JPH069983B2 - Power steering device for front and rear wheel steered vehicles - Google Patents
Power steering device for front and rear wheel steered vehiclesInfo
- Publication number
- JPH069983B2 JPH069983B2 JP17878285A JP17878285A JPH069983B2 JP H069983 B2 JPH069983 B2 JP H069983B2 JP 17878285 A JP17878285 A JP 17878285A JP 17878285 A JP17878285 A JP 17878285A JP H069983 B2 JPH069983 B2 JP H069983B2
- Authority
- JP
- Japan
- Prior art keywords
- steering
- rear wheel
- amount
- shaft
- reaction force
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D7/00—Steering linkage; Stub axles or their mountings
- B62D7/06—Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins
- B62D7/14—Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering
- B62D7/15—Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering characterised by means varying the ratio between the steering angles of the steered wheels
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Steering-Linkage Mechanisms And Four-Wheel Steering (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、操舵ハンドルの回動に応じて前輪及び後輪を
転舵する前後輪転舵車の舵取装置に係り、特に操舵ハン
ドルに結合した操舵軸と後輪を転舵する後輪転舵機構を
機械的に分離してそれらの連係を電気的制御装置で置換
するようにした前後輪転舵車の動力舵取装置に関する。Description: TECHNICAL FIELD The present invention relates to a steering device for a front and rear wheel steered vehicle that steers front wheels and rear wheels in response to rotation of a steering handle, and particularly relates to a steering handle. The present invention relates to a power steering apparatus for a front and rear wheel steered vehicle in which a steering wheel and a rear wheel steering mechanism that steers the rear wheels are mechanically separated and their linkage is replaced by an electric control device.
従来、この種の技術は、特開昭56−108351号公
報及び特開昭57−15066号公報に示されるよう
に、操舵レバーの操舵量を光学的に検出し、又は前輪転
舵機構の転舵角速度を電気的に検出して後輪転舵機構の
転舵角を電気的に制御するようにしている。かかる構成
により、操舵レバーと後輪転舵機構、又は前輪転舵機構
と後輪転舵機構とを機械的に連結する連結機構をなくし
て連結機構の配設に必要な空間を有効に利用するように
している。Conventionally, this type of technique has been disclosed in Japanese Patent Laid-Open Nos. 56-108351 and 57-15066, in which the steering amount of a steering lever is optically detected or the front wheel steering mechanism is turned. The steering angle speed is electrically detected to electrically control the steering angle of the rear wheel steering mechanism. With such a configuration, the connecting mechanism that mechanically connects the steering lever and the rear wheel steering mechanism or the front wheel steering mechanism and the rear wheel steering mechanism is eliminated, and the space necessary for disposing the connecting mechanism is effectively used. ing.
しかるに、上記従来の装置にあっては、操舵レバーの操
舵量又は前輪操舵機構の転舵量に基づいて電気的制御装
置が後輪転舵機構の転舵角を一方的に制御するので、後
輪が路面から受ける反力が操舵ハンドルに伝達されなく
なる。これにより、操舵ハンドルには後輪転舵による操
舵反力、保舵反力及び操舵ハンドルの復元力が逆送され
なくなって運転者は車両の転舵状態と一致した操舵感覚
で車両を運転できないので車両の操舵安定性が悪化す
る。However, in the above conventional device, the electric control device unilaterally controls the steering angle of the rear wheel steering mechanism based on the steering amount of the steering lever or the steering amount of the front wheel steering mechanism. The reaction force received from the road surface will not be transmitted to the steering wheel. As a result, the steering reaction force, steering reaction force and steering wheel restoring force due to the rear wheel steering are not sent back to the steering wheel, and the driver cannot drive the vehicle with a steering feeling that matches the steering state of the vehicle. Steering stability of the vehicle deteriorates.
本発明は、上記問題点に対処するため、操舵ハンドルに
付与される操舵力及び後輪が路面から受ける転舵反力に
基づいて操舵軸の回動を制御し、かつ操舵軸の回転角に
基づいて後輪の転舵角を制御することによって、操舵ハ
ンドルの回動に応じて後輪を転舵しかつ後輪の転舵に応
じた操舵反力、保舵反力及び操舵ハンドルの復元力を操
舵ハンドルに発生させるようにした前後輪転舵車の動力
舵取装置を提供しようとするものである。In order to solve the above problems, the present invention controls the rotation of the steering shaft based on the steering force applied to the steering wheel and the steering reaction force that the rear wheels receive from the road surface, and determines the rotation angle of the steering shaft. By controlling the steering angle of the rear wheels based on this, the rear wheels are steered according to the turning of the steering wheel, and the steering reaction force, the steering reaction force and the steering wheel restoration corresponding to the steering of the rear wheels are restored. An object of the present invention is to provide a power steering device for a front and rear wheel steered vehicle that generates force on a steering wheel.
かかる問題の解決にあたり、本発明の構成上の特徴は、
第1図に示すように、操舵ハンドル1(基本構成例の操
舵ハンドル20、及び具体的実施例の操舵ハンドル20
に対応)の回動に応じて前輪2(基本構成例の前輪33
a,33b、及び具体的実施例の前輪33a,33b、
及び変形例の車輪80a,80bに対応)及び後輪3
(基本構成例の後輪43a,43b、及び具体的実施例
の後輪43a,43b、及び変形例の車輪80a,80
bに対応)を転舵する前後輪転舵車の動力舵取装置にお
いて、操舵ハンドル1に結合した操舵軸4(基本構成例
の操舵軸21、及び具体的実施例の操舵軸21に対応)
と、該操舵軸4を回転駆動する操舵軸アクチュエータ5
(基本構成例の操舵軸モータ22、及び具体的実施例の
操舵軸モータ22に対応)と、前記操舵軸4の回動に応
じて前輪2を転舵する前輪転舵制御手段6(基本構成例
の前輪転舵軸モータ30、前輪転舵軸32、前輪転舵変
位量センサ37、前輪転舵軸モータ制御回路51、前輪
目標転舵量演算器57、前輪転舵変位量演算器58な
ど、及び具体的実施例の前輪転舵軸モータ30、前輪転
舵軸32、前輪転舵変位量センサ37、マイクロコンピ
ュータ71におけるステップ106〜108の前輪ステ
アリングギヤ比αfの算出処理、ステップ109の係数
Kmpf(式20)の算出処理、ステップ110,11
1の回転制御量Msf(式25)の算出及び出力処理な
ど、及び変形例のサーボ弁81、油圧シリンダ82、転
舵軸83、リニアアクチュエータ86などに対応)と、
後輪3に機械的に結合され後輪3を転舵する後輪転舵機
構7(基本構成例の後輪転舵軸モータ40、ピニオン4
1、後輪転舵軸42、ラック軸44など、及び具体的実
施例の後輪転舵軸モータ40、ピニオン41、後輪転舵
軸42、ラック軸44など、及び変形例のサーボ弁8
1、油圧シリンダ82、転舵軸83、リニアアクチュエ
ータ86などに対応)と、操舵ハンドル1から前記操舵
軸4に付与される操舵力を検出する操舵力センサ8(基
本構成例の操舵力センサ24、及び具体的実施例の操舵
力センサ24に対応)と、後輪3から前記後輪転舵機構
7に付与される後輪転舵反力を検出する後輪転舵反力セ
ンサ9(基本構成例の後輪転舵反力センサ48、及び具
体的実施例の後輪転舵反力センサ48、及び変形例の転
舵反力センサ85に対応)と、前記操舵軸4の基準位置
からの回転角を操舵変位量として検出する操舵変位量セ
ンサ10(基本構成例の操舵変位量センサ23、及び具
体的実施例の操舵変位量センサ23に対応)と、前記操
舵力センサ8出力に基づいて前記検出操舵力の増加に応
じて増加しかつ前記操舵軸4を操舵力の付与される方向
へ回転させる第1制御量を決定する第1制御量決定手段
11(基本構成例の操舵力演算器53、及び具体的実施
例のマイクロコンピュータ71におけるステップ110
の回転制御量Mm(式24)中の項Kmf・Fmの計算
処理に対応)と、前記後輪転舵反力センサ9出力に基づ
いて前記検出転舵反力の増加に応じて増加しかつ前記操
舵軸4を前記基準位置に復帰させる方向へ回転させる第
2制御量を決定する第2制御量決定手段12(基本構成
例の後輪転舵反力演算器56、及び具体的実施例のマイ
クロコンピュータ71におけるステップ106〜108
の後輪力逆送比βrの算出処理、ステップ109の係数
Ksfr(式23)の算出処理、ステップ110の回転
制御量Mm(式24)中の項Ksfr・Fsrの計算処
理に対応)と、前記第1制御量及び第2制御量を合成し
た操舵軸回転制御信号を前記操舵軸アクチュエータ5に
出力して前記操舵軸4の回転を制御する操舵軸回転制御
信号出力手段13(基本構成例の操舵軸モータ制御回路
50、具体的実施例のマイクロコンピュータ71におけ
るステップ110の回転制御量Mm(式24)中の項K
mf・Fm,Ksfr・Fsrの減算処理、ステップ1
11の回転制御量Mmの出力処理などに対応)と、前記
操舵変位量センサ10出力に基づいて後輪3の目標操舵
量を決定する後輪目標転舵量決定手段14(基本構成例
の後輪目標転舵量演算器59、及び具体的実施例のマイ
クロコンピュータ71におけるステップ106〜108
の後輪ステアリングギヤ比αrの算出処理、ステップ1
09の係数Kmpr(式21)の算出処理、ステップ1
10の回転制御量Msr(式26)中の項Kmpr・Y
mの計算処理に対応)と、前記決定後輪目標転舵量に応
じた後輪転舵制御信号を前記後輪転舵機構7に出力して
後輪の転舵量が前記決定後輪目標転舵量になるように前
記後輪転舵機構7を制御する後輪転舵制御信号出力手段
15(基本構成例の後輪転舵変位量センサ47、後輪転
舵軸モータ制御回路52及び後輪転舵変位量演算器6
0、及び具体的実施例の後輪転舵変位量センサ47、マ
イクロコンピュータ71におけるステップ110の回転
制御量Msr(式26)中の項Kspr・Ysrの計算
処理、同ステップ110の回転制御量Msr(式26)
中の項Kmpr・Ym,Kspr・Ysrの減算処理、
ステップ111の回転制御量Msrの出力処理などに対
応)とを備えたことにある。In solving such problems, the structural features of the present invention are as follows.
As shown in FIG. 1, a steering wheel 1 (a steering wheel 20 of a basic configuration example, and a steering wheel 20 of a specific embodiment)
Corresponding to the rotation of the front wheel 2 (the front wheel 33 of the basic configuration example).
a, 33b, and the front wheels 33a, 33b of the specific embodiment,
And the wheels 80a and 80b of the modified example) and the rear wheel 3
(The rear wheels 43a and 43b of the basic configuration example, the rear wheels 43a and 43b of the specific example, and the wheels 80a and 80 of the modified example.
In the power steering apparatus for a front and rear wheel steered vehicle that steers the steering wheel 4 (corresponding to b), the steering shaft 4 coupled to the steering wheel 1 (corresponding to the steering shaft 21 of the basic configuration example and the steering shaft 21 of the specific example).
And a steering shaft actuator 5 for rotationally driving the steering shaft 4.
(Corresponding to the steering shaft motor 22 of the basic configuration example and the steering shaft motor 22 of the specific embodiment), and the front wheel steering control means 6 for steering the front wheels 2 according to the rotation of the steering shaft 4 (basic configuration. Example front wheel steering shaft motor 30, front wheel steering shaft 32, front wheel steering displacement amount sensor 37, front wheel steering shaft motor control circuit 51, front wheel target steering amount calculator 57, front wheel steering displacement amount calculator 58, etc. , And the front wheel steering shaft motor 30, the front wheel steering shaft 32, the front wheel steering displacement sensor 37, the microcomputer 71 for calculating the front wheel steering gear ratio αf in steps 106 to 108, and the coefficient in step 109. Calculation process of Kmpf (formula 20), steps 110 and 11
Calculation and output processing of the rotation control amount Msf (equation 25) of 1 and corresponding to the servo valve 81, the hydraulic cylinder 82, the steered shaft 83, the linear actuator 86, etc. of the modified example),
A rear wheel steering mechanism 7 that is mechanically coupled to the rear wheel 3 to steer the rear wheel 3 (a rear wheel steering shaft motor 40, a pinion 4 and a basic configuration example).
1, a rear wheel steering shaft 42, a rack shaft 44, etc., and a rear wheel steering shaft motor 40, a pinion 41, a rear wheel steering shaft 42, a rack shaft 44, etc. of a specific embodiment, and a servo valve 8 of a modified example.
1, a hydraulic cylinder 82, a steered shaft 83, a linear actuator 86, etc.), and a steering force sensor 8 for detecting a steering force applied from the steering wheel 1 to the steering shaft 4 (the steering force sensor 24 of the basic configuration example). , And a steering force sensor 24 of a specific embodiment), and a rear wheel steering reaction force sensor 9 (for a basic configuration example) that detects a rear wheel steering reaction force applied from the rear wheels 3 to the rear wheel steering mechanism 7. The rear wheel steering reaction force sensor 48, the rear wheel steering reaction force sensor 48 of the specific embodiment, and the steering reaction force sensor 85 of the modified example) and the rotation angle of the steering shaft 4 from the reference position are steered. The steering displacement amount sensor 10 (corresponding to the steering displacement amount sensor 23 of the basic configuration example and the steering displacement amount sensor 23 of the specific embodiment) that detects the displacement amount, and the detected steering force based on the output of the steering force sensor 8. Increases with the increase of and before First control amount determining means 11 for determining a first control amount for rotating the steering shaft 4 in the direction in which the steering force is applied (steps in the steering force calculator 53 of the basic configuration example and the microcomputer 71 of the specific example). 110
Corresponding to the calculation processing of the term Kmf · Fm in the rotation control amount Mm (equation 24)) and the output of the rear wheel steering reaction force sensor 9 and increase in accordance with the increase in the detected steering reaction force, and Second control amount determining means 12 for determining a second control amount for rotating the steering shaft 4 in the direction of returning to the reference position (a rear wheel steering reaction force calculator 56 of a basic configuration example, and a microcomputer of a specific embodiment). Steps 106 to 108 in 71
Corresponding to the calculation process of the rear wheel force reverse feed ratio βr, the calculation process of the coefficient Ksfr (equation 23) in step 109, and the calculation process of the term Ksfr · Fsr in the rotation control amount Mm (equation 24) in step 110). A steering shaft rotation control signal output unit 13 for controlling the rotation of the steering shaft 4 by outputting a steering shaft rotation control signal obtained by combining the first control amount and the second control amount to the steering shaft actuator 5 (of the basic configuration example). The term K in the rotation control amount Mm (equation 24) of step 110 in the steering shaft motor control circuit 50 and the microcomputer 71 of the specific example.
Subtraction processing of mf · Fm, Ksfr · Fsr, step 1
11 corresponding to the output processing of the rotation control amount Mm of the rear wheel 11) and the target steering amount of the rear wheel 3 based on the output of the steering displacement sensor 10 (rear wheel target turning amount determining means 14 (after the basic configuration example). Steps 106 to 108 in the wheel target turning amount calculator 59 and the microcomputer 71 of the specific embodiment.
Rear wheel steering gear ratio αr calculation process, step 1
09 coefficient Kmpr (formula 21) calculation process, step 1
The term Kmpr · Y in the rotation control amount Msr (equation 26) of 10
m) and a rear-wheel steering control signal according to the determined rear-wheel target steering amount to the rear-wheel steering mechanism 7 so that the rear-wheel steering amount is the determined rear-wheel target steering amount. The rear wheel steering control signal output means 15 for controlling the rear wheel steering mechanism 7 so as to obtain the desired amount (a rear wheel steering displacement amount sensor 47, a rear wheel steering axis motor control circuit 52, and a rear wheel steering displacement amount calculation). Bowl 6
0, the rear wheel steering displacement amount sensor 47 of the specific embodiment, the calculation process of the term Kspr · Ysr in the rotation control amount Msr (equation 26) of step 110 in the microcomputer 71, the rotation control amount Msr of the same step 110 ( Formula 26)
Subtraction processing of the inside terms Kmpr · Ym, Kspr · Ysr,
(Corresponding to output processing of the rotation control amount Msr in step 111).
上記のように構成した本発明においては、操舵力センサ
8が操舵ハンドル1の回動により操舵軸4に付与される
操舵力を検出し、この検出操舵力に基づいて第1制御量
決定手段11が操舵軸4を操舵力の付与される方向に回
転させる第1制御量を決定し、この第1制御量により操
舵軸回転制御信号出力手段13が操舵軸アクチュエータ
5に操舵軸回転制御信号を出力して、操舵軸アクチュエ
ータ5が操舵軸4を操舵力の付与される方向に回転させ
る。この操舵軸4の回転に応じて前輪転舵制御手段6は
前輪2を転舵する。また、この操舵軸4の基準位置から
の回転角は操舵変位量として操舵変位量センサ10によ
り検出され、この検出操舵変位量に基づいて後輪目標転
舵量決定手段14、後輪転舵制御信号出力手段15及び
後輪転舵機構7が後輪3を転舵するので、後輪3は操舵
ハンドル1の回動操作に応じて転舵される。このとき、
後輪3は路面から転舵方向とは逆方向の後輪転舵反力を
受け、この後輪転舵反力は後輪転舵反力センサ9によっ
て検出されて、この検出転舵反力に基づいて第2制御量
決定手段12が操舵軸4を基準位置に復帰させる方向に
回転させるための第2制御量を決定し、この第2制御量
は操舵軸回転制御信号出力手段13によって第1制御量
と合成される。そして、この合成結果に基づき、操舵軸
回転制御信号出力手段13が操舵軸回転制御信号を操舵
軸アクチュエータ5に出力して操舵軸4の回転が制御さ
れる。In the present invention configured as described above, the steering force sensor 8 detects the steering force applied to the steering shaft 4 by the rotation of the steering wheel 1, and the first control amount determining means 11 is based on the detected steering force. Determines a first control amount for rotating the steering shaft 4 in the direction in which the steering force is applied, and the steering shaft rotation control signal output means 13 outputs a steering shaft rotation control signal to the steering shaft actuator 5 by this first control amount. Then, the steering shaft actuator 5 rotates the steering shaft 4 in the direction in which the steering force is applied. The front wheel steering control means 6 steers the front wheels 2 according to the rotation of the steering shaft 4. The rotation angle of the steering shaft 4 from the reference position is detected by the steering displacement amount sensor 10 as the steering displacement amount, and the rear wheel target steering amount determination means 14 and the rear wheel steering control signal are based on the detected steering displacement amount. Since the output means 15 and the rear wheel steering mechanism 7 steer the rear wheels 3, the rear wheels 3 are steered according to the turning operation of the steering handle 1. At this time,
The rear wheels 3 receive a rear wheel steering reaction force in a direction opposite to the steering direction from the road surface, and this rear wheel steering reaction force is detected by the rear wheel steering reaction force sensor 9, and based on this detected steering reaction force. The second control amount determining means 12 determines a second control amount for rotating the steering shaft 4 in the direction of returning to the reference position, and the second control amount is determined by the steering shaft rotation control signal output means 13 as the first control amount. Is synthesized with. Then, based on the combined result, the steering shaft rotation control signal output means 13 outputs a steering shaft rotation control signal to the steering shaft actuator 5 to control the rotation of the steering shaft 4.
