JPS6215775B2 - - Google Patents

Info

Publication number
JPS6215775B2
JPS6215775B2 JP54053664A JP5366479A JPS6215775B2 JP S6215775 B2 JPS6215775 B2 JP S6215775B2 JP 54053664 A JP54053664 A JP 54053664A JP 5366479 A JP5366479 A JP 5366479A JP S6215775 B2 JPS6215775 B2 JP S6215775B2
Authority
JP
Japan
Prior art keywords
rotating shaft
bearing
pad
magnet
bearing pad
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54053664A
Other languages
Japanese (ja)
Other versions
JPS55145812A (en
Inventor
Suekichi Sugyama
Hikari Morishita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP5366479A priority Critical patent/JPS55145812A/en
Publication of JPS55145812A publication Critical patent/JPS55145812A/en
Publication of JPS6215775B2 publication Critical patent/JPS6215775B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/02Sliding-contact bearings for exclusively rotary movement for radial load only
    • F16C17/03Sliding-contact bearings for exclusively rotary movement for radial load only with tiltably-supported segments, e.g. Michell bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C39/00Relieving load on bearings
    • F16C39/06Relieving load on bearings using magnetic means

Description

【発明の詳細な説明】 本発明は軸受に係り、更に詳細には高速度にて
回転する軸を気体膜により浮上させた状態にて回
転可能に支持するテイルテイングパツド式気体軸
受の改良に係る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a bearing, and more particularly to an improvement in a tailing pad type gas bearing that rotatably supports a shaft rotating at high speed in a suspended state with a gas film. Related.

高速回転用軸受の一つとして従来よりテイルテ
イングパツド式気体軸受が知られている。テイル
テイングパツド式気体軸受は、一般に、ハウジン
グと、支持されるべき回転軸の周りに周方向に隔
置され且つ前記ハウジングによつて枢動可能に支
持されて前記回転軸との間に楔状空間を郭定する
ことのできる複数個の軸受パツドとを有し、前記
楔状空間内に粘性により引入れられた気体が所謂
楔効果により加圧されることによつて回転軸が軸
受パツドより浮上した状態にて支持されるように
なつている。かかるテイルテイングパツド式気体
軸受は比較的粘性の小さい空気の如き気体を潤滑
手段としており、従つてそれにより支持される回
転軸は非常に高速度にて回転可能であること、摩
擦による動力損失が小さいこと、軸受係合面の摩
耗が小さいこと、潤滑油の供給や循環が不要であ
ることなどの長所を有する。
Tailing pad type gas bearings have been known as one type of high-speed rotation bearings. Tailing pad type gas bearings generally have a wedge-shaped structure between a housing and the rotating shaft that is circumferentially spaced around and pivotally supported by the housing. It has a plurality of bearing pads that can define a space, and the rotating shaft floats above the bearing pads when the gas drawn into the wedge-shaped space due to viscosity is pressurized by the so-called wedge effect. It is designed to be supported in this state. Such tailing pad type gas bearings use gas such as air, which has a relatively low viscosity, as a lubricant, and therefore the rotating shaft supported by it can rotate at a very high speed, and there is no power loss due to friction. It has advantages such as small friction, small wear on the bearing engagement surface, and no need for lubricating oil supply or circulation.

しかし回転起動時及び停止時の如く回転軸の回
転速度が低い時には、所謂楔効果による気体の圧
力上昇はほとんど発生せず、従つて回転軸と軸受
パツドは固体接触をする。そのためかかる回転軸
と軸受パツドとの間には大きな摺動摩擦が発生
し、回転軸及び軸受パツドの係合面が早期に摩耗
してしまう。従つてテイルテイングパツド式気体
軸受は他の軸受に比べその耐久性が悪く又回転起
動時の起動トルクが大きいという欠点がある。
However, when the rotational speed of the rotating shaft is low, such as when starting and stopping rotation, almost no increase in gas pressure occurs due to the so-called wedge effect, and therefore the rotating shaft and the bearing pad are in solid contact. Therefore, large sliding friction occurs between the rotating shaft and the bearing pad, and the engagement surfaces of the rotating shaft and the bearing pad wear out prematurely. Therefore, the tailing pad type gas bearing has disadvantages in that its durability is poorer than other bearings, and the starting torque at the time of starting rotation is large.

