ、1を算出
し、演算周期Tc毎に一旦マイクロコンピュータ内のメ
モリに順次格納していく。ステップS6及びステップS
7では、走行状態に応じた遅延後の目標ヨーレイトナ工
を算出し、出力する。まず、ステップS6では、走行状
態に応じた遅延度Nを算出する。これは、まず第6図(
a)に示すようなマツプに基づいて車速Vに応じた遅延
度Nvを算出する。この遅延度N、は、高速時には前述
実ヨーレイトの検出遅れに見合った時間遅れが得られる
よう設定されており、中・定速時には遅れを小さく(中
速域で最も小さく)するよう設定されたものである。次
に、第6図(b)に示すようなマツプに基づいて前輪操
舵角1θ、1(絶対値)に応じた遅延度Nθを算出する
。この遅延度N、は、前輪操舵角の小さい範囲では遅れ
を大きくし、前輪操舵角が大きくなる(急激な車両旋回
時等)につれ徐々に遅れが小さくなるよう設定している
。また、第6図(C)に示すような前輪の操舵角速度1
θf 1に応じた遅延度N6を算出する。この遅延度N
eは、(急激なステアリング操作時)操舵角速度が所定
値以上になったら急激に遅延度が減少するよう設定され
ている。そして、最終的な遅延度Nは、例えば最小値と
してN=min、(Nv 、NB 、NM )によって
算出することにより、急激なステアリング操作時等は優
先して遅延度を下げることが可能である。
In step S5, the target yaw rate gain characteristic according to the vehicle speed V shown in FIG. Once stored in the memory of the microcomputer in sequence. Step S6 and Step S
In step 7, the target yaw rate toner after the delay according to the running condition is calculated and output. First, in step S6, a delay degree N according to the driving state is calculated. First of all, this can be seen in Figure 6 (
The degree of delay Nv according to the vehicle speed V is calculated based on the map shown in a). This delay degree N is set to provide a time delay commensurate with the detection delay of the actual yaw rate mentioned above at high speeds, and to reduce the delay (minimum in the medium speed range) at medium and constant speeds. It is something. Next, based on a map as shown in FIG. 6(b), a delay degree Nθ corresponding to the front wheel steering angle 1θ, 1 (absolute value) is calculated. This delay degree N is set such that the delay is large in a range where the front wheel steering angle is small, and the delay becomes gradually smaller as the front wheel steering angle becomes larger (such as when the vehicle turns suddenly). Moreover, the steering angular velocity 1 of the front wheels as shown in FIG. 6(C)
A delay degree N6 according to θf 1 is calculated. This delay N
e is set so that the degree of delay sharply decreases when the steering angular velocity exceeds a predetermined value (during sudden steering operation). Then, by calculating the final delay N, for example, as the minimum value, N=min, (Nv, NB, NM), it is possible to lower the delay with priority during sudden steering operations, etc. .

次にステップS7では、ステップS6で算出された遅延
度Nにしたがって、ステップS5で算出されメモリ上に
格納されている遅延前の目標ヨーレイトψ□のうちで、
Nサイクル前の遅延前目標ヨーレイトψMIIN) を
取り出し、このψH1fN)  を目標ヨーレイト信号
として出力する。これによって第7図(a)に示す前輪
操舵角θ、の変化に供なう目標ヨーレイトφ、の変化は
、第7図(ト))に示すように遅延度N=Oのときの点
線で示す目標ヨーレイト(これは、最新の遅延前目標ヨ
ーレイトψM+ +01に等しい)に対して、演算周期
TcにNを乗じた時間TcNだけ時間遅れして出力され
ることになる。
Next, in step S7, according to the delay degree N calculated in step S6, out of the target yaw rate ψ□ before delay calculated in step S5 and stored in the memory,
The pre-delay target yaw rate ψMIIN) N cycles before is extracted and this ψH1fN) is output as the target yaw rate signal. As a result, the change in the target yaw rate φ due to the change in the front wheel steering angle θ shown in FIG. With respect to the target yaw rate shown (which is equal to the latest pre-delay target yaw rate ψM+ +01), the output is delayed by a time TcN obtained by multiplying the calculation period Tc by N.