このような作用により、運転者が車両を回転させるため
操舵ハンドル1を回動操作している場合、操舵軸4には
上記後輪転舵反力による操舵軸4を回転させる力が操舵
ハンドル1の回動とは反対方向に操舵反力として作用す
るので、操舵ハンドル1には後輪転舵反力に基づく操舵
反力が逆送される。また、運転者が操舵ハンドル1を回
動位置に保持している場合及び操舵ハンドル1を中立位
置に戻す場合、上記後輪転舵反力によって操舵軸4を回
転させる力が操舵軸4を基準位置に戻す方向に作用する
ので、後輪転舵反力に基づく保舵反力及び操舵ハンドル
1の復元力が操舵ハンドル1に与えられる。上記のよう
に、操舵ハンドル1にはその回動操作に応じた後輪転舵
反力に基づく操舵反力、保舵反力及び復元力が逆送され
るので車両の操縦安定性が良好となる。Due to such an action, when the driver is rotating the steering wheel 1 to rotate the vehicle, the force for rotating the steering shaft 4 by the rear wheel steering reaction force is applied to the steering shaft 4 by the steering wheel 1. Since it acts as a steering reaction force in the opposite direction to the rotation, the steering reaction force based on the rear wheel turning reaction force is sent back to the steering wheel 1. Further, when the driver holds the steering wheel 1 at the turning position and when the steering wheel 1 is returned to the neutral position, the force for rotating the steering shaft 4 by the rear wheel steering reaction force causes the steering shaft 4 to move to the reference position. The steering holding reaction force based on the rear wheel turning reaction force and the restoring force of the steering wheel 1 are applied to the steering wheel 1. As described above, the steering reaction force, the steering reaction force, and the restoring force based on the rear wheel turning reaction force corresponding to the turning operation are sent back to the steering handle 1, so that the steering stability of the vehicle is improved. .
a.基本構成 本発明の基本構成を図面を用いて説明すると、第2図
は、運転者が操作するマスタ部Aと、前輪を転舵する第
1スレーブ部B1と、後輪を転舵する第2スレーブ部B
2と、マスタ部A、第1スレーブ部B1及び第2スレー
ブ部B2を電気的に制御する電気制御装置Cから成る車
両用動力舵取装置の概略を示している。a. Basic Configuration The basic configuration of the present invention will be described with reference to the drawings. FIG. 2 shows a master unit A operated by a driver, a first slave unit B1 that steers front wheels, and a second slave unit B1 that steers rear wheels. Slave part B
2 shows an outline of a vehicle power steering system including an electric control device C that electrically controls the master unit A, the first slave unit B1, and the second slave unit B2.
マスタ部Aは、操舵ハンドル20に固着された操舵軸2
1と同軸21の下端に設けられ操舵軸21を回転駆動す
る操舵軸モータ22とを備え、操舵軸21には、操舵軸
モータ22による同軸21の基準位置からの回転角を検
出し同回転角に比例した操舵変位量Ymを表わす信号を
発生する操舵変位量センサ23と、操舵ハンドル20か
ら操舵軸21に付与される操舵力Fmに比例して同軸2
1に発生する捩れ量を検出する歪みゲージより成り、操
舵力Fmを表す信号を発生する操舵力センサ24が取付
けられている。なお、この場合、操舵ハンドル20及び
操舵軸21が左(又は右)回転したとき、操舵力Fm及
び操舵変位量Ymは各々正(又は負)となる。The master unit A includes the steering shaft 2 fixed to the steering handle 20.
1 and a steering shaft motor 22 provided at the lower end of the coaxial shaft 21 to rotate and drive the steering shaft 21, and the steering shaft 21 detects the rotation angle of the coaxial shaft 21 from the reference position by the steering shaft motor 22 and detects the same rotation angle. The steering displacement amount sensor 23 that generates a signal indicating the steering displacement amount Ym proportional to the steering wheel 20 and the coaxial force 2 that is proportional to the steering force Fm applied from the steering wheel 20 to the steering shaft 21.
A steering force sensor 24, which is composed of a strain gauge for detecting the amount of twist generated in No. 1 and which generates a signal representing the steering force Fm, is attached. In this case, when the steering handle 20 and the steering shaft 21 rotate left (or right), the steering force Fm and the steering displacement amount Ym are positive (or negative), respectively.
第1スレーブ部B1は、電気制御装置Cにより回転制御
される前輪転舵軸モータ30と、同モータ30により一
端が結合され他端にピニオン31を有する前輪転舵軸3
2と、ピニオン31に噛合して左右前輪33a,33b
を転舵制御するラック軸34を備えている。ラック軸3
4は、左右タイロッド35a,35b及び左右ナックル
アーム36a,36bを介して左右前輪33a,33b
に各々接続されて、同軸34の車体横方向への往復運動
により、左右前輪33a,33bを転舵する。前輪転舵
軸32には、前輪転舵軸モータ30による同軸32の基
準位置からの回転角を検出して同回転角に比例した前輪
転舵変位量Ysfを表す信号を発生する前輪転舵変位量
センサ37と、左右前輪33a,33bから前輪転舵軸
32に付与される前輪転舵反力Fsfに比例して前輪転
舵軸32に発生する捩れ量を検出する歪みゲージより成
り、前輪転舵反力Fsfを表す信号を発生する前輪転舵
反力センサ38が取付けられている。The first slave unit B1 has a front wheel steering shaft motor 30 whose rotation is controlled by the electric control device C, and a front wheel steering shaft 3 having one end coupled by the motor 30 and a pinion 31 at the other end.
2 and the left and right front wheels 33a, 33b meshing with the pinion 31
The rack shaft 34 for steering control is provided. Rack shaft 3
4 is a left and right front wheel 33a, 33b via left and right tie rods 35a, 35b and left and right knuckle arms 36a, 36b.
The left and right front wheels 33a and 33b are steered by the reciprocating motion of the coaxial shaft 34 in the lateral direction of the vehicle body. The front wheel turning shaft 32 has a front wheel turning displacement which detects a rotation angle of the coaxial 32 from the reference position by the front wheel turning shaft motor 30 and generates a signal representing a front wheel turning displacement amount Ysf proportional to the rotation angle. The front wheel rolling sensor includes a quantity sensor 37 and a strain gauge that detects a twist amount generated in the front wheel steering shaft 32 in proportion to the front wheel steering reaction force Fsf applied to the front wheel steering shaft 32 from the left and right front wheels 33a and 33b. A front wheel turning reaction force sensor 38 for generating a signal representing the steering reaction force Fsf is attached.
なお、この場合、前輪転舵軸32が右(又は左)回転
し、ラック軸34が左(又は右)方向に変位し、左右前
輪33a,33bが左(又は右)方向に転舵されたと
き、前輪転舵反力Fsf及び前輪転舵変位量Ysfは各
々正(又は負)となる。In this case, the front wheel steering shaft 32 rotates right (or left), the rack shaft 34 is displaced left (or right), and the left and right front wheels 33a, 33b are steered left (or right). At this time, the front wheel turning reaction force Fsf and the front wheel turning displacement amount Ysf are both positive (or negative).
第2スレーブB2は、電気制御装置Cにより回転制御さ
れる後輪転舵軸モータ40と、同モータ40により一端
が結合され他端にピニオン41を有する後輪転舵軸42
と、ピニオン41に噛合して左右後輪43a,43bを
転舵制御するラック軸44を備えている。ラック軸44
は、左右タイロッド45a,45b及び左右ナックルア
ーム46a,46bを介して左右後輪43a,43bに
各々接続されて、同軸44の車体横方向への往復運動に
より、左右後輪43a,43bを転舵する。後輪転舵軸
42には、後輪転舵軸モータ40による同軸42の基準
位置からの回転角を検出して同回転角に比例した後輪転
舵変位量Ysrを表す信号を発生する後輪転舵変位量セ
ンサ47と、左右後輪43a,43bから後輪転舵軸4
2に付与される後輪転舵反力Fsrに比例して後輪転舵
軸42に発生する捩れ量を検出する歪みゲージより成
り、後輪転舵反力Fsrを表す信号を発生する後輪転舵
反力センサ48が取り付けられている。なお、この場
合、後輪転舵軸42が右(又は左)回転し、ラック軸4
4が左(又は右)方向に変位して、左右前輪43a,4
3bが左(又は右)方向に転舵されたとき、後輪転舵反
力Fsr及び後輪転舵変位量Ysrは正(又は負)とな
る。The second slave B2 is a rear wheel steering shaft motor 40 whose rotation is controlled by the electric control device C, and a rear wheel steering shaft 42 having one end coupled by the motor 40 and a pinion 41 at the other end.
And a rack shaft 44 that meshes with the pinion 41 and controls the steering of the left and right rear wheels 43a and 43b. Rack shaft 44
Are connected to the left and right rear wheels 43a and 43b via the left and right tie rods 45a and 45b and the left and right knuckle arms 46a and 46b, respectively, and the left and right rear wheels 43a and 43b are steered by the reciprocating motion of the coaxial shaft 44 in the lateral direction of the vehicle body. To do. The rear-wheel steering shaft 42 has a rear-wheel steering displacement that detects a rotation angle of the coaxial 42 from the reference position by the rear-wheel steering shaft motor 40 and generates a signal representing a rear-wheel steering displacement amount Ysr proportional to the rotation angle. The quantity sensor 47 and the left and right rear wheels 43a, 43b to the rear wheel steering shaft 4
A rear wheel steering reaction force that is a strain gauge that detects the amount of twist generated in the rear wheel steering shaft 42 in proportion to the rear wheel steering reaction force Fsr and that generates a signal representing the rear wheel steering reaction force Fsr. A sensor 48 is attached. In this case, the rear wheel steering shaft 42 rotates right (or left), and the rack shaft 4
4 is displaced in the left (or right) direction and left and right front wheels 43a, 4
When 3b is steered in the left (or right) direction, the rear wheel steering reaction force Fsr and the rear wheel steering displacement amount Ysr are positive (or negative).
電気制御装置Cは、操舵軸21の回転を制御する制御信
号を操舵軸モータ22に出力する操舵軸モータ制御回路
50と、前輪転舵軸32の回転を制御する制御信号を前
輪転舵軸モータ30に出力する前輪転舵軸モータ制御回
路51と、後輪転舵軸42の回転を制御する制御信号を
後輪転舵軸モータ40に出力する後輪転舵軸モータ制御
回路52を備えている。操舵軸モータ制御回路50は、
操舵力センサ24に接続された操舵力演算器53によっ
て算出されかつ操舵力Fmに比例する制御量Kmf・F
mと、合成転舵反力演算器54によって算出されかつ前
輪転舵反力Fsf及び後輪転舵反力Fsrの合成転舵反
力に対応した制御量Ksff・Fsf+Ksfr・Fs
rとを入力して、その値が正(又は負)のとき操舵軸2
1を左(又は右)回転させる回転制御量Mm=Kmf・
Fm−Ksff・Fsr−Ksfr・Fsrを表す制御
信号を出力する。合成転舵反力演算器54には、前輪転
舵反力センサ38に接続された前輪転舵反力演算器55
から前輪転舵反力Fsfに比例した制御量Ksff・F
sfが供給され、かつ後輪転舵反力センサ48に接続さ
れた後輪転舵反力演算器56から後輪転舵反力Fsrに
比例した制御量Ksfr・Fsrが供給されている。な
お、係数Kmf,係数Ksff及び係数Ksfrは、操
舵力Fm、前輪転舵反力Fsf及び後輪転舵反力Fsr
が各々操舵軸21の回転トルクにもたらす影響度合を示
すものであり、係数Kmf及び係数Ksffは常に正で
ある。また、係数Ksfrは、左右後輪43a,43b
が左右前輪33a,33bに対し同相に転舵されるとき
正となり、左右後輪43a,43bが左右前輪33a,
33bに対し逆相に転舵されるとき負となる。前輪転舵
軸モータ制御回路51は、操舵変位量センサ23に接続
された前輪目標転舵量演算器57によって算出されかつ
操舵変位量Ymに比例する制御量Kmpf・Ymと、前
輪転舵変位量センサ37に接続された前輪転舵変位量演
算器58によって算出されかつ前輪転舵変位量Ysfに
比例する制御量Kspf・Ysfを入力して、その値が
正(又は負)のとき前輪転舵軸32を右(又は左)回転
させる回転制御量Msf=Kmpf・Ym−Kspf・
Ysfを表す制御信号を出力する。なお、係数Kmpf
及び係数Kspfは、操舵変位量Ym及び前輪転舵変位
量Ysfが各々前輪転舵軸32の回転角にもたらす影響
度合を示すものであり、係数Kmpf及び係数Kspf
はともに正である。後輪転舵軸モータ制御回路52は、
操舵変位量センサ23に接続された後輪目標転舵量演算
器59によって算出されかつ操舵変位量Ymに比例する
制御量Kmpr・Ymと、後輪転舵変位量センサ47に
接続された後輪転舵変位量演算器60によって算出され
かつ後輪転舵変位量Ysrに比例する制御量Kspr・
Ysrを入力して、その値が正(又は負)のとき後輪転
舵軸42を右(又は左)回転させる回転制御量Msr=
Kmpr・Ym−Kspr・Ysrを表す制御信号を出
力する。なお、係数Kmpr及び係数Ksprは操舵変
位量Ym及び後輪転舵変位量Ysrが各々後輪転舵軸4
2の回転角にもたらす影響度合を示すものであり、係数
Ksprは常に正である。また、係数Kmprは、左右
後輪43a,43bが左右前輪33a,33bに対し同
相に転舵されるとき正となり、左右後輪43a,43b
が左右前輪33a,33bに対し逆相に転舵されるとき
負となる。The electric control device C outputs a control signal for controlling the rotation of the steering shaft 21 to the steering shaft motor 22 and a control signal for controlling the rotation of the front wheel steering shaft 32. A front wheel steering shaft motor control circuit 51 for outputting to 30 and a rear wheel steering shaft motor control circuit 52 for outputting a control signal for controlling the rotation of the rear wheel steering shaft 42 to the rear wheel steering shaft motor 40. The steering axis motor control circuit 50
A control amount Kmf · F calculated by the steering force calculator 53 connected to the steering force sensor 24 and proportional to the steering force Fm.
m, a control amount Ksff · Fsf + Ksfr · Fs calculated by the combined turning reaction force calculator 54 and corresponding to the combined turning reaction force of the front wheel turning reaction force Fsf and the rear wheel turning reaction force Fsr.
Input r and when the value is positive (or negative), the steering shaft 2
Rotation control amount for rotating 1 to the left (or right) Mm = Kmf.
A control signal representing Fm-Ksff.Fsr-Ksfr.Fsr is output. The combined turning reaction force calculator 54 includes a front wheel turning reaction force calculator 55 connected to the front wheel turning reaction force sensor 38.
To the control amount Ksff · F proportional to the front wheel turning reaction force Fsf
sf is supplied and a control amount Ksfr · Fsr proportional to the rear wheel steering reaction force Fsr is supplied from the rear wheel steering reaction force calculator 56 connected to the rear wheel steering reaction force sensor 48. The coefficient Kmf, the coefficient Ksff, and the coefficient Ksfr are the steering force Fm, the front wheel turning reaction force Fsf, and the rear wheel turning reaction force Fsr.
Indicates the degree of influence on the rotational torque of the steering shaft 21, and the coefficient Kmf and the coefficient Ksff are always positive. Further, the coefficient Ksfr is determined by the left and right rear wheels 43a and 43b.
Becomes positive when the wheels are steered in phase with the left and right front wheels 33a, 33b, and the left and right rear wheels 43a, 43b become
It becomes negative when steered in the opposite phase to 33b. The front wheel turning shaft motor control circuit 51 calculates a control amount Kmpf · Ym which is calculated by the front wheel target turning amount calculator 57 connected to the steering displacement amount sensor 23 and is proportional to the steering displacement amount Ym, and the front wheel turning displacement amount. When a front wheel steering amount is positive (or negative) by inputting a control amount Kspf · Ysf calculated by a front wheel steering displacement amount calculator 58 connected to the sensor 37 and proportional to the front wheel steering displacement amount Ysf. A rotation control amount Msf = Kmpf · Ym−Kspf · that rotates the shaft 32 to the right (or to the left).
A control signal representing Ysf is output. The coefficient Kmpf
And the coefficient Kspf indicate the degree of influence of the steering displacement amount Ym and the front wheel turning displacement amount Ysf on the rotation angle of the front wheel turning shaft 32, respectively. The coefficient Kmpf and the coefficient Kspf are shown.
Are both positive. The rear wheel steering shaft motor control circuit 52
A control amount Kmpr · Ym calculated by the rear wheel target turning amount calculator 59 connected to the steering displacement amount sensor 23 and proportional to the steering displacement amount Ym, and a rear wheel turning connected to the rear wheel turning displacement amount sensor 47. The control amount Kspr · which is calculated by the displacement amount calculator 60 and is proportional to the rear wheel steering displacement amount Ysr
A rotation control amount Msr = for inputting Ysr and rotating the rear wheel steering shaft 42 to the right (or left) when the value is positive (or negative)
A control signal representing Kmpr.Ym-Kspr.Ysr is output. The coefficient Kmpr and the coefficient Kspr are the steering displacement amount Ym and the rear wheel steering displacement amount Ysr, respectively.
2 shows the degree of influence on the rotation angle of 2, and the coefficient Kspr is always positive. Further, the coefficient Kmpr becomes positive when the left and right rear wheels 43a, 43b are steered in phase with the left and right front wheels 33a, 33b, and the left and right rear wheels 43a, 43b.
Is negative when the wheels are steered in opposite phase with respect to the left and right front wheels 33a, 33b.