従来回転軸及び軸受パツドの表面に酸化クロム
などを主成分とするセラミツクコーテングを施し
これにより上述した如く欠点を克服せんとする試
みがなされたが、かかる方法によつても回転軸の
低速回転時に於ける回転軸と軸受パツドとの固体
接触を回避することはできないので、上述した如
き欠点を未だ解消するには至つていない。
Conventionally, attempts have been made to overcome the above-mentioned drawbacks by coating the surfaces of rotating shafts and bearing pads with ceramic coatings containing chromium oxide as the main component. Since solid contact between the rotating shaft and the bearing pad cannot be avoided, the above-mentioned drawbacks have not yet been solved.

本発明の目的は、テイルテイングパツド式気体
軸受の有する上述した如き長所を生かしつつ、回
転軸の低速回転域、特に回転起動時及び停止時に
於ける上述した如き欠点を克服すべく改良された
テイルテイングパツド式軸受構造体を提供するこ
とである。
The object of the present invention is to utilize the above-mentioned advantages of the tailing pad type gas bearing while improving the above-mentioned drawbacks in the low-speed rotation range of the rotating shaft, especially when starting and stopping the rotation. An object of the present invention is to provide a tailing pad type bearing structure.

かかる目的は、本発明によれば、回転軸と、ハ
ウジングと、前記回転軸の周りに周方向に隔置さ
れ且つ前記ハウジングによつて枢動可能に支持さ
れて前記回転軸との間に楔状空間を郭定すること
のできる複数個の軸受パツドと、前記回転軸に組
込まれた第一の磁石と、前記ハウジングによつて
支持され前記第一の磁石に対し磁気的反発力を及
ぼす第二の磁石とを有し、前記第二の磁石はその
磁気的作用軸線が前記軸受パツドの枢点より前記
軸受パツドのリーデイングエツジ側の位置を通る
よう、前記軸受パツドに固定的に取付けられてい
ることを特徴とするテイルテイングパツド式軸受
構造体によつて達成される。
Such an object, according to the present invention, provides a wedge-shaped structure between a rotating shaft, a housing, and a wedge-shaped shaft spaced circumferentially around the rotating shaft and pivotally supported by the housing. a plurality of bearing pads capable of defining a space; a first magnet incorporated in the rotating shaft; and a second magnet supported by the housing and exerting a magnetic repulsion force on the first magnet. a magnet, the second magnet is fixedly attached to the bearing pad such that its magnetic axis of action passes through a position closer to the leading edge of the bearing pad than the pivot point of the bearing pad. This is achieved by a tailing pad type bearing structure characterized by the following.

テイルテイングパツド式軸受構造体に於て、回
転軸の低回転速度域に於ける軸受面等の摩耗や回
転軸の起動トルク等を低減するためには、回転軸
と軸受面との間の面圧を低減するだけでなく、回
転軸の低回転速度域に於てもできるだけ有効な気
体膜を形成させることが好ましく、更にはこれら
二つの作用をそれぞれ個別の磁石により達成する
のではなく共通の磁石により達成することが好ま
しい。
In the tailing pad type bearing structure, in order to reduce the wear of the bearing surface etc. in the low rotational speed range of the rotating shaft and the starting torque of the rotating shaft, it is necessary to In addition to reducing surface pressure, it is desirable to form a gas film that is as effective as possible even in the low rotational speed range of the rotating shaft.Furthermore, these two functions are not achieved by separate magnets, but by a common magnet. This is preferably achieved by a magnet.

