JPH04337110A - Magnetic bearing - Google Patents

Magnetic bearing

Info

Publication number
JPH04337110A
JPH04337110A JP10727991A JP10727991A JPH04337110A JP H04337110 A JPH04337110 A JP H04337110A JP 10727991 A JP10727991 A JP 10727991A JP 10727991 A JP10727991 A JP 10727991A JP H04337110 A JPH04337110 A JP H04337110A
Authority
JP
Japan
Prior art keywords
magnetic
rotor
bearing
stator
opposing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10727991A
Other languages
Japanese (ja)
Inventor
Shigeki Hagiwara
萩原 茂喜
Hiroshi Sugawara
宏 菅原
Takeshi Nishimura
剛 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP10727991A priority Critical patent/JPH04337110A/en
Publication of JPH04337110A publication Critical patent/JPH04337110A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve restoring force of a bearing and to improve rigidity thereof while usefully applying a feature of a contactless bearing, in the case of a magnetic bearing. CONSTITUTION:In the case of a structure for rotationally supporting a rotor 2 with a magnetic bearing, a gas bearing 12 is provided between thrust rotary surfaces where the rotor 2 is opposed to a stator 3, and the rotor 2 is levitation- supported from the stator 3 by overcoming rotor weight and attractive force acting among opposed magnetic poles 4 to 7 in a steady rotational condition so as to continue this condition maintained even in the case of a magnetic pole air gap E sufficiently small. Space holding protrusions 13a, 13b in the gas bearing 12 are constituted of non-magnetic ceramics to prevent the fellow opposite magnetic poles 4 to 7 from coming into contact with each other, before sufficient floating force is displayed by the gas bearing 12, and to prevent also seizure by friction of the fellow space holding protrusions 13a, 13b.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、非接触型軸受の1つ
である磁気軸受に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic bearing, which is one type of non-contact type bearing.

【0002】0002

【従来の技術】磁気軸受の従来技術として、例えば特開
平1−145420号公報や特開平2−85012号公
報等が公知である。前者の例においては、断面櫛歯状の
対向磁極の間に例えば超伝導物質等からなる磁気遮蔽物
を埋設し、磁束を対向磁極へ集中させることにより、外
力に対向する復元力の向上を実現している。
2. Description of the Related Art Conventional techniques for magnetic bearings include, for example, Japanese Patent Application Laid-Open Nos. 1-145420 and 2-85012. In the former example, a magnetic shield made of, for example, a superconducting material is buried between opposing magnetic poles with a comb-shaped cross section, and by concentrating the magnetic flux on the opposing magnetic poles, it is possible to improve the restoring force against external forces. are doing.

【0003】0003

【発明が解決しようとする課題】磁気軸受において復元
力を向上するには、上記以外に磁石の発磁力を大きくす
ることと、対向磁極間の対向隙間(以下、磁極空隙と言
う)を小さくすることとが考えられる。磁石の発磁力を
強力にすることにさほど困難はないが、磁石の占めるス
ペースが大きくなるか、或いは高性能の磁石を適用する
ことによるコスト増のいずれかの不利を免れない。一方
、磁力は距離の2乗に反比例して変化するので、磁極空
隙を十分小さく設定すると、復元力を向上させて軸受の
剛性を高めることができる。例えば磁極空隙を限りなく
零に近付けると、大きな復元力を発揮できる。
[Problem to be Solved by the Invention] In order to improve the restoring force in a magnetic bearing, in addition to the above, it is necessary to increase the magnetizing force of the magnet and to reduce the opposing gap between opposing magnetic poles (hereinafter referred to as the magnetic pole gap). It is possible to think of this. Although it is not very difficult to increase the magnetic force of a magnet, it is inevitably disadvantageous in that either the space occupied by the magnet increases or the cost increases due to the use of a high-performance magnet. On the other hand, since the magnetic force changes in inverse proportion to the square of the distance, if the magnetic pole gap is set sufficiently small, the restoring force can be improved and the rigidity of the bearing can be increased. For example, by bringing the magnetic pole gap as close to zero as possible, a large restoring force can be exerted.