上記のように構成した動力舵取装置の動作を、係数Km
pr及び係数Ksfrが正に設定されている場合につい
て説明すると、車両が直進中、操舵ハンドル20がその
回転角Xmだけ左(又は右)方向に回動されると、操舵
ハンドル20の回動開始時においては操舵軸モータ22
が操舵軸21を回転させていない、すなわち操舵軸21
は基準位置にあるので、操舵軸21には操舵ハンドル2
0の回動によって捩れが生じる。この操舵軸21の捩れ
は歪みゲージより成る操舵力センサ24によって検出さ
れて、相舵力(又は反作用としての操舵反力)Fmとし
て操舵力演算器53に供給される。操舵力演算器53は
操舵力Fmに係数Kmfを乗じた制御量Kmf・Fmを
操舵軸モータ制御回路50に出力する。操舵軸モータ制
御回路50は、操舵力演算器53から入力される制御量
Kmf・Fmと合成転舵反力演算器54から入力される
制御量Ksff・Fsf+Ksfr・Fsrに基づいて
操舵軸21の回転制御量Mm=Kmf・Fm−Ksff
・Fsf−Ksfr・Fsrを表わす制御信号を出力す
るが、操舵ハンドル20の回動開始時においては前輪転
舵軸32の前輪転舵反力Fsf及び後輪転舵軸42の後
輪転舵反力Fsrが零であるので、操舵軸モータ22に
は操舵軸21の回転制御量Mm=Kmf・Fmを表す制
御信号が供給される。この制御信号に応じて、操舵軸モ
ータ22は操舵軸21を左(又は右)方向に回転させる
ので、操舵軸21は操舵ハンドル20の回動方向に回転
し始める。The operation of the power steering apparatus configured as described above is calculated by the coefficient Km.
The case where pr and the coefficient Ksfr are set to be positive will be described. When the steering handle 20 is rotated left (or right) by the rotation angle Xm while the vehicle is traveling straight, the steering handle 20 starts rotating. When the steering shaft motor 22
Does not rotate the steering shaft 21, that is, the steering shaft 21
Is in the reference position, the steering shaft 21 is attached to the steering wheel 2
A twist of 0 causes a twist. The twist of the steering shaft 21 is detected by a steering force sensor 24 composed of a strain gauge and supplied to the steering force calculator 53 as a phase steering force (or steering reaction force as a reaction) Fm. The steering force calculator 53 outputs a control amount Kmf · Fm obtained by multiplying the steering force Fm by a coefficient Kmf to the steering axis motor control circuit 50. The steering shaft motor control circuit 50 rotates the steering shaft 21 based on the control amount Kmf · Fm input from the steering force calculator 53 and the control amount Ksff · Fsf + Ksfr · Fsr input from the combined turning reaction force calculator 54. Control amount Mm = Kmf · Fm−Ksff
A control signal representing Fsf−Ksfr · Fsr is output, but when the steering wheel 20 starts rotating, the front wheel steering reaction force Fsf of the front wheel steering shaft 32 and the rear wheel steering reaction force Fsr of the rear wheel steering shaft 42 are output. Is zero, the control signal representing the rotation control amount Mm = Kmf · Fm of the steering shaft 21 is supplied to the steering shaft motor 22. In response to this control signal, the steering shaft motor 22 rotates the steering shaft 21 in the left (or right) direction, so that the steering shaft 21 starts rotating in the rotation direction of the steering handle 20.
この回転により、操舵変位量センサ23からの操舵軸2
1の検出操舵変位量Ymは前輪目標転舵量演算器57に
入力され、前輪目標転舵量演算器57は、係数Kmpf
を上記検出操舵変位量Ymに乗じた制御量Kmpf・Y
mを前輪転舵軸モータ制御回路51に出力する。このと
き、前輪転舵軸32の転舵変位量Ysfは零であるの
で、前輪転舵軸モータ制御回路51は前輪転舵軸32の
回転制御量Msf=Kmpf・Ymを表す制御信号を前
輪転舵軸モータ30に出力し、前輪転舵軸モータ30が
前輪転舵軸32を右(又は左)方向に回転させ始める。
この回転により、前輪転舵軸32の回転に伴う前輪転舵
変位量Ysfが零より大きく(又は小さく)なって、前
輪転舵変位量演算器58は前輪転舵変位量Ysfに係数
Kspfを乗じた制御量Kspf・Ysfを前輪転舵軸
モータ制御回路51に出力し、この制御量Kspf・Y
sfは前輪転舵変位量Ysfの増加(又は減少)に従っ
て除々に大きく(小さく)なるので、前輪転舵軸32の
回転制御量Msf=Kmpf・Ym−Kspf・Ysf
を表す制御信号の正(又は負)のレベルが除々に小さく
なり、前輪転舵軸32の転舵変位量YsfがYsf=K
mpf・Ym/Kspfの関係になった回転位置にて前
輪転舵軸32の回転は停止する。この前輪転舵軸32の
右(又は左)回転はピニオン31を介してラック軸34
に伝達されて、ラック軸34を左(又は右)方向に変位
させる。ラック軸34の左(又は右)方向の変位は左右
タイロッド35a,35b及び左右ナックルアーム36
a,36bを介して左右前輪33a,33bに伝達され
て、左右前輪33a,33bを左(又は右)方向に転舵
する。By this rotation, the steering shaft 2 from the steering displacement amount sensor 23
The detected steering displacement amount Ym of 1 is input to the front wheel target turning amount calculator 57, and the front wheel target turning amount calculator 57 calculates the coefficient Kmpf.
Control amount Kmpf · Y obtained by multiplying the detected steering displacement amount Ym by
m is output to the front wheel steering shaft motor control circuit 51. At this time, since the turning displacement amount Ysf of the front wheel turning shaft 32 is zero, the front wheel turning shaft motor control circuit 51 sends a control signal representing the rotation control amount Msf = Kmpf · Ym of the front wheel turning shaft 32. Output to the rudder shaft motor 30, and the front wheel steered shaft motor 30 starts rotating the front wheel steered shaft 32 in the right (or left) direction.
By this rotation, the front wheel turning displacement amount Ysf accompanying the rotation of the front wheel turning shaft 32 becomes larger (or smaller) than zero, and the front wheel turning displacement amount calculator 58 multiplies the front wheel turning displacement amount Ysf by the coefficient Kspf. The control amount Kspf · Ysf is output to the front wheel steering shaft motor control circuit 51, and the control amount Kspf · Ysf is output.
Since sf gradually increases (or decreases) as the front wheel turning displacement amount Ysf increases (or decreases), the rotation control amount of the front wheel turning shaft 32 Msf = Kmpf · Ym−Kspf · Ysf.
The positive (or negative) level of the control signal indicating is gradually decreased, and the steering displacement amount Ysf of the front wheel steering shaft 32 becomes Ysf = K.
The rotation of the front wheel steering shaft 32 is stopped at the rotation position where the relationship of mpf · Ym / Kspf is established. The right (or left) rotation of the front wheel steering shaft 32 is performed by the rack shaft 34 via the pinion 31.
And the rack shaft 34 is displaced in the left (or right) direction. The left (or right) displacement of the rack shaft 34 is caused by the left and right tie rods 35a and 35b and the left and right knuckle arms 36.
It is transmitted to the left and right front wheels 33a and 33b via a and 36b to steer the left and right front wheels 33a and 33b in the left (or right) direction.
また、操舵変位量センサ23からの操舵軸21の検出操
舵変位量Ymは後輪目標転舵量演算器59にも入力さ
れ、後輪目標転舵量演算器59は、係数Kmprを上記
検出操舵変位量Ymに乗じた制御量Kmpr・Ymを後
輪転舵軸モータ制御回路52に出力する。このとき、後
輪転舵軸42の転舵変位量Ysrは零であるので、後輪
転舵軸モータ制御回路52は後輪転舵軸42の回転制御
量Msr=Kmpr・Ymを表す制御信号を後輪転舵軸
モータ40に出力し、後輪転舵軸モータ40が後輪転舵
軸42を右(又は左)方向に回転させ始める。この回転
により、後輪転舵軸42の回転に伴う後輪転舵変位量Y
srが零より大きく(又は小さく)なって、後輪転舵変
位量演算器60は、後輪転舵変位量Ysrに係数Ksp
rを乗じた制御量Kspr・Ysrを後輪転舵軸モータ
制御回路52に出力し、この制御量Kspr・Ysrは
後輪転舵変位量Ysrの増加(又は減少)に従って除々
に大きく(又は小さく)なるので、後輪転舵軸42の回
転制御量Msr=Kmpr・Ym−Kspr・Ysrを
表す制御信号の正(又は負)のレベルが除々に小さくな
り、後輪転舵軸42の転舵変位量YsrがYsr=Km
pr・Ym/Ksprの関係になった回転位置にて後輪
転舵軸42の回転は停止する。この後輪転舵軸42の右
(又は左)回転はピニオン41を介してラック軸44に
伝達されて、ラック軸44を左(又は右)方向に変位さ
せる。ラック軸44の左(又は右)方向の変位は左右タ
イロッド45a,45b及び左右ナックルアーム46
a,46bを介して左右後輪43a,43bに伝達され
て、左右後輪43a,43bを左(又は右)方向に転舵
する。The detected steering displacement amount Ym of the steering shaft 21 from the steering displacement amount sensor 23 is also input to the rear wheel target turning amount calculator 59, and the rear wheel target turning amount calculator 59 uses the coefficient Kmpr to detect the steering wheel. The control amount Kmpr · Ym multiplied by the displacement amount Ym is output to the rear wheel steering shaft motor control circuit 52. At this time, since the turning displacement amount Ysr of the rear wheel turning shaft 42 is zero, the rear wheel turning shaft motor control circuit 52 sends a control signal indicating the rotation control amount Msr = Kmpr · Ym of the rear wheel turning shaft 42 to the rear wheel turning shaft. Output to the rudder shaft motor 40, and the rear wheel steered shaft motor 40 starts rotating the rear wheel steered shaft 42 in the right (or left) direction. By this rotation, the rear wheel steering displacement amount Y accompanying the rotation of the rear wheel steering shaft 42
Since sr becomes larger (or smaller) than zero, the rear wheel turning displacement amount calculator 60 calculates the coefficient Ksp to the rear wheel turning displacement amount Ysr.
The control amount Kspr · Ysr multiplied by r is output to the rear wheel steering shaft motor control circuit 52, and the control amount Kspr · Ysr gradually increases (or decreases) as the rear wheel steering displacement amount Ysr increases (or decreases). Therefore, the positive (or negative) level of the control signal representing the rotation control amount Msr = Kmpr.Ym-Kspr.Ysr of the rear wheel steering shaft 42 gradually decreases, and the steering displacement amount Ysr of the rear wheel steering shaft 42 becomes smaller. Ysr = Km
The rotation of the rear wheel steering shaft 42 is stopped at the rotational position where the relationship of pr · Ym / Kspr is satisfied. The right (or left) rotation of the rear wheel steered shaft 42 is transmitted to the rack shaft 44 via the pinion 41 to displace the rack shaft 44 in the left (or right) direction. The left (or right) displacement of the rack shaft 44 is caused by the left and right tie rods 45a and 45b and the left and right knuckle arms 46.
It is transmitted to the left and right rear wheels 43a and 43b via a and 46b to steer the left and right rear wheels 43a and 43b in the left (or right) direction.
一方、左右前輪33a,33bはその左(又は右)方向
の転舵により路面から右(又は左)方向への前輪転舵反
力Fsfを受けて、この前輪転舵反力Fsfが左右ナッ
クルアーム36a,36b、左右タイロッド35a,3
5b、ラック軸34及びピニオン31を介して前輪転舵
軸32に伝達される。この前輪転舵反力Fsfは前輪転
舵軸32を左(又は右)方向に回転させるように作用す
るので、前輪転舵軸モータ30が前輪転舵軸32を回転
させる力とは逆方向となり前輪転舵軸32には捩れが生
じる。この捩れは歪みゲージよりなる前輪転舵反力セン
サ38によって検出され、捩れ量に比例した前輪転舵反
力(又は反作用としての前輪転舵力)Fsfとして前輪
転舵反力演算器55に供給される。前輪転舵反力演算器
55は、前輪転舵反力(転舵力)Fsfに係数Ksff
を乗じた制御量Ksff・Fsfを合成転舵反力演算器
54に出力する。On the other hand, the left and right front wheels 33a, 33b receive the front wheel steering reaction force Fsf in the right (or left) direction from the road surface by the steering in the left (or right) direction, and the front wheel steering reaction force Fsf is applied to the left and right knuckle arms. 36a, 36b, left and right tie rods 35a, 3
5b, the rack shaft 34, and the pinion 31 are transmitted to the front wheel steering shaft 32. Since this front wheel turning reaction force Fsf acts so as to rotate the front wheel turning shaft 32 in the left (or right) direction, it is in the opposite direction to the force by which the front wheel turning shaft motor 30 rotates the front wheel turning shaft 32. The front wheel steering shaft 32 is twisted. This twist is detected by a front wheel steering reaction force sensor 38 including a strain gauge, and is supplied to the front wheel steering reaction force calculator 55 as a front wheel steering reaction force (or a front wheel steering force as a reaction) Fsf proportional to the amount of twist. To be done. The front wheel turning reaction force calculator 55 calculates a coefficient Ksff for the front wheel turning reaction force (turning force) Fsf.
The control amount Ksff · Fsf multiplied by is output to the combined turning reaction force calculator 54.
また、左右後輪43a,43bはその左(又は右)方向
の転舵により路面から右(又は左)方向への後輪転舵反
力Fsrを受けて、この後輪転舵反力Fsrが左右ナッ
クルアーム46a,46b、左右タイロッド45a,4
5b、ラック軸44及びピニオン41を介して後輪転舵
軸42を左(または右)方向に回転させるように作用す
るので、後輪転舵軸モータ40が後輪転舵軸42を回転
させる力とは逆方向となり後輪転舵軸42には捩れが生
じる。この捩れは歪みゲージよりなる後輪転舵反力セン
サ48によって検出され、捩れ量に比例した後輪転舵反
力(又は反作用としての後輪転舵力)Fsrとして後輪
転舵反力演算器56に供給される。後輪転舵反力演算器
56は、後輪転舵反力(後輪転舵力)Fsrに係数Ks
frを乗じた制御量Ksfr・Fsrを合成転舵反力演
算器54に出力する。Further, the left and right rear wheels 43a, 43b receive the rear wheel steering reaction force Fsr in the right (or left) direction from the road surface by the steering in the left (or right) direction, and the rear wheel steering reaction force Fsr is applied to the left and right knuckles. Arms 46a, 46b, left and right tie rods 45a, 4
Since the rear wheel steering shaft 42 is rotated in the left (or right) direction via the 5b, the rack shaft 44, and the pinion 41, the force by which the rear wheel steering shaft motor 40 rotates the rear wheel steering shaft 42 is In the opposite direction, the rear wheel steering shaft 42 is twisted. This twist is detected by a rear wheel steering reaction force sensor 48 including a strain gauge, and is supplied to the rear wheel steering reaction force calculator 56 as a rear wheel steering reaction force (or a rear wheel steering force as a reaction) Fsr that is proportional to the amount of twist. To be done. The rear wheel turning reaction force calculator 56 calculates a coefficient Ks for the rear wheel turning reaction force (rear wheel turning force) Fsr.
The control amount Ksfr · Fsr multiplied by fr is output to the combined turning reaction force calculator 54.
そして、合成転舵反力演算器54が前輪転舵反力演算器
55からの制御量Ksff・Fsf及び後輪転舵反力演
算器56からの制御量Ksfr・Fsrを加算合成し
て、合成した制御量Ksff・Fsf=Ksfr・Fs
rを操舵軸モータ制御回路50に出力する。操舵軸モー
タ制御回路50は、操舵力演算器53から入力される制
御量Kmf・Fmと合成転舵反力演算器54から入力さ
れる制御量Ksff・Fsf+Ksfr・Fsrに基づ
いて、操舵軸21の回転制御量Mm=Kmf・Fm−K
sff・Fsf−Ksfr・Fsrを表す制御信号を操
舵軸モータ22に出力して、操舵軸モータ22がこの制
御信号に基づいて操舵軸21の回転を制御する。この操
舵軸21の左(又は右)方向の回転動作において、制御
量Kmf・Fmは操舵軸21を左(又は右)方向に回転
させるように作用して操舵軸21が左(又は右)方向に
回転すると、操舵軸21の捩れ量は減少するので、この
捩れ量に比例する操舵力(操舵反力)Fmは小さく(又
は大きく)なり、制御量Kmf・Fmも小さく(又は大
きく)なる。一方、左右前輪33a,33bに付与され
る前輪転舵反力(転舵力)Fsf及び左右後輪43a,
43bに付与される後輪転舵反力(後輪転舵力)Fsr
は各々前輪転舵変位量Ysf及び後輪転舵変位量Ysr
が増加(又は減少)するに従って大きく(又は小さく)
なるので、操舵軸21を右(又は左)方向に回転させる
ように作用する制御量Ksff・Fsf+Ksfr・F
srは大きく(又は小さく)なる。その結果、操舵軸2
1を左(又は右)回転させるための回転制御量Mm=K
mf・Fm−Ksff・Fst−Ksfr・Fsrは除
々に小さく(又は大きく)なり、制御量Kmf・Fmと
制御量Ksff・Fsf+Ksfr・Fsrが等しくな
った回転位置にて操舵軸21の回転は停止する。Then, the combined turning reaction force calculator 54 adds and combines the control amount Ksff · Fsf from the front wheel turning reaction force calculator 55 and the control amount Ksfr · Fsr from the rear wheel turning reaction force calculator 56 to combine them. Control amount Ksff · Fsf = Ksfr · Fs
The r is output to the steering axis motor control circuit 50. The steering shaft motor control circuit 50 controls the steering shaft 21 based on the control amount Kmf · Fm input from the steering force calculator 53 and the control amount Ksff · Fsf + Ksfr · Fsr input from the combined turning reaction force calculator 54. Rotation control amount Mm = Kmf · Fm-K
A control signal representing sff · Fsf−Ksfr · Fsr is output to the steering shaft motor 22, and the steering shaft motor 22 controls the rotation of the steering shaft 21 based on this control signal. In the rotation operation of the steering shaft 21 in the left (or right) direction, the control amount Kmf · Fm acts so as to rotate the steering shaft 21 in the left (or right) direction, and the steering shaft 21 moves in the left (or right) direction. When the steering shaft 21 rotates, the amount of twist of the steering shaft 21 decreases, so the steering force (steering reaction force) Fm proportional to this amount of twist decreases (or increases), and the control amount Kmf · Fm also decreases (or increases). On the other hand, the front wheel turning reaction force (steering force) Fsf applied to the left and right front wheels 33a, 33b and the left and right rear wheels 43a,
Rear wheel steering reaction force (rear wheel steering force) Fsr applied to 43b
Is the front wheel steering displacement amount Ysf and the rear wheel steering displacement amount Ysr, respectively.