ステップS8では、目標ヨーレイトψ、と実ヨーレイト
ψとの誤差ΔEを算出し、ステップS9でこの誤差ΔE
を小さくするよういわゆるPID制御演算によって、後
輪の操舵角指令位置θ。を算出する。
In step S8, the error ΔE between the target yaw rate ψ and the actual yaw rate ψ is calculated, and in step S9 this error ΔE
By so-called PID control calculation, the rear wheel steering angle command position θ is reduced. Calculate.

ステップSIOでは、後輪の操舵角指令位置θ。In step SIO, the rear wheel steering angle command position θ is determined.

とステップS4で算出された後輪実舵角θ、と操舵速度
δ、とから、一般に公知の直流サーボモータを用いた速
度フィードバック型位置決めサーボ(M’jlを行い、
θ0とθ1との誤差と操舵速度θ1とが共にOに収束す
るようにサーボモータへの電流指令値I、を算出し、ス
テップSllにて駆動回路180に出力するものである
From the rear wheel actual steering angle θ calculated in step S4, and the steering speed δ, a speed feedback positioning servo (M'jl) using a generally known DC servo motor is performed.
A current command value I to the servo motor is calculated so that the error between θ0 and θ1 and the steering speed θ1 both converge to O, and is output to the drive circuit 180 in step Sll.

なお、上述実施例では走行状態検出手段として車速セン
サ、前輪操舵角センサ、ヨーレイトセンサのみを用いた
が、例えばアクセルセンサ、プレーキスインチ等のセン
サ類を追加することにより車軸の加減速状態を検出し、
加減速状態に応じた目標ヨーレイトの応答遅れを持たせ
るは容易に可能である。また、遅延度Nに応じた目標ヨ
ーレイトの応答遅れは、最新の遅延前目標ヨーレイトか
らN回前の遅延前目標ヨーレイトまでの移動平均計算に
て最終的な目標ヨーレイトを算出することにより、生じ
る応答遅れとすることも可能である。
In the above embodiment, only the vehicle speed sensor, front wheel steering angle sensor, and yaw rate sensor were used as the driving state detection means, but the acceleration/deceleration state of the axle can be detected by adding sensors such as an accelerator sensor and a placket inch. death,
It is easily possible to provide a response delay for the target yaw rate depending on the acceleration/deceleration state. In addition, the response delay of the target yaw rate according to the delay degree N is determined by calculating the final target yaw rate by calculating the moving average from the latest pre-delay target yaw rate to the N times previous pre-delay target yaw rate. It is also possible to set it as a delay.