【0004】しかし、磁極空隙が小さくなるほど、その
状態の維持が困難となる。磁気軸受をラジアル軸受とし
て用いる場合は、磁極空隙をスラスト方向に確保するが
、回転軸に僅かでもスラスト方向のがたがあると、磁気
軸受は対向磁極同士が接触してその機能を失ってしまう
。また、回転軸と軸受との間に互いに当接する段部を設
けて、スラスト方向の位置決めを機械的に行うことはで
きるが、この場合は段部において摩擦や磨耗を生じるの
で、非接触軸受としてのメリットが半減する。
However, the smaller the magnetic pole gap becomes, the more difficult it becomes to maintain that state. When using a magnetic bearing as a radial bearing, a magnetic pole gap is secured in the thrust direction, but if there is even a slight play in the thrust direction in the rotating shaft, the opposing magnetic poles of the magnetic bearing will come into contact with each other and lose their function. . Additionally, it is possible to mechanically determine the positioning in the thrust direction by providing a step between the rotating shaft and the bearing that abuts each other, but in this case, friction and wear occur at the step, so non-contact bearings are used. benefits will be halved.

【0005】この発明は上記に鑑み提案されたものであ
って、その目的は、作動時における磁極空隙の保持を気
体軸受で行うことにより、非接触軸受の特徴を生かしな
がら磁気軸受の復元力の向上を実現し、その剛性を向上
することにある。
The present invention has been proposed in view of the above, and its purpose is to utilize the characteristics of a non-contact bearing while also reducing the restoring force of the magnetic bearing by using a gas bearing to maintain the magnetic pole gap during operation. The purpose is to realize improvement and improve its rigidity.

【0006】[0006]

【課題を解決するための手段】請求項1の発明では、図
1に示すように、磁気軸受におけるロータ(2)及びス
テータ(3)の対向するスラスト回転面のそれぞれに磁
極空隙(E)を介して複数の対向磁極(4)〜(7)が
同心状に配置されていること、外力に対抗して両対向磁
極(4)〜(7)間に復元磁力を生じさせる磁石(8)
がロータ(2)又はステータ(3)の少なくともいずれ
か一方に設けられていること、上記スラスト回転面間に
、対向磁極(4)〜(7)の最小対向隙間(e)を維持
する非磁性セラミックからなる空隙保持突起(13a)
,(13b)を有していて、保持突起(13a),(1
3b)間を流れる気流圧により、上記対向磁極(4)〜
(7)間に作用する吸引磁力に抗してロータ(2)をス
テータ(3)から浮上支持する気体軸受(12)が設け
てあることを要件とする。
[Means for Solving the Problem] In the invention of claim 1, as shown in FIG. A plurality of opposing magnetic poles (4) to (7) are arranged concentrically through a magnet (8) that generates a restoring magnetic force between both opposing magnetic poles (4) to (7) against external force.
is provided on at least one of the rotor (2) or the stator (3), and a non-magnetic material that maintains the minimum facing gap (e) between the opposing magnetic poles (4) to (7) between the thrust rotating surfaces. Gap retaining protrusion (13a) made of ceramic
, (13b), and holding protrusions (13a), (1
3b) Due to the airflow pressure flowing between the opposing magnetic poles (4) to
(7) A gas bearing (12) is required to float and support the rotor (2) from the stator (3) against the attractive magnetic force acting therebetween.

【0007】[0007]