Increases (or decreases) as increases (or decreases)
Therefore, the control amount Ksff · Fsf + Ksfr · F acting so as to rotate the steering shaft 21 in the right (or left) direction.
sr becomes large (or small). As a result, the steering shaft 2
Rotation control amount Mm = K for rotating 1 to the left (or right)
mf · Fm−Ksff · Fst−Ksfr · Fsr gradually decreases (or increases), and the rotation of the steering shaft 21 stops at the rotational position where the control amount Kmf · Fm and the control amount Ksff · Fsf + Ksfr · Fsr become equal. .
そして、この状態にて運転者が操舵ハンドル20をさら
に左(又は右)回転させるために操舵ハンドル20に左
(又は右)回転方向の力をさらに付与すると、制御量K
mf・Fmが制御量Ksff・Fsf+Ksfr・Fs
rより大きく(又は小さく)なって操舵軸21はさらに
左(又は右)方向に回転する。また、運転者が操舵ハン
ドル20に付与する力を弱めると、制御量Ksff・F
sf+Ksfr・Fsrが制御量Kmf・Fmより大き
く(又は小さく)なって操舵軸21は右(又は左)方向
に回転し始める。Then, in this state, when the driver further applies a force in the left (or right) rotation direction to the steering wheel 20 in order to rotate the steering wheel 20 further left (or right), the control amount K
mf · Fm is a controlled variable Ksff · Fsf + Ksfr · Fs
It becomes larger (or smaller) than r, and the steering shaft 21 further rotates in the left (or right) direction. When the driver weakens the force applied to the steering wheel 20, the control amount Ksff · F
When sf + Ksfr · Fsr becomes larger (or smaller) than the control amount Kmf · Fm, the steering shaft 21 starts rotating in the right (or left) direction.
また、係数Kmpr及び係数Ksfrが負に設定されて
いる場合について説明する。操舵ハンドル20が左(又
は右)方向に回動されると、左右前輪33a,33bは
上述の場合と同様、左(又は右)方向に転舵されるが、
左右後輪43a,43bは、係数Kmprが負なので上
述の場合とは逆に、右(又は左)方向すなわち左右前輪
33a,33bに対し逆相に転舵される。この転舵によ
り、左右後輪43a,43bに働く後輪転舵反力Fsr
は上述の場合とは逆方向に働くことになり、後輪転舵反
力Fsrは上述の場合とは正負の符号が逆となるが、係
数Ksfrが負に設定されているので制御量Ksfr・
Fsrの正負の符号は上述の場合と同じになり、制御量
Ksfr・Fsrは上述の場合と同様操舵軸21を右
(又は左)方向に回転させるように作用する。Further, a case where the coefficient Kmpr and the coefficient Ksfr are set to be negative will be described. When the steering handle 20 is rotated in the left (or right) direction, the left and right front wheels 33a, 33b are steered in the left (or right) direction as in the case described above.
Since the coefficient Kmpr is negative, the left and right rear wheels 43a, 43b are steered in the opposite direction to the right (or left) direction, that is, the left and right front wheels 33a, 33b, contrary to the above case. By this steering, the rear wheel steering reaction force Fsr acting on the left and right rear wheels 43a, 43b.
Will act in the opposite direction to the above case, and the positive and negative signs of the rear wheel steering reaction force Fsr will be opposite to those in the above case, but since the coefficient Ksfr is set to a negative value, the control amount Ksfr.
The positive and negative signs of Fsr are the same as in the above case, and the control amount Ksfr · Fsr acts so as to rotate the steering shaft 21 in the right (or left) direction as in the case of the above case.
このように、運転者が操舵ハンドル20を回動操作して
いるとき、操舵ハンドル20を回動位置に保持している
とき、及び操舵ハンドル20を中立位置に戻すとき、前
輪転舵反力Fsf及び後輪転舵反力Fsrに基づく制御
量Ksff・Fsf+Ksfr・Fsrが操舵ハンドル
20を中立位置に戻すように作用するので、操舵ハンド
ル20には前輪転舵反力Fsf及び後輪転舵反力Fsr
に応じた操舵反力、保舵反力及び操舵ハンドル20の復
元力が付与される。As described above, when the driver is turning the steering wheel 20, holding the steering wheel 20 in the turning position, and returning the steering wheel 20 to the neutral position, the front wheel steering reaction force Fsf. Also, the control amount Ksff · Fsf + Ksfr · Fsr based on the rear wheel steering reaction force Fsr acts to return the steering wheel 20 to the neutral position.
The steering reaction force, the steering holding reaction force, and the restoring force of the steering wheel 20 corresponding to the above are applied.
なお、上記基本構成に前輪転舵変位速度及び後輪転舵変
位速度による制御を付加するようにすれば、前輪転舵軸
モータ30による前輪転舵軸32及び後輪転舵軸モータ
40による後輪転舵軸42の回転をさらに安定に制御で
きる。この場合、前輪転舵変位量Ysf及び後輪転舵変
位量Ysrを各々微分し、各微分結果に所定の係数を乗
じて、乗算結果を各々前輪転舵軸32の回転制御量Ms
f及び後輪転舵軸42の回転制御量Msrに付加するよ
うにする。If the control based on the front wheel turning displacement speed and the rear wheel turning displacement speed is added to the above basic configuration, the front wheel turning shaft 32 by the front wheel turning shaft motor 30 and the rear wheel turning by the rear wheel turning shaft motor 40. The rotation of the shaft 42 can be controlled more stably. In this case, the front wheel steering displacement amount Ysf and the rear wheel steering displacement amount Ysr are each differentiated, each differentiation result is multiplied by a predetermined coefficient, and the multiplication result is each rotation control amount Ms of the front wheel steering shaft 32.
f and the rotation control amount Msr of the rear wheel steered shaft 42 are added.
b.変数の決定及びその意味 上記基本構成に示された本発明の具体的実施例について
説明する前に、上記基本構成の係数Kmf,Ksff,
Ksfr,Kmpf,Kmpr,Kspf,Kspr及
び具体的実施例にて計算される諸変数の算出方法及びそ
の性質について図面を用いて説明すると、第3図は第2
図の本発明の基本構成を等価回路で表した制御ブロック
図である。b. Determining Variables and Their Meanings Before describing specific examples of the present invention shown in the above basic configuration, the coefficients Kmf, Ksff, and
The calculation method and properties of Ksfr, Kmpf, Kmpr, Kspf, Kspr and various variables calculated in the concrete examples will be described with reference to the drawings.
It is a control block diagram which represented the basic composition of the present invention of the figure by the equivalent circuit.
減算器50a,51a,52aは各々操舵軸モータ制御
回路50,前輪転舵軸モータ制御回路51,後輪転舵軸
モータ制御回路52に対応してそれらの減算作用を示す
もので、乗算器53a,55a,56a,57a,58
a,59a,60aは、各々操舵力演算器53,前輪転
舵反力演算器55,後輪転舵反力演算器56,前輪目標
転舵量演算器57,前輪転舵変位量演算器58,後輪目
標転舵量演算器59,後輪転舵変位量演算器60に対応
してそれらの乗算作用を示すもので、加算器54aは合
成転舵反力演算器54に対応してその加算作用を示すも
のである。また、ブロック22a,30a,40aは各
々操舵軸モータ22,前輪転舵軸モータ30,後輪転舵
軸モータ40に対応するものであり、関数Km/S,K
sf/S,Ksf/Sは各々操舵軸モータ22、前輪転
舵軸モータ30、後輪転舵軸モータ40の各回転制御特
性を示すものである。Subtractors 50a, 51a, 52a respectively show the subtracting action of the steering shaft motor control circuit 50, the front wheel steering shaft motor control circuit 51, and the rear wheel steering shaft motor control circuit 52, and a multiplier 53a, 55a, 56a, 57a, 58
a, 59a and 60a are steering force calculator 53, front wheel turning reaction force calculator 55, rear wheel turning reaction force calculator 56, front wheel target turning amount calculator 57, front wheel turning displacement amount calculator 58, respectively. The rear wheel target turning amount calculator 59 and the rear wheel turning displacement amount calculator 60 correspond to their multiplication effects, and the adder 54a corresponds to the combined turning reaction force calculator 54 to add them. Is shown. The blocks 22a, 30a, 40a correspond to the steering shaft motor 22, the front wheel steering shaft motor 30, and the rear wheel steering shaft motor 40, respectively, and have functions Km / S, K.
sf / S and Ksf / S represent respective rotation control characteristics of the steering shaft motor 22, the front wheel steering shaft motor 30, and the rear wheel steering shaft motor 40.
減算器61は操舵ハンドル20に付与される操舵力によ
って回転する操舵軸21の回転変位量Xmと操舵軸モー
タ22によって回転する操舵軸21の操舵変位量Ymと
の差に応じて操舵軸21に生じている捩れ量Xm−Ym
を表す等価回路であり、乗算器62は捩れ量Xm−Ym
に比例する操舵力及び操舵力の反作用として操舵軸モー
タ22から操舵軸21に付与される操舵反力を算出する
等価回路であり、定数1/Cmは操舵軸21の弾性係数
である。減算器63は前輪転舵軸モータ30の転舵力に
よって回転する前輪転舵軸32の前輪転舵変位量Ysf
と左右前輪33a,33bの前輪転舵量に応じた前輪転
舵軸32の回転変位量Xsfとの差に応じて前輪転舵軸
32に生じている捩れ量Ysf−Xsfを表す等価回路
であり、乗算器64は捩れ量Ysf−Xsfに比例する
前輪転舵力及び前輪転舵力の反作用として左右前輪33
a,33bからの前輪転舵軸32に付与される前輪転舵
反力を算出する等価回路であり、定数1/Csfは前輪
転舵軸32の弾性係数である。The subtractor 61 controls the steering shaft 21 according to the difference between the rotational displacement amount Xm of the steering shaft 21 rotated by the steering force applied to the steering wheel 20 and the steering displacement amount Ym of the steering shaft 21 rotated by the steering shaft motor 22. The amount of twist Xm-Ym
Is the equivalent circuit, and the multiplier 62 has a twist amount Xm-Ym.
It is an equivalent circuit for calculating the steering reaction force applied to the steering shaft 21 from the steering shaft motor 22 as a reaction of the steering force and the steering force proportional to, and the constant 1 / Cm is the elastic coefficient of the steering shaft 21. The subtracter 63 is a front wheel turning displacement amount Ysf of the front wheel turning shaft 32 that is rotated by the turning force of the front wheel turning shaft motor 30.
Is an equivalent circuit representing the twist amount Ysf-Xsf generated in the front wheel steering shaft 32 in accordance with the difference between the rotational displacement amount Xsf of the front wheel steering shaft 32 corresponding to the front wheel steering amount of the left and right front wheels 33a and 33b. The multiplier 64 uses the left and right front wheels 33 as a reaction of the front wheel turning force and the front wheel turning force that are proportional to the twist amount Ysf-Xsf.
It is an equivalent circuit for calculating the front wheel turning reaction force applied to the front wheel turning shaft 32 from a and 33b, and the constant 1 / Csf is the elastic coefficient of the front wheel turning shaft 32.
減算器65は後輪転舵軸モータ40の後輪転舵力によっ
て回転する後輪転舵軸42の後輪転舵変位量Ysrと左
右後輪43a,43bの後輪転舵量に応じた後輪転舵軸
42の後輪回転変位量Xsrとの差に応じて後輪転舵軸
42に生じている捩れ量Ysr−Xsrを表す等価回路
であり、乗算器66は捩れ量Ysr−Xsrに比例する
後輪転舵力及び後輪転舵力の反作用として左右後輪43
a,43bから後輪転舵軸42に付与される後輪転舵反
力を算出する等価回路であり、定数1/Csrは後輪転
舵軸42の弾性係数である。The subtractor 65 is a rear wheel steering shaft 42 according to the rear wheel steering displacement amount Ysr of the rear wheel steering shaft 42 that rotates by the rear wheel steering force of the rear wheel steering shaft motor 40 and the rear wheel steering amounts of the left and right rear wheels 43a and 43b. The multiplier 66 is an equivalent circuit representing the twist amount Ysr-Xsr generated in the rear wheel steering shaft 42 according to the difference from the rear wheel rotational displacement amount Xsr, and the multiplier 66 is a rear wheel steering force proportional to the twist amount Ysr-Xsr. And the left and right rear wheels 43 as a reaction of the rear wheel steering force.
This is an equivalent circuit for calculating the rear wheel steering reaction force applied to the rear wheel steering shaft 42 from a and 43b, and the constant 1 / Csr is the elastic coefficient of the rear wheel steering shaft 42.
上記のように構成された制御ブロックにおいて、システ
ムの均合い(定常状態)を考えると次式が成立する。In the control block configured as described above, the following equation holds when considering the system balance (steady state).
Kmf・Fm=Ksff・Fsf+Ksf r・Fsr・・・(式1) Kmpf・Ym=Kspf・Ysf・・・(式2) Kmpr・Ym=Kspr・Ysr・・・(式3) また、操舵軸21,前輪転舵軸32,後輪転舵軸42に
各々付与される操舵力(操舵反力)Fm,前輪転舵力
(前輪転舵反力)Fsf,後輪転舵力(後輪転舵反力)
Fsrと、上記各軸21,32,42に発生する各捩れ
量Xm−Ym,Ysf−Xsf,Ysr−Xsrとの関
係を各弾性係数1/Cm,1/Csf,1/Csrを用
いて表すと次のようになる。Kmf · Fm = Ksff · Fsf + Ksfr r · Fsr (Equation 1) Kmpf · Ym = Kspf · Ysf (Equation 2) Kmpr · Ym = Kspr · Ysr (Equation 3) Further, the steering shaft 21 , Steering force (steering reaction force) Fm, front wheel steering force (front wheel steering reaction force) Fsf, rear wheel steering force (rear wheel steering reaction force) applied to the front wheel steering shaft 32 and the rear wheel steering shaft 42, respectively.
The relationship between Fsr and the twist amounts Xm-Ym, Ysf-Xsf, Ysr-Xsr generated on the shafts 21, 32, 42 is expressed by using elastic coefficients 1 / Cm, 1 / Csf, 1 / Csr. And becomes like this.
Fm=(1/Cm)・(Xm−Ym)・・(式4) Fsf=(1/Csf)・(Ysf−Xs f)・・・(式5) Fsr=(1/Csr)・(Ysr−Xs r)・・・(式6) ここで、左右前輪33a,33b及び左右後輪43a,
43bが路面に接触していない、すなわち路面からの前
輪転舵反力及び後輪転舵反力を受けない状態(Fsf=
0,Fsr=0)において、マスタ部Aから第1スレー
ブ部B1及び第2スレーブB2へ各々伝達される回転角
の比、すなわち操舵ハンドル20の回動量に応じた操舵
軸21の回転変位量Xmに対する左右前輪33a,33
b及び左右後輪43a,43bの各転舵量に応じた前輪
転舵軸32及び後輪転舵軸42の各回転変位量Xsf,
Xsrの比を各々前輪ステアリングギヤ比αf及び後輪
ステアリングギヤ比αrとして定義すれば、これらのギ
ヤ比αf,αrは(式1)〜(式6)より次式で表され
る。Fm = (1 / Cm). (Xm-Ym) .. (Equation 4) Fsf = (1 / Csf). (Ysf-Xsf) ... (Equation 5) Fsr = (1 / Csr). (Ysr -Xs r) (Equation 6) Here, the left and right front wheels 33a, 33b and the left and right rear wheels 43a,
43b is not in contact with the road surface, that is, a state in which the front wheel turning reaction force and the rear wheel turning reaction force from the road surface are not received (Fsf =
0, Fsr = 0), the ratio of the rotation angles transmitted from the master unit A to the first slave unit B1 and the second slave unit B2, that is, the rotational displacement amount Xm of the steering shaft 21 according to the rotation amount of the steering handle 20. Left and right front wheels 33a, 33
b and the respective rotational displacement amounts Xsf of the front wheel steering shaft 32 and the rear wheel steering shaft 42 according to the respective steering amounts of the left and right rear wheels 43a, 43b,
If the ratio of Xsr is defined as the front wheel steering gear ratio αf and the rear wheel steering gear ratio αr, these gear ratios αf and αr are expressed by the following equations from (Equation 1) to (Equation 6).
αf=Xsf/Xm=Kmpf/Kspf ・・(式
7) αr=Xsr/Xm=Kmpr/Kspr ・・(式
8) なお、上記(式8)で示されるように、後輪ステアリン
グギヤ比αrは、係数Kmprが正(又は負)のとき、
正(又は負)となる。そして、これらのギヤ比αf,α
rの値を変更することは、操舵ハンドル20の同一回動
量に対し、各々左右前輪33a,33b及び左右後輪4
3a,43bの転舵量を変更することを意味し、後述の
実施例では、これらのギヤ比αf,αrは操舵特性を示
す選択可能でかつ車速に応じて変化するパラメータとし
て扱われる。αf = Xsf / Xm = Kmpf / Kspf (Equation 7) αr = Xsr / Xm = Kmpr / Kspr (Equation 8) As shown in (Equation 8), the rear wheel steering gear ratio αr is , When the coefficient Kmpr is positive (or negative),
It becomes positive (or negative). Then, these gear ratios αf, α
Changing the value of r means that the left and right front wheels 33a and 33b and the left and right rear wheels 4 are set for the same turning amount of the steering wheel 20.
This means changing the turning amounts of 3a and 43b, and in the embodiments described later, these gear ratios αf and αr are treated as selectable parameters that indicate steering characteristics and that change according to the vehicle speed.
また、左右前輪33a,33bが固定され(Xsf=
0)かつ左右後輪43a,43bが路面に接触していな
い(Fsr=0)状態において、第1スレーブ部B1か
らマスタ部Aへ伝達される力の比すなわち前輪転舵反力
Fsfに対する操舵反力Fmの比を前輪力逆送比βfと
して定義すれば、この力逆送比βfは(式1)より次式
で表される。Further, the left and right front wheels 33a and 33b are fixed (Xsf =
0) and the left and right rear wheels 43a, 43b are not in contact with the road surface (Fsr = 0), the ratio of the force transmitted from the first slave unit B1 to the master unit A, that is, the steering reaction force with respect to the front wheel steering reaction force Fsf. If the ratio of the force Fm is defined as the front wheel force reverse feed ratio βf, this force reverse feed ratio βf is expressed by the following equation from (Equation 1).