本発明によれば、互いに共働して磁気的反発力
を発生する第一及び第二の磁石は、ただ単に回転
軸と軸受パツドとを互いに離間させる作用を果た
すだけでなく、軸受パツドをその枢点の周りに枢
動させて回転軸と軸受パツドとの間に積極的に楔
状空間を形成させる作用をも果たし、これら二つ
の作用により回転軸及び軸受パツドの摩耗が回避
され、また回転軸の起動トルク等が低減される。
また磁気的反発力によつてただ単に回転軸と軸受
パツドとが互いに離間されるだけの場合に比し
て、第一及び第二の磁石は小型軽量のものであつ
てよく、軸受構造体を小型化することができ、更
には回転軸を軽量化して回転駆動入力に対する回
転軸の応答性を向上させることができる。
According to the present invention, the first and second magnets that cooperate with each other to generate a magnetic repulsion force not only function to separate the rotating shaft and the bearing pad from each other, but also serve to move the bearing pad away from each other. It also has the effect of actively forming a wedge-shaped space between the rotating shaft and the bearing pad by pivoting around the pivot point, and these two actions avoid wear of the rotating shaft and the bearing pad, and also prevent the rotating shaft from being worn out. The starting torque, etc. of
Also, compared to the case where the rotating shaft and the bearing pad are simply separated from each other by magnetic repulsion, the first and second magnets may be smaller and lighter, and the bearing structure It is possible to reduce the size of the rotary shaft, and furthermore, it is possible to reduce the weight of the rotary shaft and improve the responsiveness of the rotary shaft to rotational drive input.

本発明の一つの詳細な特徴によれば、単一の磁
石は永久磁石であり、第二の磁石は電磁石であ
る。テイルテイングパツド式軸受構造体に於て
は、周知の如く、回転軸の回転速度が小さければ
小さい程所定の範囲内にて楔状空間の開き角が大
きいことが好ましく、従つて回転軸と軸受パツド
との間に形成される楔状空間の開き角が回転軸の
回転速度に応じて制御されることが好ましい。上
述の如き詳細な特徴によれば、第二の磁石に通電
される電流の電圧値若しくは電流値を制御するこ
とにより、回転軸の回転速度に応じて適正に楔状
空間の開き角を制御することができ、また回転軸
の回転速度が所定値以上の領域、即ち十分な圧力
の気体膜が形成される領域に於ては、第二の磁石
への通電が停止されてよいので、電気エネルギが
多量に消費されることもない。
According to one detailed feature of the invention, the single magnet is a permanent magnet and the second magnet is an electromagnet. In a tailing pad type bearing structure, as is well known, the smaller the rotational speed of the rotating shaft, the larger the opening angle of the wedge-shaped space within a predetermined range is. It is preferable that the opening angle of the wedge-shaped space formed between the pad and the pad is controlled in accordance with the rotational speed of the rotating shaft. According to the detailed features described above, by controlling the voltage value or current value of the current passed through the second magnet, the opening angle of the wedge-shaped space can be appropriately controlled according to the rotational speed of the rotating shaft. In addition, in the region where the rotational speed of the rotating shaft is above a predetermined value, that is, in the region where a gas film with sufficient pressure is formed, the power supply to the second magnet may be stopped, so that the electrical energy is It is not consumed in large quantities.

以下に添付の図を参照して本発明を実施例につ
いて詳細に説明する。
The invention will now be described in detail by way of example embodiments with reference to the accompanying drawings.