さらにDCサーボモータを備えた後輪操舵機構の例を示
したが、パルスモータを備えた後輪操舵機構を用いても
よい。
Furthermore, although an example of a rear wheel steering mechanism equipped with a DC servo motor has been shown, a rear wheel steering mechanism equipped with a pulse motor may also be used.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したように本発明は、車両の走行状態に
応じて算出される目標ヨーレイトに走行状態に応した応
答遅れを持たせることにより、ヨーレイトフィードバッ
ク制御の後輪操舵制御性を大幅に改善するものであり、
よって常に安定して所望の車軸ヨーレイトゲイン特性を
得ることを可能とするものである。さらに、定常的なヨ
ーレイトゲイン特性を安定化するのみならず、過渡的に
も走行状態の変化に応じた後輪操舵が可能となって、従
来にも増してよりきめの細かい車軸の操縦安定性を得る
ことが可能な車軸用後輪操舵装置を提供するものである
As explained in detail above, the present invention significantly improves the rear wheel steering controllability of yaw rate feedback control by giving the target yaw rate calculated according to the driving condition of the vehicle a response delay corresponding to the driving condition. and
Therefore, it is possible to always stably obtain desired axle yaw rate gain characteristics. Furthermore, it not only stabilizes the steady yaw rate gain characteristics, but also enables transient rear wheel steering in response to changes in driving conditions, resulting in more fine-grained axle steering stability than ever before. An object of the present invention is to provide a rear wheel steering device for an axle that can obtain the following characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の構成を示すブロック図、第2図は本発
明の一実施例を示す模式構成図、第3図は電気的制御装
置(6)を示す電気回路構成図、第4図はマイクロコン
ピュータ(60)の手順ヲ示すフローチャート、第5図
は車速(V)に対する目標ヨーレイトゲイン特性図、第
6図(a)、 (b)。 (C)は各々車速■、前輪操舵角速度δ2.前輪操舵角
速度θ、に対する遅延度Nv、 Nf、、 Ne’を示
す特性図、第7図は前輪操舵にともなう目標ヨーレイト
とその時間遅れを説明する図である。 1a・・・車速センサ、lb・・・前輪操舵角センサ。 1c・・・ヨーレイトセンサ、2・・・後輪操舵角セン
サ。 4・・・減速ギア、5・・・直流サーボモータ、6・・
・電気的制御装置、8・・・後輪、9・・・前輪、Ml
・・・状態検出手段、M2・・・目標ヨーレイト演算手
段、M3・・・遅延手段1M45・・・後輪操舵角演算
手段、M6・・・後輪位置決め制御手段、M7・・・後
輪操舵機構。 に□ m) 第7図
Fig. 1 is a block diagram showing the configuration of the present invention, Fig. 2 is a schematic block diagram showing an embodiment of the present invention, Fig. 3 is an electric circuit block diagram showing an electrical control device (6), and Fig. 4 is a block diagram showing the configuration of the present invention. 5 is a flowchart showing the procedure of the microcomputer (60), FIG. 5 is a target yaw rate gain characteristic diagram with respect to vehicle speed (V), and FIGS. 6(a) and (b). (C) are vehicle speed ■, front wheel steering angular velocity δ2, respectively. FIG. 7 is a characteristic diagram showing the delay degrees Nv, Nf, Ne' with respect to the front wheel steering angular velocity θ, and is a diagram illustrating the target yaw rate and its time delay associated with front wheel steering. 1a...Vehicle speed sensor, lb...Front wheel steering angle sensor. 1c... Yaw rate sensor, 2... Rear wheel steering angle sensor. 4... Reduction gear, 5... DC servo motor, 6...
・Electrical control device, 8... Rear wheel, 9... Front wheel, Ml
... State detection means, M2 ... Target yaw rate calculation means, M3 ... Delay means 1M45 ... Rear wheel steering angle calculation means, M6 ... Rear wheel positioning control means, M7 ... Rear wheel steering mechanism. □ m) Figure 7

Claims (6)