βf=Fm/Fsf=Ksff/Kmf ・・(式9) そして、この力逆送比βfを変更することは、同一前輪
転舵反力Fsfに対し、操舵反力Fmを変更することを
意味し、後述の実施例では、この力逆送比βfは送舵特
性を示す選択可能でかつ車速に応じて変化するパラメー
タとして扱われる。βf = Fm / Fsf = Ksff / Kmf (Equation 9) Then, changing the force reverse transmission ratio βf means changing the steering reaction force Fm for the same front wheel turning reaction force Fsf. In the embodiment described later, the force reverse transmission ratio βf is treated as a selectable parameter that indicates the steering characteristic and that changes according to the vehicle speed.
また、左右前輪33a,33bが路面に接触しておらず
(Fsf=0)かつ左右後輪43a,43bが固定され
た(Xsr=0)状態において、第2スレーブB2から
マスタ部Aへ伝達される力の比すなわち後輪転舵反力F
srに対する操舵反力Fmの比を後輪力逆送比βrとし
て定義すれば、この力逆送比βrは(式1)より次式で
表わされる。In addition, when the left and right front wheels 33a and 33b are not in contact with the road surface (Fsf = 0) and the left and right rear wheels 43a and 43b are fixed (Xsr = 0), the second slave B2 transmits to the master unit A. Force ratio, that is, rear wheel steering reaction force F
If the ratio of the steering reaction force Fm to sr is defined as the rear wheel force reverse feed ratio βr, this force reverse feed ratio βr is expressed by the following equation from (Equation 1).
βr=Fm/Fsr=Ksfr/Kmf・・ ・(式10) なお、上記(式10)で示されるように、この力逆送比
βrは、係数Ksfrが正(又は負)のとき、正(又は
負)となる。そして、この力逆送比βrを変更すること
は、同一後輪転舵反力Fsrに対し操舵反力Fmを変更
することを意味し、後述の実施例では、この力逆送比β
rは操舵特性を示す選択可能でかつ車速に応じて変化す
るパラメータとして扱われる。βr = Fm / Fsr = Ksfr / Kmf ... (Equation 10) As shown in (Equation 10), this force reverse transmission ratio βr is positive (or negative) when the coefficient Ksfr is positive (or negative). Or negative). Then, changing the force reverse transmission ratio βr means changing the steering reaction force Fm with respect to the same rear wheel turning reaction force Fsr, and in the embodiment described later, this force reverse transmission ratio βr.
r is treated as a selectable parameter that indicates steering characteristics and that changes according to the vehicle speed.
さらに、操舵反力Fmと回転変位量Xmとの比を操舵弾
性係数Qmとし、前輪転舵反力(前輪転舵力)Fsfと
回転変位量Xsfとの比を前輪転舵弾性係数Qsfと
し、かつ後輪転舵反力(後輪転舵力)Fsrと回転変位
量Xsrとの比を後輪転舵弾性係数Qsrとすれば、次
のような式が成立する Qm=Fm/Xm ・・・(式11) Qsf=Fsf/Xsf・・・(式12) Qsr=Fsr/Xsr・・・(式13) なお、前輪転舵弾性係数Qsfは左右前輪33a,33
bのタイヤと路面との間の摩擦により決定される定数で
あり、後輪転舵弾性係数Qsrは左右後輪43a,43
bのタイヤと路面との間の摩擦により決定される定数で
ある。Further, the ratio between the steering reaction force Fm and the rotational displacement amount Xm is set as the steering elastic coefficient Qm, and the ratio between the front wheel turning reaction force (front wheel turning force) Fsf and the rotational displacement amount Xsf is set as the front wheel steering elastic coefficient Qsf. Moreover, if the ratio of the rear wheel steering reaction force (rear wheel steering force) Fsr and the rotational displacement amount Xsr is the rear wheel steering elastic coefficient Qsr, the following equation holds: Qm = Fm / Xm (equation 11) Qsf = Fsf / Xsf ... (Equation 12) Qsr = Fsr / Xsr ... (Equation 13) It should be noted that the front-wheel steering elastic coefficient Qsf is the left and right front wheels 33a, 33
b is a constant determined by the friction between the tire and the road surface, and the rear wheel steering elastic coefficient Qsr is the left and right rear wheels 43a, 43.
It is a constant determined by the friction between the tire b and the road surface.
一方、回転変位量Xmは、(式1),(式2),(式
4),(式5),(式7),(式9),(式10)に基
づき、 Xm=Xsf/αf+(Cm・βf+Csf/ αf)・Fsf+Cm・βf・Fsr ・・(式14) のように表され、かつ同回転変位量Xmは、(式1),
(式3),(式4),(式6),(式8),(式9),
(式10)に基づき、 Xm=Xsr/αr+(Cm・βr+Csr/ αr)・Fsr+Cm・βf・Fsf ・・(式15) のようにも表される。ここで左右前輪33a,33bが
固定され(Xsf=0)かつ左右後輪43a,43bが
路面と接触していない(Fsf=0)状態における前輪
転舵弾性係数Qsfを値Qsf∞とすれば、値Qsf∞
は(式1),(式9),(式14)により、 Qsf∞=αf・βf/(αf・βf・Cm+ Csf+αf・βf・Cm・Fsr/ Fsf) ・・・(式16) のように表される。また、左右前輪33a,33bが路
面に接触しておらず(Fsf=0)かつ左右後輪43
a,43bが固定された(Xsr=0)状態における後
輪転舵弾性係数Qsrを値Qsr∞とすれば、値Qsr
∞は(式1),(式10),(式15)により、 Qsr∞=αr・βr/(αr・βr・Cm+ Csr+αr・βf・Cm・Fsf/ Fsr) ・・・(式17) のように表される。そして、操舵弾性係数Qmを前輪転
舵弾性係数Qsf及び後輪転舵弾性係数Qsrを用いて
表すと、操舵弾性係数Qmは、(式1),(式9),
(式10),(式12)〜(式17)に基づき、 のように表される。ここで、値Qsf∞が左右前輪33
a,33bが固定された状態における前輪転舵弾性係数
であることを考えると、値Qsf∞は通常時の前輪転舵
弾性係数Qsfに比べて極めて大きく(Qsf∞>>Q
sf)となり、また値Qsf∞が左右後輪43a,43
bが固定された状態における後輪転舵弾性係数であるこ
とを考えると、値Qsr∞は通常時の後輪転舵弾性係数
Qsrに比べて極めて大きく(Qsr∞>>Qsr)な
るので、上記(式18)は次式のように変形される。On the other hand, the rotational displacement amount Xm is based on (Equation 1), (Equation 2), (Equation 4), (Equation 5), (Equation 7), (Equation 9), (Equation 10): Xm = Xsf / αf + (Cm · βf + Csf / αf) · Fsf + Cm · βf · Fsr · · (Equation 14), and the rotational displacement Xm is expressed by (Equation 1),
(Equation 3), (Equation 4), (Equation 6), (Equation 8), (Equation 9),
Based on (Equation 10), Xm = Xsr / αr + (Cm · βr + Csr / αr) · Fsr + Cm · βf · Fsf ··· (Equation 15) If the left and right front wheels 33a and 33b are fixed (Xsf = 0) and the left and right rear wheels 43a and 43b are not in contact with the road surface (Fsf = 0), the front wheel steering elastic coefficient Qsf is set to the value Qsf∞. Value Qsf∞
From (Equation 1), (Equation 9), (Equation 14), Qsf∞ = αf · βf / (αf · βf · Cm + Csf + αf · βf · Cm · Fsr / Fsf) (Equation 16) expressed. Further, the left and right front wheels 33a, 33b are not in contact with the road surface (Fsf = 0) and the left and right rear wheels 43
If the rear-wheel steering elastic coefficient Qsr in the state in which a and 43b are fixed (Xsr = 0) is the value Qsr∞, the value Qsr
∞ is expressed by (Equation 1), (Equation 10) and (Equation 15) as follows: Qsr∞ = αr · βr / (αr · βr · Cm + Csr + αr · βf · Cm · Fsf / Fsr) (Equation 17) Represented by. Then, when the steering elastic coefficient Qm is expressed by using the front wheel turning elastic coefficient Qsf and the rear wheel turning elastic coefficient Qsr, the steering elastic coefficient Qm is calculated by the following equations (1), (9),
Based on (Equation 10) and (Equation 12) to (Equation 17), It is expressed as. Here, the value Qsf∞ is the left and right front wheels 33.
Considering that a and 33b are front wheel steering elastic coefficients in a fixed state, the value Qsf∞ is extremely larger than the front wheel steering elastic coefficient Qsf in the normal state (Qsf∞ >> Q
sf), and the value Qsf∞ is equal to the left and right rear wheels 43a, 43.
Considering that b is a rear-wheel steering elastic coefficient in a fixed state, the value Qsr∞ is extremely larger than the rear-wheel steering elastic coefficient Qsr at the normal time (Qsr∞ >> Qsr). 18) is transformed into the following equation.
Qm=αf・βf・Qsf+αr・βr・Qsr ・・
(式19) そして、これらの積αf・βf及び積αr・βrを各々
変更することは、操舵弾性係数Qm、すなわち操舵軸2
1の同一回転変位量Xmに対して必要とされる操舵力F
mの変更を意味し、後述の実施例では、これらの積αf
・βf及び積αr・βrは各々操舵特性を示す選択可能
でかつ車速に応じて変化するパラメータとして扱われ
る。Qm = αf ・ βf ・ Qsf + αr ・ βr ・ Qsr ・ ・
(Equation 19) Then, changing the product αf · βf and the product αr · βr, respectively, means that the steering elastic coefficient Qm, that is, the steering shaft 2
Steering force F required for the same amount of rotational displacement Xm of 1
means a change of m, and in the embodiment described later, the product αf of these
.Beta.f and products .alpha.r.beta.r are treated as selectable parameters that indicate steering characteristics and that change according to the vehicle speed.
上記(式7)〜(式10)により逆に係数Kmpf,K
mpr,Ksff,Ksfrを求めると、係数Kmp
f,Kmpr,Ksff,Ksfrは次式のようにな
る。Inversely, the coefficients Kmpf, K are obtained by the above (Equation 7) to (Equation 10).
When mpr, Ksff, and Ksfr are calculated, the coefficient Kmp
f, Kmpr, Ksff, and Ksfr are given by the following equations.
Kmpf=αf・Kspf・・・(式20) Kmpr=αr・Kspr・・・(式21) Ksff=βf・Kmf・・・(式22) Ksfr=βr・Kmf・・・(式23) ここで、係数Kspf,Kspr,Kmf,Kmfは各
々係数Kmpf,Kmpr,Ksff,Ksfrに対す
る相対的な値であるので、後述の実施例において定数と
して定義し、係数Kmpf,Kmpr,Ksff,Ks
frを各々前輪ステアリングギヤ比αf,後輪ステアリ
ングギヤ比αr,前輪力逆送比βf及び後輪力逆送比β
rにより変化する値として扱う。Kmpf = αf · Kspf (Equation 20) Kmpr = αr · Kspr (Equation 21) Ksff = βf · Kmf ... (Equation 22) Ksfr = βr · Kmf ... (Equation 23) where , Kspf, Kspr, Kmf, Kmf are relative values to the coefficients Kmpf, Kmpr, Ksff, Ksfr, respectively, and thus are defined as constants in the embodiments described later, and the coefficients Kmpf, Kmpr, Ksff, Ks are defined.
fr is a front wheel steering gear ratio αf, a rear wheel steering gear ratio αr, a front wheel force reverse feed ratio βf, and a rear wheel force reverse feed ratio β.
Treated as a value that changes with r.
C.具体的実施例 上記のように、前輪ステアリングギヤ比αf,後輪ステ
アリングギヤ比αr,前輪力逆送比βf及び後輪力逆送
比βrに基づいて、係数Kmpf,Kmpr,Ksf
f,Ksfrをマイクロコンピュータによって演算し
て、左右前輪33a,33b及び左右後輪43a,43
bを各々転舵制御する本発明の具体的実施例を図面を用
いて説明すると、第4図は運転者が操作するマスタ部A
と、左右前輪33a,33bを転舵する第1スレーブ部
B1と、左右後輪43b,43bを転舵する第2スレー
ブ部B2と、マスタ部A、第1スレーブ部B1及び第2
スレーブ部B2を電気的に制御する電気制御装置Cとを
備えた車両用動力舵取装置を示している。マスタ部A、
第1スレーブ部B1及び第2スレーブ部B2は、第2図
の基本構成とほぼ同じに構成されているので、同一部分
には同一符号を付して詳述しない。C. Specific Examples As described above, the coefficients Kmpf, Kmpr, and Ksf are based on the front wheel steering gear ratio αf, the rear wheel steering gear ratio αr, the front wheel force reverse feed ratio βf, and the rear wheel force reverse feed ratio βr.
f and Ksfr are calculated by a microcomputer, and left and right front wheels 33a and 33b and left and right rear wheels 43a and 43
A specific embodiment of the present invention for controlling the steering of each b will be described with reference to the drawings. FIG. 4 shows a master unit A operated by a driver.
A first slave unit B1 that steers the left and right front wheels 33a and 33b, a second slave unit B2 that steers the left and right rear wheels 43b and 43b, a master unit A, a first slave unit B1 and a second slave unit B2.
The power steering apparatus for vehicles provided with the electric control apparatus C which electrically controls the slave part B2 is shown. Master part A,
The first slave unit B1 and the second slave unit B2 have substantially the same configuration as that of the basic configuration shown in FIG.
マスタ部Aは操舵ハンドル20,操舵軸21,操舵軸モ
ータ22,操舵変位量センサ23及び操舵力センサ24
を備えている。操舵変位量センサ23は、操舵軸21の
回転に応じて中点の接地された抵抗器23a上を摺動す
る摺動子23bと、抵抗器23aの両端に接続された電
圧源23cとを備え、摺動子23bの左(又は右)回転
により操舵軸21の基準位置に対する回転角に比例した
操舵変位量Ymを表わす正(又は負)の電圧信号を出力
する。操舵力センサ24は、操舵軸21に貼着され同軸
21の捩れ量に応じて抵抗値の変化する歪みゲージ24
aと、この歪みゲージ24aを一辺として固定抵抗24
b,24c,24dで形成されるブリッジ回路と、歪み
ゲージ24a,抵抗24bの接続点及び抵抗24c,2
4dの接続点間に接続された電圧源24eから成る。こ
の操舵力センサ24は歪みゲージ24a,抵抗24dの
接続点から操舵ハンドル20の左(又は右)回転に応じ
操舵軸21に発生する捩れ量に比例した操舵力Fmを表
す正(又は負)の電圧信号を出力している。なお、抵抗
24b,24cの接続点は接地されている。The master unit A includes a steering wheel 20, a steering shaft 21, a steering shaft motor 22, a steering displacement amount sensor 23, and a steering force sensor 24.
Is equipped with. The steering displacement amount sensor 23 includes a slider 23b that slides on a grounded resistor 23a according to the rotation of the steering shaft 21, and a voltage source 23c connected to both ends of the resistor 23a. The left (or right) rotation of the slider 23b outputs a positive (or negative) voltage signal representing the steering displacement amount Ym proportional to the rotation angle of the steering shaft 21 with respect to the reference position. The steering force sensor 24 is a strain gauge 24 attached to the steering shaft 21 and having a resistance value that changes according to the amount of twist of the coaxial shaft 21.
a and a fixed resistor 24 with this strain gauge 24a as one side
a bridge circuit formed by b, 24c and 24d, a connection point of the strain gauge 24a and a resistor 24b, and resistors 24c and 2
It consists of a voltage source 24e connected between the connection points of 4d. The steering force sensor 24 is a positive (or negative) force representing a steering force Fm proportional to the amount of twist generated in the steering shaft 21 in accordance with the left (or right) rotation of the steering handle 20 from the connection point of the strain gauge 24a and the resistor 24d. Outputs voltage signal. The connection point between the resistors 24b and 24c is grounded.
第1スレーブ部B1は前輪転舵軸モータ30,ピニオン
31,前輪転舵軸32,左右前輪33a,33b、ラッ
ク軸34,左右タイロッド35a,35b,左右ナック
ルアーム36a,36b、前輪転舵変位量センサ37及
び前輪転舵反力センサ38を備えている。前輪転舵変位
量センサ37は、前輪転舵軸32の回転に応じて中点の
接地された抵抗器37a上を摺動する摺動子37bと、
抵抗器37aの両端に接続された電圧源37cとを備
え、摺動子37bの右(又は左)回転すなわち左右前輪
33a,33bの左(又は右)転舵により前輪転舵軸3
2の回転角に比例した前輪転舵変位量Ysfを表わす正
(又は負)の電圧信号を出力する。前輪転舵反力センサ
38は、前輪転舵軸32に貼着され同軸32の捩れ量に
応じて抵抗値の変化する歪みゲージ38aと、この歪み
ゲージ38aを一辺として固定抵抗38b,38c,3
8dで形成されるブリッジ回路と、歪みゲージ38a、
抵抗38bの接続点及び抵抗38c,38dの接続点間
に接続された電圧源38eから成る。前輪転舵反力セン
サ38は歪みゲージ38a,抵抗38dの接続点から左
右前輪33a,33bの左(又は右)転舵に応じ前輪転
舵軸32に発生する捩れ量に比例した前輪転舵反力Fs
fを表す正(又は負)の電圧信号を出力している。な
お、抵抗38b,38cの接続点は接地されている。The first slave unit B1 includes a front wheel steering shaft motor 30, a pinion 31, a front wheel steering shaft 32, left and right front wheels 33a and 33b, a rack shaft 34, left and right tie rods 35a and 35b, left and right knuckle arms 36a and 36b, and front wheel steering displacement amounts. A sensor 37 and a front wheel turning reaction force sensor 38 are provided. The front wheel turning displacement amount sensor 37 includes a slider 37b that slides on a resistor 37a that is grounded at a midpoint according to the rotation of the front wheel turning shaft 32.
The front wheel steering shaft 3 is provided with a voltage source 37c connected to both ends of the resistor 37a, and by rotating the slider 37b to the right (or left), that is, turning the left and right front wheels 33a and 33b to the left (or right).
A positive (or negative) voltage signal representing the front wheel turning displacement amount Ysf proportional to the rotation angle of 2 is output. The front wheel turning reaction force sensor 38 is attached to the front wheel turning shaft 32 and has a strain gauge 38a whose resistance value changes according to the amount of twist of the coaxial shaft 32, and fixed resistances 38b, 38c, 3 with the strain gauge 38a as one side.
A bridge circuit formed by 8d and a strain gauge 38a,
The voltage source 38e is connected between the connection point of the resistor 38b and the connection point of the resistors 38c and 38d. The front wheel turning reaction force sensor 38 is a front wheel turning reaction proportional to the amount of twist generated on the front wheel turning shaft 32 in response to left (or right) turning of the left and right front wheels 33a and 33b from the connection point of the strain gauge 38a and the resistance 38d. Force Fs
It outputs a positive (or negative) voltage signal representing f. The connection point of the resistors 38b and 38c is grounded.