第1図及び第2図は本発明によるテイルテイン
グパツド式気体軸受構造体の第一の実施例を示す
解図的断面図であり、それぞれ第2図の線−
、第1図の線−に沿う横断面図及び縦断面
図である。これらの図に於いて、1は中空の回転
軸であり、その内壁上に環状の永久磁石2,2′
が固定されている。これらの永久磁石はその径方
向に実質的に一様な放射状の磁区を有する円環状
永久磁石である。回転軸1の周りには該回転軸よ
り僅かに大きい曲率半径の内面を有する三個の軸
受パツド3a,3b,3cが、前記回転軸より隔
置されて互に等間隔に配置されている。これらの
軸受パツドはそれぞれ枢支部材4a,4b,4c
の球状部により枢軸の周りに枢動可能に支持され
ている。枢支部材4b,4cはハウジング5に設
けられたねじ孔に挿通されており且つロツクナツ
ト6により所定の位置に固定されている。一方回
転軸1の上方に位置する軸受パツド3aを枢支す
る枢支部材4aは、回転軸1と軸受パツド3aと
の間のクリアランスaを回転中好ましい値に調整
し得るよう弾性部材7のねじ抗7aに挿通され且
つロツクナツト6により固定されている。弾性部
材7は押圧板8とボルト9とによりハウジング5
に締結固定されている。
1 and 2 are schematic cross-sectional views showing a first embodiment of the tailing pad type gas bearing structure according to the present invention, and are respectively shown along the lines shown in FIG.
, a cross-sectional view and a vertical cross-sectional view taken along the line - of FIG. 1; In these figures, 1 is a hollow rotating shaft, and annular permanent magnets 2, 2' are mounted on its inner wall.
is fixed. These permanent magnets are toroidal permanent magnets having substantially uniform radial magnetic domains in their radial direction. Around the rotating shaft 1, three bearing pads 3a, 3b, 3c having inner surfaces with a radius of curvature slightly larger than the rotating shaft are arranged at equal intervals from the rotating shaft. These bearing pads are respectively pivot members 4a, 4b, 4c.
It is pivotably supported about a pivot by a spherical portion of. The pivot members 4b, 4c are inserted into screw holes provided in the housing 5, and are fixed in predetermined positions by lock nuts 6. On the other hand, the pivot support member 4a that pivotally supports the bearing pad 3a located above the rotating shaft 1 is provided with a screw of the elastic member 7 so that the clearance a between the rotating shaft 1 and the bearing pad 3a can be adjusted to a preferable value during rotation. It is inserted through the resistor 7a and fixed by a lock nut 6. The elastic member 7 is attached to the housing 5 by a pressing plate 8 and bolts 9.
It is fastened and fixed.

実質的に回転軸1の下方に位置する軸受パツド
3b,3cにはそれぞれこれらと一体的に固定さ
れた鉄心10,11の周りに導線が巻かれること
によつて形成された電磁石12,12′及び1
3,13′が設けられている。この場合、電磁石
12,12′及び13,13′のそれぞれの極性は
それらが回転軸1に固定された永久磁石2,2′
に対し磁気的反発力を生ずるよう定められてい
る。即ち、例えば永久磁石2,2′の外周に沿う
極性がS極であり、その内周に沿う極性がN極で
ある場合には各電磁石の半径方向内方の磁極がS
極であるよう定められている。更に第1図より明
らかである如く、電磁石12,12′及び13,
13′はその磁気的作用軸線がそれぞれ軸受パツ
ド3b,3cの枢軸に対し回転軸1の回転方向A
に見て遅れ側、即ち軸受パツドのリーデイングエ
ツジ3Lの側の位置を通過するよう配置されてい
る。
Electromagnets 12, 12' formed by winding conductive wires around iron cores 10, 11 integrally fixed to the bearing pads 3b, 3c located substantially below the rotating shaft 1, respectively. and 1
3, 13' are provided. In this case, the respective polarities of the electromagnets 12, 12' and 13, 13' are the same as those of the permanent magnets 2, 2' fixed to the rotating shaft 1.
It is designed to generate a magnetic repulsion force against the magnetic field. That is, for example, if the polarity along the outer periphery of the permanent magnets 2, 2' is S pole and the polarity along the inner periphery is N pole, the radially inner magnetic pole of each electromagnet is S pole.
It is determined to be the ultimate. Furthermore, as is clear from FIG. 1, the electromagnets 12, 12' and 13,
13' has its magnetic action axis in the rotational direction A of the rotating shaft 1 with respect to the pivot axis of the bearing pads 3b and 3c, respectively.
It is arranged so as to pass through the position on the lagging side, that is, on the leading edge 3L side of the bearing pad.