【作用】請求項1の発明では、気体軸受(12)は、ロ
ータ回転数が所定値に達すると、保持突起(13a),
(13b)間を径方向外側へ向かって流れる気流圧によ
ってロータ(2)を、対向磁極(4)〜(7)間に作用
する吸引磁力及びロータ重量に打ち勝ってステータ(3
)から浮上させ、その状態を維持する。このとき、気体
軸受(12)における空隙保持突起(13a),(13
b)は、停止状態からロータ回転数が上記所定値に達す
るまでの間、互いに当接して対向磁極(4)〜(7)同
士が接触することを阻止し、磁気軸受の機能を維持して
いる。この立上り回転時の焼付きを防ぐために、空隙保
持突起(13a),(13b)を非磁性セラミックスで
構成している。
[Operation] In the invention of claim 1, when the rotor rotation speed reaches a predetermined value, the gas bearing (12)
(13b) The airflow pressure flowing radially outward between the rotor (2) overcomes the attractive magnetic force and rotor weight acting between the opposing magnetic poles (4) to (7), and the stator (3)
) and maintain that state. At this time, the gap retaining protrusions (13a), (13) in the gas bearing (12)
b) prevents the opposing magnetic poles (4) to (7) from coming into contact with each other and maintains the function of the magnetic bearing until the rotor rotational speed reaches the above-mentioned predetermined value from the stopped state. There is. In order to prevent seizure during this startup rotation, the gap retaining protrusions (13a) and (13b) are made of non-magnetic ceramics.

【0008】上記のように、定常回転状態において気体
軸受(12)でロータ(2)のスラスト方向位置を規定
すると、対向磁極(4)〜(7)間の吸引磁力及びロー
タ(2)に作用するスラスト方向の外部負荷に対して、
気体軸受(12)が十分な対抗力を発揮するので、完全
な非接触状態の下に磁極空隙(E)を小さくできる。
As described above, when the thrust direction position of the rotor (2) is defined by the gas bearing (12) in the steady rotation state, the attractive magnetic force between the opposing magnetic poles (4) to (7) and the rotor (2) are For the external load in the thrust direction,
Since the gas bearing (12) exerts a sufficient counterforce, the magnetic pole gap (E) can be reduced in a completely non-contact state.

【0009】[0009]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。図1〜図3はこの発明の実施例に係る磁気軸受を
示す。図1において、磁気軸受は回転軸(1)の一端に
装着されたロータ(2)と、ロータ(2)の下方に配置
されたステータ(3)とからなり、これらロータ(2)
及びステータ(3)の対向するスラスト回転面のそれぞ
れに磁極空隙(E)を介して内外2重の対向磁極(4)
〜(7)が設けられ、ステータ(3)の壁内部にリング
状の永久磁石(8)が埋設されてなる。
Embodiments Hereinafter, embodiments of the present invention will be explained based on the drawings. 1 to 3 show a magnetic bearing according to an embodiment of the invention. In FIG. 1, the magnetic bearing consists of a rotor (2) attached to one end of a rotating shaft (1) and a stator (3) disposed below the rotor (2).
And inner and outer dual opposing magnetic poles (4) are placed on each of the opposing thrust rotating surfaces of the stator (3) via a magnetic pole gap (E).
- (7) are provided, and a ring-shaped permanent magnet (8) is embedded inside the wall of the stator (3).

【0010】ロータ(2)は回転軸(1)に外嵌された
ボス部(9)と、ボス部(9)の下部に連続する円板状
のフランジ部(10)とを有し、フランジ部(10)の
下面側内外周縁に上記対向磁極(4),(5)の対がそ
れぞれリング状に突設されてなる。一方、ステータ(3
)は円形ブロック状に形成されており、その上面の内外
周縁にロータ(2)の対向磁極(4),(5)に対応し
てリング状の対向磁極(6),(7)が突設されてなる
。磁石(8)は径方向外側にS極が位置する状態で配置
されており、図1で破線にて示すように、回転軸(1)
の中心軸を間に挟んで左右対称状の磁束を形成する。
The rotor (2) has a boss part (9) fitted onto the rotating shaft (1), and a disc-shaped flange part (10) continuous to the lower part of the boss part (9). A pair of opposing magnetic poles (4) and (5) is provided in a ring shape on the inner and outer peripheral edges of the lower surface of the portion (10), respectively. On the other hand, the stator (3
) is formed in the shape of a circular block, and ring-shaped opposing magnetic poles (6) and (7) are protruded from the inner and outer peripheries of the upper surface corresponding to the opposing magnetic poles (4) and (5) of the rotor (2). It will be done. The magnet (8) is arranged with the S pole located on the outside in the radial direction, and as shown by the broken line in FIG.
A symmetrical magnetic flux is formed with the central axis of the two sides in between.