第2スレーブ部B2は後輪転舵軸モータ40,ピニオン
41,後輪転舵軸42,左右後輪43a,43b,ラッ
ク軸44、左右タイロッド45a,45b、左右ナック
ルアーム46a,46b、後輪転舵変位量センサ47及
び後輪転舵反力センサ48を備えている。後輪転舵変位
量センサ47は、抵抗器47a、摺動子47b及び電圧
源47cにより前輪転舵変位量センサ37と同じように
構成され、左右後輪43a,43bの左(又は右)転舵
により後輪転舵軸42の回転角に比例した転舵変位量Y
srを表す正(又は負)の電圧信号を出力する。後輪転
舵反力センサ48は、歪みゲージ48a,固定抵抗48
b,48c,48d及び電圧源48eにより前輪転舵反
力センサ38と同じように構成され、左右後輪43a,
43bの左(又は右)転舵に応じ後輪転舵軸42に発生
する捩れ量に比例した後輪転舵反力Fsrを表す正(又
は負)の電圧信号を出力している。The second slave unit B2 includes a rear wheel steering shaft motor 40, a pinion 41, a rear wheel steering shaft 42, left and right rear wheels 43a and 43b, a rack shaft 44, left and right tie rods 45a and 45b, left and right knuckle arms 46a and 46b, and rear wheel steering displacement. An amount sensor 47 and a rear wheel steering reaction force sensor 48 are provided. The rear wheel turning displacement amount sensor 47 is configured in the same manner as the front wheel turning displacement amount sensor 37 by the resistor 47a, the slider 47b and the voltage source 47c, and the left (or right) turning of the left and right rear wheels 43a, 43b is performed. Therefore, the steering displacement amount Y proportional to the rotation angle of the rear wheel steering shaft 42
It outputs a positive (or negative) voltage signal representing sr. The rear wheel steering reaction force sensor 48 includes a strain gauge 48a and a fixed resistance 48.
b, 48c, 48d and the voltage source 48e are configured in the same manner as the front wheel steering reaction force sensor 38, and the left and right rear wheels 43a,
A positive (or negative) voltage signal representing the rear wheel steering reaction force Fsr proportional to the amount of twist generated in the rear wheel steering shaft 42 in response to the left (or right) steering of 43b is output.
電気制御装置Cは操舵変位量センサ23からの操舵変位
量Ym,操舵力センサ24からの操舵力(又は操舵軸反
力)Fm,前輪転舵変位量センサ37からの前輪転舵変
位量Ysf,前輪転舵反力センサ38からの前輪転舵反
力(又は前輪転舵力)Fsf、後輪転舵変位量センサ4
7からの後輪転舵変位量Ysr,後輪転舵反力センサ4
8からの後輪転舵反力(又は後輪転舵力)Fsr、及び
変速機の出力軸の回転をピックアップし、車速に対応し
たピックアップ信号を発生する車速センサ70からの車
速Vを入力して、操舵軸モータ22の回転制御量Mm、
前輪転舵軸モータ30の回転制御量Msf及び後輪転舵
軸モータ40の回転制御量Msrを算出するマイクロコ
ンピュータ71を備えている。The electric control device C controls the steering displacement amount Ym from the steering displacement amount sensor 23, the steering force (or steering shaft reaction force) Fm from the steering force sensor 24, the front wheel steering displacement amount Ysf from the front wheel steering displacement amount sensor 37, Front wheel steering reaction force (or front wheel steering force) Fsf from front wheel steering reaction force sensor 38, rear wheel steering displacement amount sensor 4
Rear wheel steering displacement amount Ysr from 7, rear wheel steering reaction force sensor 4
The rear wheel steering reaction force (or rear wheel steering force) Fsr from 8 and the rotation of the output shaft of the transmission are picked up, and the vehicle speed V from the vehicle speed sensor 70 that generates a pickup signal corresponding to the vehicle speed is input, The rotation control amount Mm of the steering shaft motor 22,
A microcomputer 71 for calculating the rotation control amount Msf of the front wheel steering shaft motor 30 and the rotation control amount Msr of the rear wheel steering shaft motor 40 is provided.
マイクロコンピュータ71は、上記各センサ23,2
4,37,38,47,48,70からの検出値を入力
する入力ポート71aと、第5図に示されたフローチャ
ートに対応するプログラム及びプログラムの実行に必要
な定数を記憶する読出し専用メモリ(以下単にROMと
いう)71bと、プログラムを実行する中央処理装置
(以下単にCPUという)71cと、プログラムの実行
に必要な変数を一時的に記憶する書込み可能メモリ(以
下単にRAMという)71dと、プログラムの実行によ
り算出された操舵軸モータ22の回転制御量Mm、前輪
転舵軸モータ30の回転制御量Msf及び後輪転舵軸モ
ータ40の回転制御量Msrを出力する出力ポート71
eと、これらの入力ポート71a、ROM71b、CP
U71c、RAM71d及び出力ポート71eを各々共
通に接続するバス71fを備えている。入力ポート71
aには、各センサ23,24,37,38,47,4
8,70からマルチプレクサ72を介して供給されるア
ナログ信号をディジタル信号に変換するアナログディジ
タル変換器(以下単にA/D変換器という)73が接続
され、マルチプレクサ72は各センサ23,24,3
7,38,47,48,70からのアナログ信号を、C
PU71cから入力ポート71aを介して供給される制
御信号に応じて、時分割的にA/D変換器73に選択出
力し、A/D変換器73がこの制御信号に同期してこの
出力信号をディジタル信号に変換して、入力ポート71
aに供給している。マルチプレクサ72と操舵変位量セ
ンサ23、操舵力センサ24、前輪転舵変位量センサ3
7、前輪転舵反力センサ38,後輪転舵変位量センサ4
7及び後輪転舵反力センサ48との間には各々バッファ
アンプ74a,74b,74c,74d,74e,74
fが接続されている。また、マルチプレクサ72と車速
センサ70との間には、車速センサ70からのピックア
ップ信号を矩形波信号に波形整形する波形整形回路70
aと、この矩形波信号を入力し同信号の周波数に比例し
た電圧値を示す電圧信号に変換する周波数/電圧変換器
(以下単にf/V変換器という)70bと、f/V変換
器70bの出力をマルチプレクサ72に供給するバッフ
ァアンプ70cが接続されている。さらに、入力ポート
71aには、運転者が車速に応じて変化する3種類の操
舵特性(ライトモード,ノーマルモード、スポーツモー
ド)の内の1種類を選択するセレクトスイッチ75が接
続されている。出力ポート71eには、操舵軸モータ2
2の回転制御量Mmをディジタルアナログ変換するディ
ジタルアナログ変換器(以下単にD/A変換器という)
76aが接続されて、D/A変換器76aは回転制御量
Mmをアナログ信号に変換してパワーアンプ77aを介
して操舵軸モータ22を制御している。The microcomputer 71 uses the sensors 23 and 2 described above.
4, 37, 38, 47, 48, 70, and an input port 71a for inputting detected values, and a read-only memory (for storing a program corresponding to the flowchart shown in FIG. 5 and constants necessary for executing the program ( A central processing unit (hereinafter simply referred to as CPU) 71c that executes a program, a writable memory (hereinafter simply referred to as RAM) 71d that temporarily stores variables necessary for executing the program, and a program The output port 71 for outputting the rotation control amount Mm of the steering shaft motor 22, the rotation control amount Msf of the front wheel steering shaft motor 30, and the rotation control amount Msr of the rear wheel steering shaft motor 40 calculated by executing
e, these input ports 71a, ROM 71b, CP
The bus 71f is provided for commonly connecting the U 71c, the RAM 71d, and the output port 71e. Input port 71
In a, each sensor 23, 24, 37, 38, 47, 4
An analog-digital converter (hereinafter, simply referred to as an A / D converter) 73 for converting an analog signal supplied from 8, 70 through a multiplexer 72 into a digital signal is connected, and the multiplexer 72 is connected to each of the sensors 23, 24, 3
The analog signals from 7, 38, 47, 48, 70 are
In response to a control signal supplied from the PU 71c via the input port 71a, it selectively outputs to the A / D converter 73 in a time division manner, and the A / D converter 73 synchronizes this output signal with this output signal. Converted to digital signal and input port 71
is being supplied to a. Multiplexer 72, steering displacement amount sensor 23, steering force sensor 24, front wheel turning displacement amount sensor 3
7, front wheel steering reaction force sensor 38, rear wheel steering displacement amount sensor 4
7 and the rear wheel steering reaction force sensor 48 are provided between the buffer amplifiers 74a, 74b, 74c, 74d, 74e and 74, respectively.
f is connected. Further, between the multiplexer 72 and the vehicle speed sensor 70, a waveform shaping circuit 70 for shaping the pickup signal from the vehicle speed sensor 70 into a rectangular wave signal.
a, a frequency / voltage converter (hereinafter simply referred to as f / V converter) 70b for inputting this rectangular wave signal and converting it into a voltage signal showing a voltage value proportional to the frequency of the signal, and an f / V converter 70b. A buffer amplifier 70c for supplying the output of the above to the multiplexer 72 is connected. Further, the input port 71a is connected with a select switch 75 for selecting one of three types of steering characteristics (light mode, normal mode, sports mode) that the driver changes according to the vehicle speed. The steering shaft motor 2 is connected to the output port 71e.
A digital-to-analog converter (hereinafter simply referred to as a D / A converter) that performs digital-to-analog conversion of the rotation control amount Mm of 2
76a is connected, and the D / A converter 76a converts the rotation control amount Mm into an analog signal and controls the steering shaft motor 22 via the power amplifier 77a.
また、同出力ポート71eには前輪転舵軸モータ30の
回転制御量Msf及び後輪転舵軸モータ40の回転制御
量Msrを各々ディジタルアナログ変換するD/A変換
器76b,76cが接続されて、D/A変換器76b,
76cは回転制御量Msf及び回転制御量Msrを各々
アナログ信号に変換してパワーアンプ77b,77cを
介して前輪転舵軸モータ30及び後輪転舵軸モータ40
を各々制御している。さらに、出力ポート71eにはセ
レクトスイッチ75の選択操舵特性を表示する表示器7
5aが接続されている。Further, D / A converters 76b and 76c for respectively converting the rotation control amount Msf of the front wheel steering shaft motor 30 and the rotation control amount Msr of the rear wheel steering shaft motor 40 into digital-analog are connected to the output port 71e, D / A converter 76b,
Reference numeral 76c converts the rotation control amount Msf and the rotation control amount Msr into analog signals, respectively, and transmits the front wheel steering shaft motor 30 and the rear wheel steering shaft motor 40 via the power amplifiers 77b and 77c.
Are controlled respectively. Further, the output port 71e has a display 7 for displaying the selected steering characteristic of the select switch 75.
5a is connected.
上記のように構成された車両用動力舵取装置の動作を第
5図に示されたフローチャートを用いて説明すると、イ
グニッションスイッチの投入により、CPU71cはプ
ログラムの実行をステップ100から開始し、プログラ
ムはステップ101に進む。The operation of the vehicle power steering apparatus configured as described above will be described with reference to the flowchart shown in FIG. 5. When the ignition switch is turned on, the CPU 71c starts executing the program from step 100, and the program is executed. Go to step 101.
ステップ101にて、CPU71cはセレクトスイッチ
75の選択状態を入力して、セレクトスイッチ75がラ
イトモードを選択している場合モード選択フラグSを
“0”に設定し、ノーマルモードを選択している場合モ
ード選択フラグSを“1”に設定し、スポーツモードを
選択している場合モード選択フラグSを“2”に設定し
て、このモード選択フラグSをRAM71dに一時的に
記憶する。ステップ101のモード選択情報の入力後、
CPU71cは、ステップ102にてこのモード選択情
報を出力ポート71eを介して表示器75aに出力して
表示器75aにて選択された操舵特性モードを点灯表示
し、プログラムをステップ103,104に進める。C
PU71cはステップ103にて操舵変位量センサ23
から操舵変位量Ym、操舵力センサ24から操舵力(又
は操舵反力)Fm、前輪転舵変位量センサ37から前輪
転舵変位量Ysf,前輪転舵反力センサ38から前輪転
舵反力(前輪転舵力)Fsf、後輪転舵変位量センサ4
7から後輪転舵変位量Ysr、及び後輪転舵反力センサ
48から後輪転舵反力(又は後輪転舵力)Fsrを入力
してRAM71dに各々記憶し、ステップ104にて車
速センサ70から車速Vを入力してRAM71dに記憶
して、プログラムをステップ105に進める。ステップ
105にて、CPU71cはモード選択フラグSを読出
してモード選択フラグSの値によりモード判別を行い、
モード選択フラグSが“0”である場合操舵特性として
ライトモードが選択されていると判断してステップ10
6の実行に移り、モード選択フラグSが“1”である場
合操舵特性としてノーマルモードが選択されていると判
断してステップ107の実行に移り、モード選択フラグ
Sが“2”である場合操舵特性としてスポーツモードが
選択されていると判断してステップ108の実行に移
る。In step 101, the CPU 71c inputs the selection state of the select switch 75, sets the mode selection flag S to "0" when the select switch 75 selects the write mode, and selects the normal mode. The mode selection flag S is set to "1", and when the sports mode is selected, the mode selection flag S is set to "2", and the mode selection flag S is temporarily stored in the RAM 71d. After entering the mode selection information in step 101,
The CPU 71c outputs this mode selection information to the display 75a via the output port 71e in step 102 to light up and display the steering characteristic mode selected in the display 75a, and advances the program to steps 103 and 104. C
The PU 71c determines the steering displacement sensor 23 in step 103.
To steering displacement amount Ym, steering force sensor 24 to steering force (or steering reaction force) Fm, front wheel steering displacement amount sensor 37 to front wheel steering displacement amount Ysf, front wheel steering reaction force sensor 38 to front wheel steering reaction force ( Front wheel steering force) Fsf, rear wheel steering displacement amount sensor 4
The rear wheel steering displacement amount Ysr from 7 and the rear wheel steering reaction force (or rear wheel steering force) Fsr from the rear wheel steering reaction force sensor 48 are input and stored in the RAM 71d respectively, and in step 104, the vehicle speed sensor 70 outputs the vehicle speed. V is input and stored in the RAM 71d, and the program proceeds to step 105. In step 105, the CPU 71c reads out the mode selection flag S and determines the mode by the value of the mode selection flag S,
When the mode selection flag S is "0", it is determined that the light mode is selected as the steering characteristic, and step 10 is performed.
When the mode selection flag S is "1", it is determined that the normal mode is selected as the steering characteristic, and the process proceeds to step 107, and when the mode selection flag S is "2", the steering is performed. It is determined that the sports mode is selected as the characteristic, and the process proceeds to step 108.
ステップ106,107,108の演算においては、C
PU71cは、各々車速VをRAM71dから読出し
て、この車速Vと操出特性モードの種類に基づいて、第
6A図乃至第6D図の特性図に示された前輪ステアリン
グギヤ比αf、後輪ステアリングギヤ比αr、上記比α
fと前輪力逆送比βfとの積αf・βf及び上記比αr
と後輪力逆送比βrとの積αr・βrをROM71b内
に設けられたパラメータテーブルから各々読出して各比
αf,αrを各々求めるとともに、各比αf,αrで各
積αf・βf,αr・βrを除して各比βf,βrを算
出する。第6A図の特性図は車速Vに対する各モードの
前輪ステアリングギヤ比αfの値の変化を示しており、
これらの各比αfは全てのモードにおいて車速Vが変化
してもほぼ一定の値となるが、ライトモードL及びスポ
ーツモードSではノーマルモードNに比べ大きな値であ
る。これはライトモードL及びスポーツモードSにおけ
る操舵量とノーマルモードNにおける操舵量が同じであ
っても、ライトモードL及びスポーツモードSにおける
前輪操舵量がノーマルモードNにおける前輪転舵量に比
して大きくなることを意味する。第6B図の特性図は車
速Vに対する各モードの後輪ステアリングギヤαrの値
の変化を示しており、全てのモードにおいて、これらの
各比αrは、車速Vが零から大きくなるに従って、負か
ら正に連続的に変化し、かつこれらの各比αrの絶対値
の最大値は各比αfの値の1/3程度の値である。ま
た、これらの各比αrは、ノーマルモードN、ライトモ
ードL、スポーツモードSの順にそれらの値が零となる
車速値が大きくなる。これにより、低車速領域にて左右
後輪43a,43bは左右前輪33a,33bに対し逆
相に転舵され、高車速領域にて左右後輪43a,43b
は左右前輪33a,33bに対し逆相に転舵され、かつ
ノーマルモードN、ライトモードL、スポーツモードS
の順に車速が大きくなるまで左右後輪43a,43bは
左右前輪33a,33bに対し逆相に転舵される。な
お、左右後輪43a,43bの転舵量は左右前輪33
a,33bの転舵量の1/3程度となる。第6C図及び
第6D図の特性図は車速Vに対する各モードの前輪ステ
アリング比αfと前輪力送比βfとの積αf・βf及び
後輪ステアリング比αrと前輪力送比βrとの積αr・
βrの各値の変化を示している。これらの積αf・βf
及び積αr・βrは、全てのモードにおいて、車速Vが
小さいときには一定の値となり、車速Vの増加によりラ
イトモードL、ノーマルモードN、スポーツモードSの
順に大きくなる勾配をもって増加する。これは車速Vの
増加により操舵ハンドル20を回動するために必要とさ
れる操舵力が除々に大きくなることを意味するととも
に、ライトモードL,ノーマルモードN,スポーツモー
ドSの順にこの操舵力が大きくなることを意味する。In the calculation of steps 106, 107 and 108, C
The PU 71c reads out the vehicle speed V from the RAM 71d, and based on the vehicle speed V and the type of operation characteristic mode, the front wheel steering gear ratio αf and the rear wheel steering gear shown in the characteristic diagrams of FIGS. 6A to 6D. Ratio αr, the above ratio α
The product of f and the front wheel force reverse feed ratio βf αf · βf and the ratio αr
And the rear wheel force reverse feed ratio βr are read out from the parameter table provided in the ROM 71b to obtain the respective ratios αf and αr, and the respective products αf and βf and αr are calculated with the respective ratios αf and αr. -Calculate each ratio βf and βr by dividing βr. The characteristic diagram of FIG. 6A shows changes in the value of the front wheel steering gear ratio αf in each mode with respect to the vehicle speed V.