第3図及び第4図は本発明によるテイルテイン
グパツド式気体軸受構造体の第二の実施例の解図
的断面図であり、それぞれ第1図及び第2図に対
応する横断面図及び縦断面図である。尚これらの
図に於いて第1図及び第2図に図示された部分と
同一の部分には、第1図及び第2図に於いて付さ
れた符号と同一の符号が付されている。この第二
の実施例に於いては、前述の第一の実施例の構成
に加えて、回転軸1の上方に位置する軸受パツド
3aにも電磁石12,12′及び13,13′と同
様の電磁石15,15′が設けられている。これ
らの電磁石15,15′は前述した電磁石と同様
回転軸1に固定された永久磁石に対し磁気的反発
力を生ずるようその磁極が定められており且つそ
の磁気的作用軸線が軸受パツド3aの枢軸に対し
回転軸1の回転方向Aに見て遅れ側、即ち軸受パ
ツドのリーデイングエツジ3L側の位置を通過す
るよう構成されている。
3 and 4 are schematic cross-sectional views of a second embodiment of the tailing pad type gas bearing structure according to the present invention, and are cross-sectional views and cross-sectional views corresponding to FIGS. 1 and 2, respectively. FIG. In these figures, the same parts as those shown in FIGS. 1 and 2 are designated by the same reference numerals as those shown in FIGS. 1 and 2. In this second embodiment, in addition to the configuration of the first embodiment described above, the bearing pad 3a located above the rotating shaft 1 also has the same structure as the electromagnets 12, 12' and 13, 13'. Electromagnets 15, 15' are provided. These electromagnets 15, 15', like the electromagnets described above, have their magnetic poles determined so as to generate a magnetic repulsive force against the permanent magnet fixed to the rotating shaft 1, and their magnetic action axes coincide with the axis of the bearing pad 3a. On the other hand, it is configured to pass through a position on the lagging side as viewed in the rotational direction A of the rotating shaft 1, that is, a position on the leading edge 3L side of the bearing pad.

以上の如く構成されたテイルテイングパツド式
気体軸受構造体によれば、回転軸の重量との関連
で各電磁石の巻回の数や通電電流の大きさを適宜
に選定することにより、回転起動時及び停止時の
如く回転軸が比較的低速度にて回転している時に
も回転軸を磁気的作用によつて重力に抗して軸受
パツドより浮上させることができるので、従来の
テイルテイングパツド式軸受に於ける如き回転軸
と軸受パツドとの間の摩擦接触を回避することが
できる。又回転軸が回転駆動を開始する前に電磁
石に通電を行うことにより、回転軸が軸受パツド
より浮上した状態にて回転軸の回転駆動を開始す
ることができるので起動トルクを著しく低減する
ことができる。
According to the tailing pad type gas bearing structure constructed as described above, rotation can be started by appropriately selecting the number of windings of each electromagnet and the magnitude of the energizing current in relation to the weight of the rotating shaft. Even when the rotary shaft is rotating at a relatively low speed, such as when the rotary shaft is stopped or stopped, the rotary shaft can be made to float above the bearing pad against gravity by magnetic action. Frictional contact between the rotating shaft and the bearing pad, such as in hard-type bearings, can be avoided. In addition, by energizing the electromagnet before the rotating shaft starts rotating, it is possible to start rotating the rotating shaft while the rotating shaft is floating above the bearing pad, so the starting torque can be significantly reduced. can.

又前述の如く各電磁石の磁気的作用軸線がそれ
ぞれの軸受パツドの枢軸に対してそのリーデング
エツジの側に偏倚されているので、各電磁石に通
電が行われて回転軸に固定された永久磁石とそれ
ぞれの電磁石との間に磁気的反発力が発生した場
合各電磁石は回転軸を各軸受パツドより浮上させ
るのみならずそれぞれの軸受パツドをその枢軸の
周りに第1図で見て時計廻り方向に枢動し、回転
軸と軸受パツドとの間に強制的に楔状空間を形成
させることができる。従つて回転起動時及び停止
時の如く気体の粘性のみによつては楔状空間が形
成されにくい運転条件の下でも磁気作用により強
制的に楔状空間を形成することができるので、こ
のことによつても回転軸と軸受パツドとの間の摩
擦接触を低減することができる。
Furthermore, as mentioned above, since the magnetic action axis of each electromagnet is biased toward its leading edge with respect to the pivot axis of its respective bearing pad, each electromagnet is energized and is connected to the permanent magnet fixed to the rotating shaft. When magnetic repulsion is generated between each electromagnet, each electromagnet not only causes the rotating shaft to levitate above each bearing pad, but also moves each bearing pad around its axis in a clockwise direction as seen in Figure 1. It can be pivoted to force a wedge-shaped space between the rotating shaft and the bearing pad. Therefore, even under operating conditions such as when starting and stopping rotation, where a wedge-shaped space is difficult to form only due to the viscosity of the gas, it is possible to forcibly form a wedge-shaped space by magnetic action. Also, the frictional contact between the rotating shaft and the bearing pad can be reduced.