【0011】作動時における磁気軸受の磁極空隙(E)
を非接触状態の下に保持するために、上記スラスト回転
面間に気体軸受(12)が設けられている。この気体軸
受(12)は、立上り回転時における対向磁極(4)〜
(7)の最小対向隙間(e)を維持するために上下1対
の空隙保持突起(13a),(13b)を有している。
Magnetic pole gap (E) of magnetic bearing during operation
A gas bearing (12) is provided between the thrust rotating surfaces to maintain the thrust rotating surfaces in a non-contact state. This gas bearing (12) has opposing magnetic poles (4) to
In order to maintain the minimum facing gap (e) of (7), a pair of upper and lower gap retaining protrusions (13a) and (13b) are provided.

【0012】上部空隙保持突起(13a)はロータ(2
)の側に装着され、下部突起(13b)はステータ(3
)の側に装着されており、いずれも非磁性セラミックス
で構成してある。下部突起(13b)はリング状のもの
で、ステータ(3)に対してその上端面が対向磁極(6
),(7)の上端面より寸法(a)だけ突出する状態で
固定されている。上部突起(13a)も同様に、その下
端面がロータ(2)側の対向磁極(4),(5)の下端
面から寸法(a)だけ突出する状態で固定されている。 このように両突起(13a),(13b)を対向磁極(
4)〜(7)より対向方向に突出させると、両突起(1
3a),(13b)が他の部分に先行して上下に当接す
るので、図3に示すように、停止時及び立上り回転時に
対向磁極(4)〜(7)の最小対向隙間(e)を維持し
続けることができる。尚、上記寸法(a)は1〜数10
μmの範囲で設定することが好ましい。
[0012] The upper gap retaining protrusion (13a) is connected to the rotor (2).
), and the lower protrusion (13b) is attached to the side of the stator (3
), and both are made of non-magnetic ceramics. The lower protrusion (13b) is ring-shaped, and its upper end surface faces the opposing magnetic pole (6) with respect to the stator (3).
), (7) are fixed so as to protrude from the upper end surfaces by the dimension (a). Similarly, the upper projection (13a) is fixed such that its lower end surface protrudes by the dimension (a) from the lower end surfaces of the opposing magnetic poles (4) and (5) on the rotor (2) side. In this way, connect both protrusions (13a) and (13b) to the opposing magnetic poles (
When protruding in the opposite direction from 4) to (7), both protrusions (1
3a) and (13b) come into contact vertically before other parts, so as shown in Fig. 3, the minimum facing gap (e) between the facing magnetic poles (4) to (7) is can continue to be maintained. In addition, the above dimension (a) is 1 to several 10
It is preferable to set it in the range of μm.

【0013】上記のように下部突起(13b)はリング
状に形成されるが、上部突起(13a)の下面には図2
に示すように多数個の放射渦巻体(14),(14),
…が形成され、これらはフランジ部(10)に周方向等
間隔おきに配置されている。つまり、上部突起(13a
)が一種のファンブレードとして作用するようにし、ロ
ータ(2)が回転するとき、上部突起(13a)におけ
る多数個の放射渦巻体(14),(14),…によって
下部突起(13b)との間に径方向外側へ向かう気流を
生じさせ、この気流圧によってロータ(2)をステータ
(3)から浮上支持できるようにしており、気体軸受(
12)は上下の両突起(13a),(13b)を要素部
材にして構成してある。空気をスラスト回転面側へ循環
させるために、ステータ(3)の中央部には通気路(1
5)が上下貫通状に設けてある。
As described above, the lower protrusion (13b) is formed in a ring shape, but the lower surface of the upper protrusion (13a) is
As shown in , a large number of radial spiral bodies (14), (14),
... are formed, and these are arranged at equal intervals in the circumferential direction on the flange portion (10). In other words, the upper protrusion (13a
) acts as a kind of fan blade, and when the rotor (2) rotates, the multiple radial spiral bodies (14), (14), ... in the upper protrusion (13a) create a connection with the lower protrusion (13b). In between, an airflow is generated radially outward, and this airflow pressure allows the rotor (2) to be floated and supported from the stator (3).
12) is constructed by using both upper and lower projections (13a) and (13b) as element members. In order to circulate air toward the thrust rotating surface, a ventilation passage (1) is provided in the center of the stator (3).
5) is provided in a vertically penetrating manner.