【特許請求の範囲】[Claims] (1)電気的指令値をうけて車両の後輪舵角を調整する
後輪操舵機構と、 車両の走行状態を検出し、少なくとも車速を検出する車
速センサと、前輪操舵角を検出する前輪操舵角センサと
、車両に発生するヨーレイト(ヨー角速度)を検出する
ヨーレイトセンサとから成る走行状態検出手段と、 該走行状態検出手段にて検出された走行状態に応じて目
標ヨーレイトを算出する目標ヨーレイト演算手段と、 該目標ヨーレイトと前記ヨーレイトセンサから検出され
た実ヨーレイトとの誤差を小さくするよう後輪の操舵角
指令位置を算出する後輪操舵角演算手段と、 該後輪操舵角指令位置に後輪を操舵位置決めするよう前
記後輪操舵機構に電気的指令値を発生する後輪位置決め
制御手段とを備えた装置において、前記走行状態検出手
段にて検出される車両の走行状態に応じた遅延度Nを算
出するとともに、前記目標ヨーレイト演算手段で算出さ
れた目標ヨーレイトを出力する際に前記遅延度Nに応じ
た応答遅れを持たせる遅延手段を備えることを特徴とす
る車両用後輪操舵装置。
(1) A rear wheel steering mechanism that adjusts the rear wheel steering angle of the vehicle in response to an electrical command value, a vehicle speed sensor that detects the running state of the vehicle and at least the vehicle speed, and a front wheel steering that detects the front wheel steering angle. A driving state detection means comprising an angle sensor and a yaw rate sensor that detects a yaw rate (yaw angular velocity) generated in the vehicle; and a target yaw rate calculation that calculates a target yaw rate according to the driving state detected by the driving state detection means. means, rear wheel steering angle calculating means for calculating a rear wheel steering angle command position so as to reduce an error between the target yaw rate and the actual yaw rate detected by the yaw rate sensor; and rear wheel positioning control means for generating an electrical command value to the rear wheel steering mechanism so as to steer and position the wheels, wherein the degree of delay is determined according to the running state of the vehicle detected by the running state detecting means. A rear wheel steering system for a vehicle, comprising a delay means for calculating the target yaw rate calculated by the target yaw rate calculation means and providing a response delay corresponding to the delay degree N when outputting the target yaw rate calculated by the target yaw rate calculation means.
(2)前記遅延手段にて算出される遅延度Nは、前記車
速センサより検出される車速に応じて算出される遅延度
N_vであることを特徴とする特許請求の範囲第1項記
載の車両用後輪操舵装置。
(2) The vehicle according to claim 1, wherein the delay degree N calculated by the delay means is a delay degree N_v calculated according to the vehicle speed detected by the vehicle speed sensor. rear wheel steering device.
(3)前記遅延手段にて算出される遅延度Nは、前記前
輪操舵角センサより検出される前輪操舵角に応じて算出
される遅延度N_eであることを特徴とす特許請求の範
囲第1項記載の車両用後輪操舵装置。
(3) The degree of delay N calculated by the delay means is the degree of delay N_e calculated according to the front wheel steering angle detected by the front wheel steering angle sensor. The rear wheel steering device for a vehicle as described in 2.
(4)前記遅延手段にて算出される遅延度Nは、前記前
輪操舵角センサより検出される前輪操舵角の時間的変化
率すなわち前輪操舵角速度に応じて算出される遅延度N
_■であることを特徴とする特許請求の範囲第1項記載
の車両用後輪操舵装置。
(4) The delay degree N calculated by the delay means is the delay degree N calculated according to the temporal change rate of the front wheel steering angle detected by the front wheel steering angle sensor, that is, the front wheel steering angular velocity.
The rear wheel steering device for a vehicle according to claim 1, characterized in that: _■.
(5)前記遅延手段にて算出される遅延度Nは、前記車
速に応じて算出される遅延度N_vと、前記前輪操舵角
に応じて算出される遅延度N_θと、前記前輪操舵角の
微分値に応じて算出される遅延度N_■の内の最小値で
あることを特徴とする特許請求の範囲第1項記載の車両
用後輪操舵装置。
(5) The degree of delay N calculated by the delay means is the differential of the degree of delay N_v calculated according to the vehicle speed, the degree of delay N_θ calculated according to the front wheel steering angle, and the front wheel steering angle. The rear wheel steering system for a vehicle according to claim 1, wherein the delay is the minimum value of the delay degrees N_■ calculated according to the values.
(6)前記遅延手段における遅延度にNに応じた応答遅
れは、遅延度Nに比例した所定の時間または位相遅れで
あることを特徴とする特許請求の範囲第1項記載の車両
用後輪操舵装置。
(6) A rear wheel for a vehicle according to claim 1, wherein the response delay according to the delay degree N in the delay means is a predetermined time or phase delay proportional to the delay degree N. Steering device.
JP62023152A 1987-02-03 1987-02-03 Rear wheel steering system for vehicles Expired - Lifetime JP2518245B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62023152A JP2518245B2 (en) 1987-02-03 1987-02-03 Rear wheel steering system for vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62023152A JP2518245B2 (en) 1987-02-03 1987-02-03 Rear wheel steering system for vehicles

Publications (2)

Publication Number Publication Date
JPS63192667A true JPS63192667A (en) 1988-08-10
JP2518245B2 JP2518245B2 (en) 1996-07-24

Family

ID=12102608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62023152A Expired - Lifetime JP2518245B2 (en) 1987-02-03 1987-02-03 Rear wheel steering system for vehicles