Each of these ratios αf has a substantially constant value even if the vehicle speed V changes in all modes, but is a larger value in the light mode L and the sports mode S than in the normal mode N. This is because even if the steering amount in the light mode L and the sports mode S and the steering amount in the normal mode N are the same, the front wheel steering amount in the light mode L and the sports mode S is higher than that in the normal mode N. It means to grow. The characteristic diagram of FIG. 6B shows changes in the value of the rear wheel steering gear αr in each mode with respect to the vehicle speed V. In all modes, these ratios αr become negative as the vehicle speed V increases from zero. It changes positively and continuously, and the maximum absolute value of each ratio αr is about 1/3 of the value of each ratio αf. Further, the vehicle speed values at which the ratios αr become zero in the order of the normal mode N, the light mode L, and the sports mode S increase in the ratios αr. As a result, the left and right rear wheels 43a, 43b are steered in reverse phase to the left and right front wheels 33a, 33b in the low vehicle speed range, and the left and right rear wheels 43a, 43b in the high vehicle speed range.
Is steered in the opposite phase with respect to the left and right front wheels 33a and 33b, and is in the normal mode N, the light mode L, and the sports mode S.
The left and right rear wheels 43a, 43b are steered in reverse phase with respect to the left and right front wheels 33a, 33b until the vehicle speed increases in the order of. The steering amounts of the left and right rear wheels 43a and 43b are the same as the left and right front wheels 33.
It is about 1/3 of the steering amount of a and 33b. The characteristic diagrams of FIGS. 6C and 6D are the product αf · βf of the front wheel steering ratio αf and the front wheel power transmission ratio βf and the product αr of the rear wheel steering ratio αr and the front wheel power transmission ratio βr in each mode with respect to the vehicle speed V.
The change in each value of βr is shown. The product αf · βf
In all the modes, the product αr · βr has a constant value when the vehicle speed V is low, and increases with the increasing vehicle speed V in the order of the light mode L, the normal mode N, and the sports mode S. This means that the steering force required to rotate the steering wheel 20 gradually increases as the vehicle speed V increases, and the steering force is increased in the order of the light mode L, the normal mode N, and the sports mode S. It means to grow.
上記ステップ106(又は107,108)にて前後輪
ステアリングギヤ比αf,αr及び前後輪力逆送比β
f,βrの演算後、プログラムはステップ109に進
み、CPU71cはステップ109にて係数Kmpf,
Kmpr,Ksff,Ksfrを、上記前後輪ステアリ
ングギヤ比αf,αrと上記前後輪力逆送比βf,βr
とROM71bに記憶されている係数Kspf,Ksp
r,Kmfに基づいて、(式20)乃至(式23)に示
される演算を実行することにより、算出する。次に、ス
テップ110にて、CPU71cは操舵軸モータ22の
回転制御量Mm及び前後輪転舵軸モータ30,40の各
回転制御量Msf,Msrを上記算出係数Kmpf,K
mpr,Ksff,Ksfr、上記係数Kspf,Ks
pr,Kmf、及び操舵変位量Ym、操舵力(又は操舵
反力)Fm、前後輪転舵変位量Ysf,Ysr、前後輪
転舵反力(又は転舵力)Fsf,Fsrに基づいて下記
(式24)乃至(式26)に示される演算を実行するこ
とにより算出する。In the above step 106 (or 107, 108), the front and rear wheel steering gear ratios αf, αr and the front and rear wheel force reverse transmission ratio β
After calculating f and βr, the program proceeds to step 109, and the CPU 71c determines the coefficient Kmpf,
Kmpr, Ksff, Ksfr are calculated by using the front and rear wheel steering gear ratios αf and αr and the front and rear wheel force reverse feed ratios βf and βr.
And the coefficients Kspf and Ksp stored in the ROM 71b.
It is calculated by executing the calculations shown in (Equation 20) to (Equation 23) based on r and Kmf. Next, at step 110, the CPU 71c calculates the rotation control amount Mm of the steering shaft motor 22 and the rotation control amounts Msf and Msr of the front and rear wheel steering shaft motors 30 and 40 by the calculation coefficients Kmpf and Kmp.
mpr, Ksff, Ksfr, the above coefficients Kspf, Ks
pr, Kmf, and steering displacement amount Ym, steering force (or steering reaction force) Fm, front and rear wheel steering displacement amounts Ysf, Ysr, front and rear wheel steering reaction force (or steering force) Fsf, Fsr. ) To (Equation 26).
Mm=Kmf・Fm−Ksff・Fsf−Ksf r・Fsr ・・・(式24) Msf=Kmpf・Ym−Kspf・Ysf ..(式25) Msr=Kmpr・Ym−Kspr・Ysr ..(式26) ステップ110の演算後、プログラムはステップ111
に進み、CPU71cは操舵軸21の回転制御量Mm及
び前後輪転舵軸32,42の各回転制御量Msf,Ms
rを表す制御信号を出力ポート71eを介して各々D/
A変換器76a,76b,76cに出力する。D/A変
換器76a,76b,76cは各々パワーアンプ77
a,77b,77cを介して操舵軸モータ22及び前後
輪転舵軸モータ30,40の回転を制御する。操舵軸2
1の回転が制御される動作、及び前後輪転舵軸32,4
2の回転が制御されて左右前輪33a,33b及び左右
後輪43a,43bが転舵される動作は基本構成で示し
た動作と同じである。Mm = Kmf * Fm-Ksff * Fsf-Ksfr * Fsr ... (Formula 24) Msf = Kmpf * Ym-Kspf * Ysf. . (Formula 25) Msr = Kmpr * Ym-Kspr * Ysr. . (Equation 26) After the calculation in step 110, the program executes step 111
Then, the CPU 71c controls the rotation control amount Mm of the steering shaft 21 and the rotation control amounts Msf and Ms of the front and rear wheel turning shafts 32 and 42.
A control signal indicating r is output to D / via the output port 71e.
It outputs to the A converters 76a, 76b, 76c. The D / A converters 76a, 76b and 76c are power amplifiers 77, respectively.
The rotations of the steering shaft motor 22 and the front and rear wheel steering shaft motors 30 and 40 are controlled via a, 77b and 77c. Steering axis 2
1 rotation controlled operation, and front and rear wheel steering shafts 32, 4
The operation of controlling the rotation of the two wheels to steer the left and right front wheels 33a, 33b and the left and right rear wheels 43a, 43b is the same as the operation shown in the basic configuration.
上記ステップ111の演算後、プログラムはステップ1
12に進み、CPU71cはステップ112にて操舵変
位量YmをRAM71dから読出して、操舵変位量Ym
の絶対値|Ym|が所定の小さな値W以下である、すな
わち車両が略直進状態にあるか否かを判別する。この判
別においてCPU71cが、「YES」すなわち操舵変
位量Ymの絶対値|Ym|が上記値W以下であるとの判
断をすると、ステップ101の演算の実行に戻ってステ
ップ101〜105,106(又は107,108),
109〜112の循環演算を実行し、「NO」すなわち
操舵変位量Ymの絶対値|Ym|が上記値Wより大きい
と判断するとステップ103の演算の実行に戻ってステ
ップ103〜105,106(又は107,108),
109〜112の循環演算を実行して操舵軸21、前輪
転舵軸32及び後輪転舵軸42の回転制御を行う。この
ように、車両が略直進状態にあるときには、プログラム
がステップ101を通過してモードの変更を可能とし、
車両が旋回状態にあるときにはプログラムがステップ1
01を通過しないようにしてモードの変更を不可能とす
ることによって、前後輪ステアリングギヤ比αf,αr
により決定される左右前輪33a,33b及び左右後輪
43a,43bの転舵角の不連続な変化並びにこれらの
比αf,αrと前後輪力逆送比βf,βrとの各積αf
・βf,αr・βrにより決定される操舵力(又は操舵
反力)の不連続な変化をなくすことができる。After the calculation in step 111, the program is step 1
12, the CPU 71c reads the steering displacement amount Ym from the RAM 71d in step 112, and outputs the steering displacement amount Ym.
Absolute value | Ym | is less than or equal to a predetermined small value W, that is, it is determined whether or not the vehicle is in a substantially straight traveling state. In this determination, when the CPU 71c determines “YES”, that is, the absolute value | Ym | of the steering displacement amount Ym is equal to or less than the above value W, the process returns to the execution of the calculation in step 101 and steps 101 to 105, 106 (or 107, 108),
When the circulation calculation of 109 to 112 is executed and it is determined that “NO”, that is, the absolute value | Ym | of the steering displacement amount Ym is larger than the value W, the process returns to the execution of the calculation of step 103 and steps 103 to 105 and 106 (or 107, 108),
The rotation calculation of 109 to 112 is executed to control the rotation of the steering shaft 21, the front wheel steering shaft 32, and the rear wheel steering shaft 42. As described above, when the vehicle is in a substantially straight traveling state, the program passes step 101 to enable the mode change,
When the vehicle is in a turning state, the program proceeds to step 1
By making the mode change impossible by not passing 01, the front and rear wheel steering gear ratios αf, αr
The discontinuous changes in the steered angles of the left and right front wheels 33a, 33b and the left and right rear wheels 43a, 43b, and the respective products αf of the ratios αf, αr and the front and rear wheel force reverse feed ratios βf, βr.
It is possible to eliminate a discontinuous change in the steering force (or steering reaction force) determined by βf, αr and βr.
上記のような動作説明でも理解されるように、上記実施
例においてはステップ103,109〜111の演算に
より操舵ハンドル20の回動操作に応じて左右前輪33
a,33b及び左右後輪43a,43bを転舵し、この
左右前輪33a,33b及び左右後輪43a,43bの
転舵により発生する前輪転舵反力及び後輪転舵反力を操
舵反力として操舵ハンドル20に逆送するようにしたの
で、運転者は左右前輪33a,33b及び左右後輪43
a,43bの転舵に応じて、操舵反力、保舵反力及び操
舵ハンドルの復元力を感じながら車両を運転できる。ま
た、この操舵反力はステップ104,106(又は10
7,108)の演算により車速Vの増加に従って増加す
るので、操縦安定性が良好となる。さらに、前後輪ステ
アリングギヤ比αf,αr及びこれらの比αf,αrの
前後輪力逆送比βf,βrとの各積αf・βf,αr・
βrの特性をステップ101,105の演算により選択
可能としたので、運転者の個性に応じて又は車両の運転
状況に応じて操舵ハンドル20の回転送舵に伴う左右前
輪33a,33b及び左右後輪43a,43bの転舵量
及び操舵力(操舵反力)を変更することができる。As will be understood from the above description of the operation, in the above-described embodiment, the left and right front wheels 33 are operated according to the turning operation of the steering wheel 20 by the calculation of steps 103 and 109 to 111.
a, 33b and the left and right rear wheels 43a, 43b are steered, and the front wheel steering reaction force and the rear wheel steering reaction force generated by the steering of the left and right front wheels 33a, 33b and the left and right rear wheels 43a, 43b are used as steering reaction forces. Since the steering wheel 20 is fed back to the steering wheel 20, the driver can operate the left and right front wheels 33a and 33b and the left and right rear wheels 43.
The vehicle can be driven while feeling the steering reaction force, the steering holding reaction force, and the restoring force of the steering wheel according to the turning of a and 43b. In addition, this steering reaction force is applied to steps 104 and 106 (or 10
7, 108) increases as the vehicle speed V increases, and thus steering stability becomes good. Further, front and rear wheel steering gear ratios αf, αr and respective products of these ratios αf, αr and front and rear wheel force reverse transmission ratios βf, βr αf · βf, αr ·
Since the characteristic of βr can be selected by the calculation of steps 101 and 105, the left and right front wheels 33a and 33b and the left and right rear wheels 33a and 33b associated with the turning transfer steering of the steering wheel 20 according to the personality of the driver or the driving situation of the vehicle. The turning amount and steering force (steering reaction force) of 43a and 43b can be changed.
d.変形例 次に、上記具体的実施例の第1スレーブ部B1又は第2
スレーブ部B2の変形例を図面を用いて説明すると、第
7図は第4図の左右前輪33a,33b又は左右後輪4
3a,43bに対応する左右車輪80a,80bを転舵
する第3スレーブ部B3を示している。d. Modification Example Next, the first slave unit B1 or the second slave unit of the above-described specific embodiment
A modified example of the slave portion B2 will be described with reference to the drawings. FIG. 7 shows the left and right front wheels 33a, 33b or the left and right rear wheels 4 of FIG.
The 3rd slave part B3 which steers the right and left wheels 80a and 80b corresponding to 3a and 43b is shown.
第3スレーブ部B3は油圧ポンプ(図示しない)の吐出
油がサーボ弁81を介して付与される油圧シリンダ82
と、油圧シリンダ82に駆動されて左右車輪80a,8
0bを転舵する転舵軸83と同軸83の変位量を転舵変
位量Ysaとして検出する転舵変位量センサ84と、右
車輪80bから転舵軸83に付与される転舵反力Fsa
を検出する転舵反力センサ85を備えている。サーボ弁
81はその中立位置にてサーボ軸81aに固着されたス
プール81b,81c,81dにて、リザーバ(図示し
ない)に接続された導管P1,油圧ポンプに接続された
導管P2,リザーバに接続された導管P3を各々閉止
し、第1位置に切換えられたときサーボ軸81aを図示
左方向へ変位させることによって、導管P2から供給さ
れる圧油を導管P4を介して油圧シリンダ82の右室8
2aへ供給しかつ油圧シリンダ82の左室81bに接続
された導管P5からの油を導管P1を介してリザーバに
導く。また、サーボ弁81はその第2位置に切換えられ
たときサーボ軸81aを図示右方向へ変位させることに
よって、導管P2から供給される圧油を導管P5を介し
て左室82bへ供給し、かつ油圧シリンダ82の右室8
2aに接続された導管P4からの油を導管P3を介して
リザーバに導く。サーボ軸81aの左(又は右)方向へ
の変位は、サーボ軸81aの一端に設けられ、第4図の
マイクロコンピュータ71及びD/A変換器76b又は
76cからパワーアンプ77b又は77cを介して供給
される上記具体的実施例の回転制御量Msf又はMsr
に対応する制御信号Msaによって、駆動制御されるソ
レノイド又はモータから成るリニアアクチュエータ86
によって制御される。The third slave portion B3 is a hydraulic cylinder 82 to which oil discharged from a hydraulic pump (not shown) is applied via a servo valve 81.
And the left and right wheels 80a, 8 driven by the hydraulic cylinder 82.
A steering displacement amount sensor 84 for detecting a displacement amount of the steering shaft 83 coaxial with the steering shaft 83 for steering 0b as a steering displacement amount Ysa, and a steering reaction force Fsa applied from the right wheel 80b to the steering shaft 83.
The steering reaction force sensor 85 for detecting The servo valve 81 is connected at its neutral position by spools 81b, 81c, 81d fixed to the servo shaft 81a to a conduit P1 connected to a reservoir (not shown), a conduit P2 connected to a hydraulic pump, and a reservoir. By closing each of the conduits P3 and displacing the servo shaft 81a to the left in the figure when switched to the first position, the pressure oil supplied from the conduit P2 is supplied to the right chamber 8 of the hydraulic cylinder 82 via the conduit P4.
2a and the oil from the conduit P5 connected to the left chamber 81b of the hydraulic cylinder 82 is guided to the reservoir via the conduit P1. Further, when the servo valve 81 is switched to its second position, the servo shaft 81a is displaced rightward in the drawing to supply the pressure oil supplied from the conduit P2 to the left chamber 82b via the conduit P5, and Right chamber 8 of hydraulic cylinder 82
Oil from conduit P4 connected to 2a is led to the reservoir via conduit P3. The displacement of the servo shaft 81a in the left (or right) direction is provided at one end of the servo shaft 81a, and is supplied from the microcomputer 71 and the D / A converter 76b or 76c in FIG. 4 via the power amplifier 77b or 77c. The rotation control amount Msf or Msr of the above specific embodiment
Linear actuator 86 which is driven and controlled by a control signal Msa corresponding to
Controlled by.
油圧シリンダ82はサーボ弁81から供給される圧油に
より油圧シリンダ82内を摺動するピストン82cを備
え、このピストン82cの摺動によりピストン82cに
固着された転舵軸83をその軸方向に変位させる。また
転舵軸83は左右タイロッド87a,87b及び左右ナ
ックルアーム88a,88bを介して左右車輪80a,
80bに連結されており、転舵軸83の変位により左右
車輪80a,80bを転舵する。転舵変位量センサ84
は転舵軸83の変位に応じて中点の接地された抵抗器8
4a上を摺動する摺動子84bと、抵抗器84aの両端
に接続された電圧源84cとを備え、摺動子83bの左
(又は右)変位により転舵軸83の転舵変位量Ysaを
表す正(又は負)の電圧信号を第4図のバッファアンプ
74c又は74eに出力している。転舵反力センサ85
は、転舵軸83に貼着され同軸83の引張り及び圧縮に
応じて抵抗値の変化する歪みゲージ85aと、歪みゲー
ジ85aを一辺として固定抵抗85b,85c,85d
で形成されるブリッジ回路と、歪みゲージ85a,抵抗
85bの接続点及び抵抗85c,85dの接続点間に接
続された電圧源85eから成り、抵抗85b,85cの
接続点は接地されている。この転舵反力センサ85は歪
みゲージ85a,抵抗85dの接続点から右車輪80b
の左(又は右)転舵に応じて転舵軸83の歪みゲージ8
5aの貼着された部分に発生する引張り(又は圧縮)歪
み量に比例した転舵反力(転舵力)Fsaを表す正(又
は負)の電圧信号を第4図のバッファアンプ74d又は
74fに出力している。The hydraulic cylinder 82 includes a piston 82c that slides in the hydraulic cylinder 82 by the pressure oil supplied from the servo valve 81, and the rudder shaft 83 fixed to the piston 82c is displaced in the axial direction by the sliding of the piston 82c. Let Further, the steered shaft 83 is provided with left and right wheels 80a, 87b via left and right tie rods 87a, 87b and left and right knuckle arms 88a, 88b.
The left and right wheels 80a and 80b are steered by the displacement of the steering shaft 83. Steering displacement amount sensor 84
Is a resistor 8 which is grounded at a midpoint according to the displacement of the steered shaft 83.
4a, and a voltage source 84c connected to both ends of the resistor 84a. A left (or right) displacement of the slider 83b causes a steering displacement amount Ysa of the steering shaft 83. A positive (or negative) voltage signal representing the above is output to the buffer amplifier 74c or 74e in FIG. Steering reaction force sensor 85
Is a strain gauge 85a that is attached to the steered shaft 83 and has a resistance value that changes according to tension and compression of the coaxial shaft 83, and fixed resistors 85b, 85c, and 85d having the strain gauge 85a as one side.