【0014】次に、磁気軸受の動作を説明する。停止状
態における磁気軸受は、図3に示すように気体軸受(1
2)における上下の突起(13a),(13b)が当接
している。この状態からロータ(2)を回転駆動すると
、上部突起(13a)の放射渦巻体(14),(14)
,…により下部突起(13b)との間に遠心方向の気流
が生じるが、ロータ(2)には重量及び磁石(8)の吸
引磁力等のスラスト負荷が作用しているので、気流圧が
スラスト負荷に打ち勝つまでの間、図3の状態を維持し
続ける。この立上り回転時に上下の突起(13a),(
13b)は摩擦接触するが、いずれもセラミックスで構
成してあるので、磨耗や摩擦熱による焼付きを生じるこ
とはない。
Next, the operation of the magnetic bearing will be explained. The magnetic bearing in the stopped state is a gas bearing (1) as shown in Figure 3.
The upper and lower projections (13a) and (13b) in 2) are in contact with each other. When the rotor (2) is rotationally driven from this state, the radial spiral bodies (14), (14) of the upper projection (13a)
,... creates a centrifugal airflow between the lower protrusion (13b), but since the rotor (2) is subjected to thrust loads such as the weight and the attractive magnetic force of the magnet (8), the airflow pressure The state shown in FIG. 3 is maintained until the load is overcome. During this rising rotation, the upper and lower protrusions (13a), (
13b) come into frictional contact, but since they are both made of ceramic, there will be no wear or seizure due to frictional heat.

【0015】ロータ(2)の回転数の増加に伴って、上
部突起(13a)で生成される気流の圧力も上昇し、や
がてスラスト負荷に打ち勝ってロータ(2)の全体を図
1のように浮上支持し、磁極空隙(E)を保持する。こ
の状態でロータ(2)に下向きの外力が作用すると、上
下の突起(13a),(13b)の間隔が縮まろうとす
るが、間隔が小さくなるほど気流圧も上昇するので、外
力に対抗して空隙を保持し続けることができる。従って
、磁極空隙(E)を十分に小さく設定した場合でも、そ
の状態を非接触のままで確実に維持できる。このことは
、ロータ(2)の径方向のずれに対して、対向磁極(4
)〜(7)間で大きな磁力を作用させて復元力を向上で
きることを意味し、従来の磁気軸受に比べて軸受剛性を
向上できる。
As the rotational speed of the rotor (2) increases, the pressure of the airflow generated at the upper protrusion (13a) also increases, eventually overcoming the thrust load and causing the entire rotor (2) to move as shown in FIG. Float and support to maintain the magnetic pole gap (E). If a downward external force is applied to the rotor (2) in this state, the distance between the upper and lower protrusions (13a) and (13b) will tend to shrink, but the smaller the distance, the higher the airflow pressure will be, so the air gap will resist the external force. can continue to hold. Therefore, even if the magnetic pole gap (E) is set to be sufficiently small, that state can be reliably maintained without contact. This means that the opposing magnetic poles (4
) to (7) means that the restoring force can be improved by applying a large magnetic force, and the bearing rigidity can be improved compared to conventional magnetic bearings.

【0016】図4及び図5は上記磁気軸受をモータに適
用した実施例を示す。図4において、モータはハウジン
グ(17)内に、モータロータ(18)、これを支持す
るロータ軸(19)及びステータコイル(20)を有し
、ロータ軸(19)の上部及び下部のそれぞれを磁気軸
受(21A),(21B)で支持してなる。上側の磁気
軸受(21A)は従来の磁気軸受と差異はなく、ロータ
(2a)、ステータ(3a)、磁石(8a)等で構成さ
れている。この軸受(21A)はラジアル軸受としての
み機能する。
FIGS. 4 and 5 show an embodiment in which the above magnetic bearing is applied to a motor. In FIG. 4, the motor has a motor rotor (18), a rotor shaft (19) that supports this, and a stator coil (20) in a housing (17), and the upper and lower parts of the rotor shaft (19) are magnetically connected to each other. It is supported by bearings (21A) and (21B). The upper magnetic bearing (21A) is the same as a conventional magnetic bearing and is composed of a rotor (2a), a stator (3a), a magnet (8a), and the like. This bearing (21A) functions only as a radial bearing.