更に特に第二の実施例に於いては、すべての軸
受パツドに対し電磁石が設けられているので、そ
れぞれの電磁石の巻回や通電電流を適宜に選択す
ることにより、上述した如き回転軸の浮上や軸受
パツドの強制的枢動に加えて、回転軸のその軸線
に垂直な方向の振動を低減し更にはかかる振動に
よる回転軸と軸受パツドとの摩擦接触を回避する
ことができる。
Furthermore, especially in the second embodiment, since electromagnets are provided for all bearing pads, the levitation of the rotating shaft as described above can be achieved by appropriately selecting the winding of each electromagnet and the energizing current. In addition to the forced pivoting of the bearing pad, it is possible to reduce vibrations of the rotating shaft in a direction perpendicular to its axis, and furthermore to avoid frictional contact between the rotating shaft and the bearing pad due to such vibrations.

更に又回転軸が定常の高速回転状態にある場合
に電磁石の通電を解除することにより従来のテイ
ルテイングパツド式気体軸受と実質的に同一の運
転状態とすることができるので、かかる回転軸の
高速回転時に於いてはテイルテイングパツド式気
体軸受の本来の機能を有効に生かすことができ
る。
Furthermore, when the rotating shaft is in a steady, high-speed rotation state, by de-energizing the electromagnet, it is possible to achieve substantially the same operating state as a conventional tailing pad type gas bearing. During high-speed rotation, the original function of the tailing pad type gas bearing can be effectively utilized.

以上に於いては本発明をその特定の実施例につ
いて詳細に説明したが、本発明はこれらの実施例
に限定されるものではなく、本発明の範囲内にて
種々の修正並びに省略が可能であることは当業者
にとつて明らかであろう。例えば本発明によるテ
イルテイングパツド式軸受構造体は図示の二つの
実施例の如く軸受パツドが三個に限定されるもの
ではなくそれ以上の軸受パツドを有するよう構成
されてよい。又回転軸も中空軸に限定されるもの
ではなく、中実軸の外周に環状溝を設けこれに分
割された円弧状永久磁石を嵌込んだものであつて
もよい。
Although the present invention has been described above in detail with reference to specific embodiments thereof, the present invention is not limited to these embodiments, and various modifications and omissions can be made within the scope of the present invention. This will be obvious to those skilled in the art. For example, the tailing pad type bearing structure according to the present invention is not limited to three bearing pads as in the two illustrated embodiments, but may be constructed with more bearing pads. Further, the rotating shaft is not limited to a hollow shaft, but may be a solid shaft with an annular groove provided on the outer periphery and into which divided arcuate permanent magnets are fitted.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明によるテイルテイン
グパツド式軸受構造体の第一の実施例を示す解図
的断面図であり、それぞれ第2図の線−、第
1図の線−に沿う横断面図及び縦断面図、第
3図及び第4図は本発明によるテイルテイングパ
ツド式軸受構造体の第二の実施例の断面図であ
り、それぞれ第1図及び第2図に対応する解図的
横断面図及び縦断面図である。 1〜回転軸、2,2′〜永久磁石、3a,3
b,3c〜軸受パツド、4a,4b,4c〜枢支
部材、5〜ハウジング、6〜ナツト、7〜弾性部
材、8〜押圧板、9〜ボルト、10,11〜鉄
心、12,12′,13,13′,15,15′〜
電磁石。
1 and 2 are schematic cross-sectional views showing a first embodiment of a tailing pad type bearing structure according to the present invention, and are taken along the line in FIG. 2 and the line in FIG. 1, respectively. 3 and 4 are cross-sectional views of a second embodiment of the tailing pad type bearing structure according to the present invention, and correspond to FIGS. 1 and 2, respectively. FIG. 1 ~ rotating shaft, 2, 2' ~ permanent magnet, 3a, 3
b, 3c - bearing pad, 4a, 4b, 4c - pivot member, 5 - housing, 6 - nut, 7 - elastic member, 8 - press plate, 9 - bolt, 10, 11 - iron core, 12, 12', 13, 13', 15, 15'~
electromagnet.