And a voltage source 85e connected between the connection point of the strain gauge 85a and the resistance 85b and the connection point of the resistances 85c and 85d, and the connection point of the resistances 85b and 85c is grounded. This steering reaction force sensor 85 is connected to the right wheel 80b from the connection point of the strain gauge 85a and the resistance 85d.
Strain gauge 8 of the steering shaft 83 according to the left (or right) steering of the
A positive (or negative) voltage signal representing a steering reaction force (steering force) Fsa proportional to the amount of tensile (or compression) strain generated in the portion where 5a is attached is supplied to the buffer amplifier 74d or 74f of FIG. Is output to.
上記のように構成した第3スレーブ部B3の動作を説明
すると、リニアアクチュエータ86には第4図のマイク
ロコンピュータ71から、上記具体的実施例における回
転制御量Msf,Msrに代えて、リニアアクチュエー
タ86を駆動制御する制御量Msaに対応した制御信号
が供給される。なお、制御量Msaは、リニアアクチュ
エータ86の特性に応じて決定されるものであり、実質
的に回転制御量Msf,Msrと同等である。リニアア
クチュエータ86に供給される制御信号レベルが正(又
は負)であるとき、サーボ軸81aは左(又は右)方向
に変位して、油圧ポンプからの油圧を油圧シリンダ82
の右室82a(又は左室82b)に供給する。この圧油
供給により、ピストン82c及び転舵軸83は左(又は
右)方向に変位して左右タイロッド87a,87b及び
左右ナックルアーム88a,88bを介して左右車輪8
0a,80bを左(又は右)方向に転舵する。この転舵
軸83の転舵変位量Ysaは転舵軸変位量センサ84に
よって検出されマイクロコンピュータ71に送出され
る。このとき、右車輪80bは路面から上記転舵を阻止
する図示右(又は左)方向へ働く転舵反力を受けて、こ
の転舵反力は右ナックルアーム88b及び右タイロッド
87bを介して転舵軸83に伝達される。この転舵軸8
3に伝達される転舵反力は、油圧シリンダ82による力
と逆方向に働くことになり転舵軸83には転舵反力(転
舵力)に応じた引張り(又は圧縮)歪みが生じる。この
転舵軸83の歪み量に比例した転舵反力(転舵力)Fs
aは転舵反力センサ85によって検出されてマイクロコ
ンピュータ71に送出される。これにより、上記具体的
実施例に係る第1スレーブB1又は第2スレーブ部B2
をこれらの変形例である第3スレーブB3で置換して
も、上記具体的実施例と同様な効果が達成される。The operation of the third slave unit B3 configured as described above will be described. The linear actuator 86 is replaced with the linear actuator 86 from the microcomputer 71 of FIG. 4 in place of the rotation control amounts Msf and Msr in the above-described specific embodiment. A control signal corresponding to the control amount Msa for driving and controlling is supplied. The control amount Msa is determined according to the characteristic of the linear actuator 86, and is substantially equivalent to the rotation control amounts Msf and Msr. When the level of the control signal supplied to the linear actuator 86 is positive (or negative), the servo shaft 81a is displaced in the left (or right) direction, and the hydraulic pressure from the hydraulic pump is transferred to the hydraulic cylinder 82.
To the right chamber 82a (or the left chamber 82b). By this pressure oil supply, the piston 82c and the steered shaft 83 are displaced in the left (or right) direction, and the left and right wheels 8a, 87b and the left and right wheels 8a, 88b are passed through them.
0a and 80b are steered in the left (or right) direction. The turning displacement amount Ysa of the turning shaft 83 is detected by the turning shaft displacement amount sensor 84 and sent to the microcomputer 71. At this time, the right wheel 80b receives a steering reaction force acting from the road surface in the right (or left) direction shown in the figure, which blocks the steering, and the steering reaction force rolls through the right knuckle arm 88b and the right tie rod 87b. It is transmitted to the rudder axle 83. This steering shaft 8
The steering reaction force transmitted to the steering wheel 3 acts in the opposite direction to the force generated by the hydraulic cylinder 82, so that the steering shaft 83 is distorted in tension (or compression) according to the steering reaction force (steering force). . Steering reaction force (steering force) Fs proportional to the amount of distortion of the steered shaft 83
a is detected by the steering reaction force sensor 85 and is sent to the microcomputer 71. Accordingly, the first slave B1 or the second slave unit B2 according to the above-described specific example.
Even if is replaced with the third slave B3, which is a modified example thereof, the same effect as that of the above specific embodiment can be achieved.
e.その他の変形例 上記具体的実施例においては、各モード毎の前輪ステア
リングギヤ比αfは、車速Vが変化しても、ほぼ一定の
値となるようにしたが、第6A図の特性において、車速
Vが小さいとき各モードの前輪ステアリングギヤ比αf
が若干大きくなるように、また車速Vが大きいとき同比
αfが若干小さくなるようにしてもよい。これにより、
車両の低速走行時には操舵ハンドル20の操舵量が小さ
くても、左右前輪33a,33bの操舵量が大きくなっ
て車両旋回のための運転者の負担が軽減され、かつ、車
両の高速走行時には操舵ハンドル20の操舵量が左右前
輪33a,33bの転舵量へ与える影響が小さくなって
高速走行車両の走行安定性が良好となる。e. Other Modifications In the above-described specific embodiments, the front wheel steering gear ratio αf for each mode is set to a substantially constant value even if the vehicle speed V changes. However, in the characteristics shown in FIG. When V is small, front wheel steering gear ratio αf in each mode
May be slightly increased, or when the vehicle speed V is high, the ratio αf may be slightly decreased. This allows
Even when the steering amount of the steering wheel 20 is small when the vehicle is traveling at low speed, the steering amounts of the left and right front wheels 33a and 33b are large to reduce the burden on the driver for turning the vehicle, and when the vehicle is traveling at high speeds. The influence of the steering amount of 20 on the turning amounts of the left and right front wheels 33a and 33b is reduced, and the traveling stability of the high-speed vehicle is improved.
さらに、前輪ステアリングギヤ比αf及び後輪ステアリ
ングギヤ比αrは、操舵変位量Ymの変化をも考慮し
て、決定されるようにしてもよい。この場合、CPU7
1cは、ステップ106(又は107,108)の演算
において、同ステップ106(又は107,108)に
て算出した各比αf,αrに、ステップ103にて入力
した操舵変位量Ymの絶対値|Ym|の増加に応じて増
加するパラメータを乗算する。これにより、同絶対値|
Ym|が大きくなるに従って、各比αf,αrの絶対値
|αf|,|αr|は大きくなるので、操舵ハンドル2
0の操舵量が大きくなるに従って左右前輪33a,33
b及び左右後輪43a,43bの転舵量の変化分が大き
くなる。その結果、車両旋回のために、操舵ハンドル2
0の操作を行う運転者の負担が軽減される。Further, the front wheel steering gear ratio αf and the rear wheel steering gear ratio αr may be determined in consideration of the change in the steering displacement amount Ym. In this case, CPU7
1c is the absolute value | Ym of the steering displacement amount Ym input in step 103 to each ratio αf, αr calculated in step 106 (or 107, 108) in the calculation of step 106 (or 107, 108). Multiply the parameter by increasing with |. This gives the same absolute value |
Since the absolute values | αf | and | αr | of the respective ratios αf and αr increase as Ym | increases, the steering wheel 2
As the steering amount of 0 increases, the left and right front wheels 33a, 33
The amount of change in the steered amounts of b and the left and right rear wheels 43a and 43b becomes large. As a result, in order to turn the vehicle, the steering wheel 2
The burden on the driver who performs 0 operation is reduced.
また、上記具体的実施例においては、前後輪転舵軸3
2,42の回転位置は、前後輪転舵変位量センサ37,
47からの前後輪転舵変位量Ysf,Ysrを前後輪転
舵軸モータ30,40にフィードバックすることによっ
て、制御されるようにしたが、本発明では、前後輪転舵
軸モータ30,40がステップモータで構成されるよう
にし、マイクロコンピュータ71が、操舵変位量センサ
23からの操舵変位量Ymに応じた同モータ30の目標
回転ステップ数を算出し、この算出結果に基づいて同モ
ータ30,40の回転変位量が制御されるようにすれ
ば、上記フィードバック制御は不要となる。Further, in the above-described specific embodiment, the front and rear wheel steering shafts 3
The rotational positions of 2, 42 are the front and rear wheel steering displacement amount sensors 37,
The front and rear wheel steering shaft motors 30, 40 are controlled by feeding back the front and rear wheel steering displacement amounts Ysf, Ysr to the front and rear wheel steering shaft motors 30, 40. The microcomputer 71 calculates the target rotation step number of the motor 30 according to the steering displacement amount Ym from the steering displacement amount sensor 23, and rotates the motors 30 and 40 based on the calculation result. If the amount of displacement is controlled, the above feedback control becomes unnecessary.
また、上記具体的実施例においては、左右前輪33a,
33bが単一の前輪転舵軸モータ30により制御される
ようにしたが、左前輪33a及び右前輪33bが独立に
2箇のモータで制御されるようにしてもよい。さらに、
本発明においては、左右前輪33a,33bは、同前輪
33a,33bと操舵ハンドル20とを機械的に連結し
た前輪転舵機構により転舵されるようにしてもよい。Further, in the above specific embodiment, the left and right front wheels 33a,
Although 33b is controlled by the single front wheel steering shaft motor 30, the left front wheel 33a and the right front wheel 33b may be independently controlled by two motors. further,
In the present invention, the left and right front wheels 33a, 33b may be steered by a front wheel steering mechanism that mechanically connects the front wheels 33a, 33b and the steering handle 20.
第1図は特許請求の範囲に記載した発明の構成に対応す
る図、第2図は本発明に係る車両用動力舵取装置の基本
構成を示す図、第3図は第2図に示された基本構成にお
ける制御状態を表す制御ブロック図、第4図は本発明の
具体的実施例を示す車両用動力舵取装置の概略図、第5
図は第4図のマイクロコンピュータで実行されるプログ
ラムのフローチャート、第6A図乃至第6D図は本発明
の具体的実施例における操舵特性を示す図、第7図は第
4図の第1スレーブ部又は第2スレーブ部の変形例を示
す図である。 符 号 の 説 明 20……操舵ハンドル、21……操舵軸、22……操舵
軸モータ、23……操舵変位量センサ、24……操舵力
センサ、30,40……転舵軸モータ、32,42,8
3……転舵軸、33a,33b,43a,43b,80
a,80b……車輪、37,47,84……転舵変位量
センサ、38,48,85……転舵反力センサ、50…
…操舵軸モータ制御回路、51,52……転舵軸モータ
制御回路、53……操舵力演算器、54……合成転舵反
力演算器、55,56……転舵反力演算器、57,59
……目標転舵量演算器、58,60……転舵変位量演算
器、70……車速センサ、71……マイクロコンピュー
タ、75……セレクトスイッチ、81……サーボ弁、8
2……油圧シリンダ、86……リニアアクチュエータ。FIG. 1 is a diagram corresponding to the configuration of the invention described in the claims, FIG. 2 is a diagram showing a basic configuration of a vehicle power steering apparatus according to the present invention, and FIG. 3 is shown in FIG. 5 is a control block diagram showing a control state in the basic configuration, FIG. 4 is a schematic diagram of a vehicle power steering system showing a specific embodiment of the invention, and FIG.
FIG. 6 is a flow chart of a program executed by the microcomputer of FIG. 4, FIGS. 6A to 6D are diagrams showing steering characteristics in a specific embodiment of the present invention, and FIG. 7 is a first slave unit of FIG. It is a diagram showing a modification of the second slave unit. Explanation of code 20 ... Steering handle, 21 ... Steering shaft, 22 ... Steering shaft motor, 23 ... Steering displacement sensor, 24 ... Steering force sensor, 30, 40 ... Steering shaft motor, 32 , 42, 8
3 ... Steering shaft, 33a, 33b, 43a, 43b, 80
a, 80b ... Wheels, 37, 47, 84 ... Steering displacement amount sensor, 38, 48, 85 ... Steering reaction force sensor, 50 ...
... Steering axis motor control circuit, 51, 52 ... Steering axis motor control circuit, 53 ... Steering force calculator, 54 ... Combined steering reaction force calculator, 55, 56 ... Steering reaction force calculator, 57, 59
...... Target turning amount calculator, 58, 60 …… Turning displacement amount calculator, 70 …… Vehicle speed sensor, 71 …… Microcomputer, 75 …… Select switch, 81 …… Servo valve, 8
2 ... Hydraulic cylinder, 86 ... Linear actuator.
Claims (1)
を転舵する前後輪転舵車の動力舵取装置において、操舵
ハンドルに結合した操舵軸と、該操舵軸を回転駆動する
操舵軸アクチュエータと、前記操舵軸の回動に応じて前
輪を転舵する前輪転舵制御手段と、後輪に機械的に結合
され後輪を転舵する後輪転舵機構と、操舵ハンドルから
前記操舵軸に付与される操舵力を検出する操舵力センサ
と、後輪から前記後輪転舵機構に付与される後輪転舵反
力を検出する後輪転舵反力センサと、前記操舵軸の基準
位置からの回転角を操舵変位量として検出する操舵変位
量センサと、前記操舵力センサ出力に基づいて前記検出
操舵力の増加に応じて増加しかつ前記操舵軸を操舵力の
付与される方向へ回転させる第1制御量を決定する第1
制御量決定手段と、前記後輪転舵反力センサ出力に基づ
いて前記検出転舵反力の増加に応じて増加しかつ前記操
舵軸を前記基準位置に復帰させる方向へ回転させる第2
制御量を決定する第2制御量決定手段と、前記第1制御
量及び第2制御量を合成した操舵軸回転制御信号を前記
操舵軸アクチュエータに出力して前記操舵軸の回転を制
御する操舵軸回転制御信号出力手段と、前記操舵変位量
センサ出力に基づいて後輪の目標転舵量を決定する後輪
目標転舵量決定手段と、前記決定後輪目標転舵量に応じ
た後輪転舵制御信号を前記後輪転舵機構に出力して後輪
の転舵量が前記決定後輪目標転舵量になるように前記後
輪転舵機構を制御する後輪転舵制御信号出力手段とを備
えたことを特徴とする前後輪転舵車の動力舵取装置。1. A power steering apparatus for a front and rear wheel steered vehicle that steers front wheels and rear wheels according to rotation of a steering wheel, wherein a steering shaft coupled to the steering wheel and a steering shaft for rotationally driving the steering shaft. An actuator, a front wheel steering control unit that steers the front wheels in response to the rotation of the steering shaft, a rear wheel steering mechanism that is mechanically coupled to the rear wheels to steer the rear wheels, and a steering handle to the steering shaft. A steering force sensor for detecting a steering force applied to the rear wheel, a rear wheel steering reaction force sensor for detecting a rear wheel steering reaction force applied to the rear wheel steering mechanism from a rear wheel, and a steering shaft from a reference position of the steering shaft. A steering displacement amount sensor that detects a rotation angle as a steering displacement amount, and a steering displacement sensor that increases in accordance with an increase in the detected steering force based on the steering force sensor output and that rotates the steering shaft in a direction in which the steering force is applied. 1st to determine 1 controlled variable
A control amount determining means, and a second amount that increases in accordance with an increase in the detected turning reaction force based on the output of the rear wheel turning reaction force sensor and that rotates the steering shaft in a direction to return to the reference position
Second control amount determining means for determining a control amount, and a steering shaft for controlling the rotation of the steering shaft by outputting a steering shaft rotation control signal obtained by combining the first control amount and the second control amount to the steering shaft actuator. Rotation control signal output means, rear wheel target steering amount determining means for determining a target steering amount of rear wheels based on the output of the steering displacement amount sensor, and rear wheel steering according to the determined rear wheel target steering amount. A rear wheel steering control signal output means for outputting a control signal to the rear wheel steering mechanism to control the rear wheel steering mechanism such that the steering amount of the rear wheels becomes the determined rear wheel target steering amount. A power steering device for a front and rear wheel steering vehicle, which is characterized in that
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17878285A JPH069983B2 (en) | 1985-08-14 | 1985-08-14 | Power steering device for front and rear wheel steered vehicles |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17878285A JPH069983B2 (en) | 1985-08-14 | 1985-08-14 | Power steering device for front and rear wheel steered vehicles |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6239369A JPS6239369A (en) | 1987-02-20 |
JPH069983B2 true JPH069983B2 (en) | 1994-02-09 |
Family
ID=16054538
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17878285A Expired - Lifetime JPH069983B2 (en) | 1985-08-14 | 1985-08-14 | Power steering device for front and rear wheel steered vehicles |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH069983B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01109173A (en) * | 1987-10-23 | 1989-04-26 | Jidosha Kiki Co Ltd | Four-wheel steering system |
JP3353770B2 (en) | 1999-08-19 | 2002-12-03 | 三菱電機株式会社 | Electric power steering controller |
NL1014182C2 (en) * | 2000-01-26 | 2001-07-27 | Special Products For Industry | Wheel provided with drive means. |
JP4639500B2 (en) * | 2001-03-22 | 2011-02-23 | 日本精工株式会社 | Automotive power steering system |
-
1985
- 1985-08-14 JP JP17878285A patent/JPH069983B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS6239369A (en) | 1987-02-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1640246B1 (en) | Vehicular steering control apparatus | |
EP1584544B1 (en) | Vehicle steering apparatus | |
JP3901928B2 (en) | Control device for electric power steering device | |
JPH1134893A (en) | Electric power-steering device | |
CN101873960B (en) | Rear-wheel steering vehicle | |
JP3897293B2 (en) | Vehicle operation control device | |
US4828064A (en) | Four-wheel steering device for vehicle | |
JPH1178937A (en) | Electric power steering device | |
WO2011059050A1 (en) | Rear wheel steering control device | |
JPH0678065B2 (en) | Vehicle power steering device | |
CN106184348B (en) | Electric power-assisted steering apparatus | |
US20020063543A1 (en) | Electric power steering system | |
US11745792B2 (en) | Steering device | |
JPH069983B2 (en) | Power steering device for front and rear wheel steered vehicles | |
JPH069984B2 (en) | Power steering device for front and rear wheel steered vehicles | |
JPS61291268A (en) | Power steering device for vehicle | |
US5150764A (en) | Vehicle rear wheel steer angle control system | |
JP2012183881A (en) | Electric power steering device | |
JP2002104220A (en) | Control device of motor-driven power steering device | |
JP3050078B2 (en) | Steering reaction force control device | |
JP2002337717A (en) | Motor-driven power steering device | |
CN118715153A (en) | Control device for steering system for vehicle | |
JP3699870B2 (en) | Vehicle steering system | |
JPH03239673A (en) | Car motion control device | |
JP2023522905A (en) | Steer-by-wire steering system with acceleration dependent steering torque feedback |