【0017】下側の磁気軸受(21B)は上記実施例の
磁気軸受と基本的に同等の構造とするが、図5に示すよ
うに、ロータ(2)及びステータ(3)のそれぞれに内
外4重の対向磁極(22)〜(29)を設け、これら磁
極(22)〜(29)間に3個の空隙保持突起(13)
を設けてなり、この空隙間保持突起(13)により気体
軸受(12)を構成している。
The lower magnetic bearing (21B) has basically the same structure as the magnetic bearing of the above embodiment, but as shown in FIG. Heavy opposing magnetic poles (22) to (29) are provided, and three gap maintaining protrusions (13) are provided between these magnetic poles (22) to (29).
A gas bearing (12) is constituted by the gap holding protrusion (13).

【0018】図6は磁気軸受の形態を変更した実施例を
示す。この実施例では、回転軸(1)の周面にロータ(
2)を円盤状に張り出し、その上下面の内外縁にそれぞ
れ対向磁極(30)〜(33)を突設する。さらに、ロ
ータ(2)を上下から挟む状態でステータ(3)を設け
、上記対向磁極(30)〜(33)に対応して対向磁極
(35)〜(38)を突設し、ロータ(2)の下面とス
テータ(3)の下側面壁との間に、気体軸受(12)を
構成する空隙保持突起(13)を設ける。
FIG. 6 shows an embodiment in which the form of the magnetic bearing is changed. In this embodiment, the rotor (
2) is extended into a disk shape, and opposing magnetic poles (30) to (33) are provided protruding from the inner and outer edges of the upper and lower surfaces, respectively. Further, a stator (3) is provided to sandwich the rotor (2) from above and below, and opposing magnetic poles (35) to (38) are provided protrudingly in correspondence with the opposing magnetic poles (30) to (33), and the rotor (2) is ) and the lower side wall of the stator (3), a gap retaining protrusion (13) constituting the gas bearing (12) is provided.

【0019】尚、上記各実施例以外に、この発明では、
例えば次の変形態様を採ることができる。すなわち、気
体軸受(12)における放射渦巻体をスラスト回転面の
ロータ側及びステータ側の双方に設ける。さらには、上
下の突起の何れか一方のみを必要量突出させ、他方は対
向磁極の突端面と同一かこれより凹ませることができる
[0019] In addition to the above-mentioned embodiments, this invention includes the following:
For example, the following variant can be adopted. That is, the radial spiral body in the gas bearing (12) is provided on both the rotor side and the stator side of the thrust rotating surface. Furthermore, only one of the upper and lower protrusions can be made to protrude by the required amount, and the other can be made to be recessed to the same level as or more than the protruding end surface of the opposing magnetic pole.

【0020】[0020]