Claims (1)

【特許請求の範囲】[Claims] 1 回転軸と、ハウジングと、前記回転軸の周り
に周方向に隔置され且つ前記ハウジングによつて
枢動可能に支持されて前記回転軸との間に楔状空
間を郭定することのできる複数個の軸受パツド
と、前記回転軸に組込まれた第一の磁石と、前記
ハウジングによつて支持され前記第一の磁石に対
し磁気的反発力を及ぼす第二の磁石とを有し、前
記第二の磁石はその磁気的作用軸線が前記軸受パ
ツドの枢点より前記軸受パツドのリーデイングエ
ツジ側の位置を通るよう、前記軸受パツドに固定
的に取付けられていることを特徴とするテイルテ
イングパツド式軸受構造体。
1 a rotational shaft, a housing, and a plurality of units circumferentially spaced around the rotational shaft and pivotally supported by the housing to define a wedge-shaped space between the rotational shaft and the rotational shaft; a first magnet incorporated in the rotating shaft; a second magnet supported by the housing and exerting a magnetic repulsion force on the first magnet; A tailing pad characterized in that the second magnet is fixedly attached to the bearing pad so that its axis of magnetic action passes through a position closer to the leading edge of the bearing pad than the pivot point of the bearing pad. type bearing structure.
JP5366479A 1979-05-01 1979-05-01 Bearing structure utilizing tilting pad Granted JPS55145812A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5366479A JPS55145812A (en) 1979-05-01 1979-05-01 Bearing structure utilizing tilting pad

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5366479A JPS55145812A (en) 1979-05-01 1979-05-01 Bearing structure utilizing tilting pad

Publications (2)

Publication Number Publication Date
JPS55145812A JPS55145812A (en) 1980-11-13
JPS6215775B2 true JPS6215775B2 (en) 1987-04-09

Family

ID=12949111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5366479A Granted JPS55145812A (en) 1979-05-01 1979-05-01 Bearing structure utilizing tilting pad

Country Status (1)

Country Link
JP (1) JPS55145812A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0447433B2 (en) * 1987-12-09 1992-08-03 Three Bond Co Ltd
JPH0447432B2 (en) * 1987-12-09 1992-08-03 Three Bond Co Ltd

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018202781A1 (en) * 2018-02-23 2019-08-29 Robert Bosch Gmbh tilting pad

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5388442A (en) * 1977-01-17 1978-08-03 Sulzer Ag Automatically pressurized gas floating bearing

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5388442A (en) * 1977-01-17 1978-08-03 Sulzer Ag Automatically pressurized gas floating bearing

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0447433B2 (en) * 1987-12-09 1992-08-03 Three Bond Co Ltd
JPH0447432B2 (en) * 1987-12-09 1992-08-03 Three Bond Co Ltd

Also Published As

Publication number Publication date
JPS55145812A (en) 1980-11-13

Similar Documents

Publication Publication Date Title
US5223758A (en) Spindle motor
US5714818A (en) Backup bearing for magnetic bearings
JPS5833932B2 (en) Automatic pressure generating gas floating segment bearing
US6747378B2 (en) Dual stiffness bearing damping system
EP3542079B1 (en) Thrust active magnetic bearing for shaft slow roll control
GB2153451A (en) A bearing lubrication device
JPS6215775B2 (en)
JPH05146109A (en) Magnetic bearing and motor
JPS61294218A (en) Fluid bearing device
JPH02157716A (en) Rotary polygon mirror
JPH11341734A (en) Disk type motor
JP2000266117A (en) Rotary magnetic damper
JPH0731094A (en) Motor
JPS59175619A (en) Dynamic pressure pneumatic bearing
JPH10159707A (en) Flywheel
JPH04111256A (en) Spindle motor
JPH04337110A (en) Magnetic bearing
US3235757A (en) Gas magnetic thrust bearing
JPS631053Y2 (en)
KR940000809Y1 (en) Bearing device
JP2724154B2 (en) Bearing device for rotating electric machine
JP3643047B2 (en) Ceramic hydrodynamic bearing, motor with bearing, hard disk drive, and polygon scanner
JPH04271243A (en) Bearing device for rotating electric machine
JPS61204864A (en) Rotary drum device
JPH07236252A (en) Dynamic-pressure bearing turning gear