Country Status (1)

Country Link
JP (1) JP2518245B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5078226A (en) * 1989-06-15 1992-01-07 Nippon Soken, Inc. Power steering apparatus for a vehicle with yaw control
US5274555A (en) * 1990-08-10 1993-12-28 Matsushita Electric Industrial Co., Ltd. Controlling apparatus of steering angle of rear wheels of four-wheel steering vehicle
US5457632A (en) * 1993-01-19 1995-10-10 Toyota Jidosha Kabushiki Kaisha Vehicle steering control system wherein steering angle change is limited to within a predetermined range upon occurrence of abnormality in detected vehicle yaw rate
JP2010167817A (en) * 2009-01-20 2010-08-05 Toyota Central R&D Labs Inc Steering control device and program

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58201102A (en) * 1982-05-19 1983-11-22 Hitachi Ltd Controlling method of feedback controlling system
JPS60124572A (en) * 1983-12-09 1985-07-03 Nippon Denso Co Ltd Steering system for car

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58201102A (en) * 1982-05-19 1983-11-22 Hitachi Ltd Controlling method of feedback controlling system
JPS60124572A (en) * 1983-12-09 1985-07-03 Nippon Denso Co Ltd Steering system for car

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5078226A (en) * 1989-06-15 1992-01-07 Nippon Soken, Inc. Power steering apparatus for a vehicle with yaw control
US5274555A (en) * 1990-08-10 1993-12-28 Matsushita Electric Industrial Co., Ltd. Controlling apparatus of steering angle of rear wheels of four-wheel steering vehicle
US5502639A (en) * 1990-08-10 1996-03-26 Matsushita Electric Industrial Co., Ltd. Controlling apparatus of steering angle of rear wheels of four-wheel steering vehicle
US5457632A (en) * 1993-01-19 1995-10-10 Toyota Jidosha Kabushiki Kaisha Vehicle steering control system wherein steering angle change is limited to within a predetermined range upon occurrence of abnormality in detected vehicle yaw rate
DE4401333C2 (en) * 1993-01-19 2002-08-01 Toyota Motor Co Ltd The vehicle steering control system
JP2010167817A (en) * 2009-01-20 2010-08-05 Toyota Central R&D Labs Inc Steering control device and program

Also Published As

Publication number Publication date
JP2518245B2 (en) 1996-07-24

Similar Documents

Publication Publication Date Title
JP3179271B2 (en) Control method of front and rear wheel steering device
EP1577194A1 (en) Steering apparatus for vehicle and method for controlling the same
JP2004522637A (en) Position control method for electric drive device and steering method for vehicle having steer-by-wire steering
JP3360528B2 (en) Vehicle motion control device
JPH01202581A (en) Rear wheel steering angle control method in front-rear-wheel-steering vehicle
JP2005343315A (en) Vehicular steering device
JP2001213340A (en) Steering device for vehicle
JP2021154895A (en) Steering control device
JPS63192667A (en) Rear wheel steering device for vehicle
JP2020168952A (en) Steering control device
JP3905142B2 (en) Trackless vehicle running characteristics stabilization system, power steering system, and hydraulic steering device
JP3182972B2 (en) Rear wheel steering control device for vehicle
JP5617499B2 (en) Steering angle control device for vehicle
JP2717676B2 (en) Rear wheel steering control device for vehicle
JP2770505B2 (en) Vehicle rear wheel steering angle control device
JPS60148770A (en) Steering device for vehicles
JPS6341281A (en) Actual steering angle control device for vehicle
JP2876817B2 (en) Vehicle rear wheel steering angle control device
JPS6328763A (en) Steering device for vehicle
JP2598787B2 (en) Rear wheel steering system for vehicles
JP3212182B2 (en) Control method of rear wheel steering device
JP2023116317A (en) Steering control device for vehicle
JP2023044346A (en) steering control system
JP2940370B2 (en) Auxiliary steering angle control device for vehicles
JP2988170B2 (en) Four-wheel steering system