【発明の効果】以上説明したように、請求項1の発明で
は、ロータを磁気軸受で回転支持するについて、ロータ
及びステータの対向するスラスト回転面間に気体軸受を
設け、この気体軸受により、定常回転状態において径方
向外側に向かう気流を生じさせて、その気流圧によりロ
ータ重量及び対向磁極間に作用する吸引磁力に打ち勝っ
てロータをステータから浮上支持させ、磁極空隙が十分
に小さい場合でもその状態を維持し続けられるようにし
た。従って、この発明の磁気軸受によれば、磁極空隙を
十分に小さくして対向磁極間に作用する吸引磁力を支障
なく強化でき、ロータの心ずれに対して大きな復元力を
発揮し、軸受の剛性を向上できる。また、スラスト回転
面のそれぞれに、気体軸受の構成要素として非磁性セラ
ミックスからなる間隔保持突起を設けるので、気体軸受
が十分な浮上力を発揮するまでに対向磁極同上が当接す
ることを防止し、併せて間隔保持突起同士の摩擦による
焼付きも防止できる。しかも、作動状態においてロータ
を完全な非接触状態の下に支持できるので、磨耗や疲労
による耐久性の低下がなく、苛酷な使用環境や悪条件下
での使用にも広く適用できる点で有利であり、特にロー
タを1分間当り数万回転以上の高速度で回転駆動する際
に適している。
As explained above, in the invention of claim 1, when the rotor is rotationally supported by a magnetic bearing, a gas bearing is provided between the opposing thrust rotating surfaces of the rotor and the stator, and this gas bearing allows the steady state to be maintained. In a rotating state, an airflow is generated radially outward, and the airflow pressure overcomes the weight of the rotor and the attractive magnetic force acting between the opposing magnetic poles, allowing the rotor to float and be supported from the stator, even when the magnetic pole gap is sufficiently small. We made it possible to continue to maintain the . Therefore, according to the magnetic bearing of the present invention, the magnetic pole gap can be made sufficiently small to strengthen the attractive magnetic force that acts between the opposing magnetic poles without any problems, exert a large restoring force against rotor misalignment, and increase the rigidity of the bearing. can be improved. In addition, since spacing projections made of non-magnetic ceramics are provided on each of the thrust rotating surfaces as a component of the gas bearing, it is possible to prevent the opposing magnetic poles from coming into contact with each other before the gas bearing exerts sufficient levitation force. It is also possible to prevent seizure due to friction between the spacing projections. Moreover, since the rotor can be supported in a completely non-contact state during operation, there is no decrease in durability due to wear or fatigue, and it is advantageous in that it can be widely used in harsh environments or under adverse conditions. It is particularly suitable for rotating the rotor at high speeds of tens of thousands of revolutions per minute or more.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】この発明の実施例に係る磁気軸受の縦断正面図
である。
FIG. 1 is a longitudinal sectional front view of a magnetic bearing according to an embodiment of the invention.

【図2】図1におけるII−II線矢視図である。FIG. 2 is a view taken along the line II-II in FIG. 1;

【図3】非浮上状態における磁気軸受の縦断正面図であ
る。
FIG. 3 is a longitudinal sectional front view of the magnetic bearing in a non-levitating state.

【図4】磁気軸受の適用例を示すモータの概略縦断面図
である。
FIG. 4 is a schematic vertical cross-sectional view of a motor showing an example of application of a magnetic bearing.

【図5】図4におけるV部拡大図である。5 is an enlarged view of the V section in FIG. 4. FIG.

【図6】この磁気軸受の他の実施例を示す縦断面図であ
る。
FIG. 6 is a longitudinal sectional view showing another embodiment of this magnetic bearing.

【符号の説明】[Explanation of symbols]

(2)…ロータ (3)…ステータ (4)…対向磁極 (5)…対向磁極 (6)…対向磁極 (7)…対向磁極 (8)…磁石 (12)…気体軸受 (13a),(13b)…空隙保持突起(14)…放射
渦巻体 (E)…磁極空隙 (e)…最小対向隙間
(2)... Rotor (3)... Stator (4)... Opposing magnetic pole (5)... Opposing magnetic pole (6)... Opposing magnetic pole (7)... Opposing magnetic pole (8)... Magnet (12)... Gas bearing (13a), ( 13b)...Gap holding protrusion (14)...Radiating spiral body (E)...Magnetic pole gap (e)...Minimum opposing gap

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  ロータ(2)及びステータ(3)の対
向するスラスト回転面のそれぞれに磁極空隙(E)を介
して複数の対向磁極(4)〜(7)が同心状に配置され
ており、外力に対抗して両対向磁極(4)〜(7)間に
復元磁力を生じさせる磁石(8)がロータ(2)又はス
テータ(3)の少なくともいずれか一方に設けられてお
り、上記スラスト回転面間に、対向磁極(4)〜(7)
の最小対向隙間(e)を維持する非磁性セラミックから
なる空隙保持突起(13a),(13b)を有していて
、保持突起(13a),(13b)間を流れる気流圧に
より、上記対向磁極(4)〜(7)間に作用する吸引磁
力に抗してロータ(2)をステータ(3)から浮上支持
する気体軸受(12)が設けてあることを特徴とする磁
気軸受。
Claim 1: A plurality of opposing magnetic poles (4) to (7) are arranged concentrically on each of the opposing thrust rotating surfaces of the rotor (2) and the stator (3) with a magnetic pole gap (E) interposed therebetween. A magnet (8) that generates a restoring magnetic force between the opposing magnetic poles (4) to (7) against external force is provided on at least one of the rotor (2) and the stator (3), and the above-mentioned thrust Between the rotating surfaces, opposing magnetic poles (4) to (7)
It has gap holding protrusions (13a) and (13b) made of non-magnetic ceramic that maintain a minimum facing gap (e) of , and the air pressure flowing between the holding protrusions (13a) and (13b) causes A magnetic bearing characterized in that a gas bearing (12) is provided to float and support a rotor (2) from a stator (3) against an attractive magnetic force acting between (4) and (7).
JP10727991A 1991-05-13 1991-05-13 Magnetic bearing Pending JPH04337110A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10727991A JPH04337110A (en) 1991-05-13 1991-05-13 Magnetic bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10727991A JPH04337110A (en) 1991-05-13 1991-05-13 Magnetic bearing

Publications (1)

Publication Number Publication Date
JPH04337110A true JPH04337110A (en) 1992-11-25

Family

ID=14455047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10727991A Pending JPH04337110A (en) 1991-05-13 1991-05-13 Magnetic bearing

Country Status (1)

Country Link
JP (1) JPH04337110A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109322917A (en) * 2018-11-05 2019-02-12 南京航空航天大学 A kind of radial and axial protection structure of magnetic suspension bearing
CN109322916A (en) * 2018-11-05 2019-02-12 南京航空航天大学 A kind of axial magnetic suspension bearing structure
CN109386546A (en) * 2018-11-05 2019-02-26 南京航空航天大学 Magnetic suspension bearing based on novel thrust disc

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109322917A (en) * 2018-11-05 2019-02-12 南京航空航天大学 A kind of radial and axial protection structure of magnetic suspension bearing
CN109322916A (en) * 2018-11-05 2019-02-12 南京航空航天大学 A kind of axial magnetic suspension bearing structure
CN109386546A (en) * 2018-11-05 2019-02-26 南京航空航天大学 Magnetic suspension bearing based on novel thrust disc

Similar Documents

Publication Publication Date Title
US20080213104A1 (en) Motor
US5783886A (en) Spindle motor having magnetic bearing
KR940011647B1 (en) Synchronous motor
JP2001286116A (en) Noncontact drive motor
JPS6146683B2 (en)
JPH04337110A (en) Magnetic bearing
JP2003009462A (en) Spindle motor
JPH0691717B2 (en) Electric machine
JP2566658Y2 (en) Motor bearing device
JPH09317755A (en) Bearing device and spindle motor for magnetic recorder using this bearing device
JPH11341734A (en) Disk type motor
KR100570539B1 (en) Spindle motor with magnetic thrust bearing and hydrodynamic journal bearing
JPH04219494A (en) Structure of magnetic bearing for high speed rotary vacuum pump
JPH02168835A (en) Spindle motor
JPH0742214Y2 (en) Fluid bearing motor
KR970077917A (en) Magnetic bearing of spindle motor with fixed axis of rotation
JPH03255220A (en) Magnetic bearing device
JPS61277896A (en) Magnetic bearing device of turbo molecular pump
JPS62131736A (en) Motor spindle
JPH0833269A (en) Turbo molecular drag pump
JP2601386Y2 (en) Magnetic fluid bearing
JPH04295262A (en) Spindle structure for disk device
JPH034022A (en) Dynamic pressure bearing structure for motor
JPH0614087Y2 (en) Magnetic bearing device
JPH08130851A (en) Axial gap motor