JPH07236252A - Dynamic-pressure bearing turning gear - Google Patents

Dynamic-pressure bearing turning gear

Info

Publication number
JPH07236252A
JPH07236252A JP2652994A JP2652994A JPH07236252A JP H07236252 A JPH07236252 A JP H07236252A JP 2652994 A JP2652994 A JP 2652994A JP 2652994 A JP2652994 A JP 2652994A JP H07236252 A JPH07236252 A JP H07236252A
Authority
JP
Japan
Prior art keywords
magnet
bearing
shaft
rotary shaft
rotating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2652994A
Other languages
Japanese (ja)
Inventor
Katsuhiko Yamamoto
勝彦 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Home Technology Corp
Original Assignee
Toshiba Home Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Home Technology Corp filed Critical Toshiba Home Technology Corp
Priority to JP2652994A priority Critical patent/JPH07236252A/en
Publication of JPH07236252A publication Critical patent/JPH07236252A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable stable operation at high speed for a prolonged term by forming a spirally formed dynamic-pressure groove to the outer circumferential surface of a shaft while mounting second and third magnets floating the shaft in the thrust direction and pivotally supporting the second and third magnets in a noncontact manner in the radial direction and the thrust direction. CONSTITUTION:A second magnet 29 and a third magnet 33 are constituted so as to be uniformly repulsed on a circumference, and equal clearances are obtained between each magnet 29, 33 both in the thrust direction and the radial direction. When a rotating magnetic field is generated by a first magnet 28 and a winding 33 under the state, a shaft 23 and a rotor section 26 are supported by a bearing 22 and tuned at high speed, and the shaft 23 is held in a noncontact manner in the radial direction to the bearing 22 by air pressure generated by a dynamic-pressure groove 24 at that time. Accordingly, the shaft 23 is floated, and can be operated at high speed without being brought into contact with the bearing 23, and the swing of the shaft 23 and the contact of the shaft 23 and the rotary bearing 22 at the time of start and stoppage can also be prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、動圧溝により回転軸を
ラジアル方向に非接触で軸受する動圧軸受回転装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dynamic pressure bearing rotating device for bearing a rotary shaft in a radial direction in a non-contact manner by a dynamic pressure groove.

【0002】[0002]

【従来の技術】従来、動圧軸受回転装置としては、図7
に示すものが知られている。これは例えば中央部を筒状
にしたハウジング1の中央部に円筒状の軸受2を固定
し、この軸受2内に高速回転する回転軸3を回転自在に
保持している。回転軸3の外周面にはスパイラル状の動
圧溝4を設け、回転軸3が高速回転するとき動圧溝4に
より発生する空気圧により回転軸3が軸受2により非接
触で保持されるようになっている。
2. Description of the Related Art A conventional dynamic pressure bearing rotating device is shown in FIG.
Those shown in are known. For example, a cylindrical bearing 2 is fixed to the central portion of a housing 1 having a cylindrical central portion, and a rotating shaft 3 rotating at high speed is rotatably held in the bearing 2. A spiral dynamic pressure groove 4 is provided on the outer peripheral surface of the rotary shaft 3 so that the rotary shaft 3 is held by the bearing 2 in a non-contact manner by the air pressure generated by the dynamic pressure groove 4 when the rotary shaft 3 rotates at high speed. Has become.

【0003】ハウジング1の下方の開口部を閉塞部材5
で閉塞し、その閉塞部材5の内側にスラスト軸受6を設
け、回転軸3の下端をスラスト軸受6に設けたピボット
7により回転自在に支持している。
The lower opening of the housing 1 is closed by a closing member 5.
The thrust bearing 6 is provided inside the closing member 5, and the lower end of the rotary shaft 3 is rotatably supported by a pivot 7 provided on the thrust bearing 6.

【0004】回転軸3の上端側にはロータ部8が一体に
取付けられている。このロータ部8は円板形状のロータ
ヨーク9の下面にマグネット10を取付け、またロータ
ヨーク9の上部に例えばポリゴンミラー11を取付けて
いる。ハウジング1の上端にプリント回路基板12を取
付け、この基板12の上の前記マグネット10と対向す
る位置に偏平な巻線13を取付けている。
A rotor portion 8 is integrally attached to the upper end side of the rotary shaft 3. In this rotor portion 8, a magnet 10 is attached to the lower surface of a disk-shaped rotor yoke 9, and, for example, a polygon mirror 11 is attached to the upper portion of the rotor yoke 9. A printed circuit board 12 is mounted on the upper end of the housing 1, and a flat winding 13 is mounted on the board 12 at a position facing the magnet 10.

【0005】[0005]

【発明が解決しようとする課題】このような従来装置は
回転軸3のスラスト方向の軸受をピボット7により行っ
ているため、回転軸3とスラスト軸受6がピボット7で
接触摩耗し、長時間の動作に耐えられない問題があっ
た。また、スラスト方向の軸受けが接触方式であるた
め、回転時の軸振動が大きくなる問題があった。さらに
起動時や停止時にロータ部が振れて回転軸3の周面が軸
受2の内周面と接触し摩耗する問題があった。
In such a conventional device, since the bearing in the thrust direction of the rotary shaft 3 is carried out by the pivot 7, the rotary shaft 3 and the thrust bearing 6 are contacted and worn by the pivot 7, and the long time is required. There was a problem that could not stand the operation. Further, since the bearing in the thrust direction is a contact type, there is a problem that the shaft vibration during rotation becomes large. Further, there is a problem that the rotor portion swings at the time of starting or stopping and the peripheral surface of the rotating shaft 3 comes into contact with the inner peripheral surface of the bearing 2 and wears.

【0006】そこで本発明は、ラジアル方向は勿論、ス
ラスト方向に対しても非接触で軸受けすることにり、長
時間にわたって安定した高速回転を維持でき、また、軸
振動を防止でき、さらに、回転軸がラジアル方向の軸受
と接触摩耗するのを防止できる動圧軸受回転装置を提供
する。
Therefore, according to the present invention, bearings are contactless not only in the radial direction but also in the thrust direction, so that stable high-speed rotation can be maintained for a long time, and shaft vibration can be prevented. (EN) Provided is a hydrodynamic bearing rotating device capable of preventing contact wear of a shaft with a radial bearing.

【0007】[0007]

【課題を解決するための手段】本発明は、高速回転する
回転軸と、この回転軸を回転自在に保持し、ラジアル方
向の軸受けを行う軸受と、この軸受を支持するハウジン
グと、回転軸の外周面、又はこの外周面と対向する軸受
の内周面にスパイラル状に形成された動圧溝と、回転軸
に一体に設けられ、その回転軸と共に回転するロータ部
と、このロータ部とハウジングとの対向部の一方に第1
のマグネットを配置すると共に他方に巻線を配置し、ロ
ータ部の回転磁界を発生させる回転磁界発生機構と、ロ
ータ部又は回転軸と軸受の回転軸の外周面に沿った円周
上に互いに反発しあうように同極を対向させて配置した
回転軸をスラスト方向に浮上させる第2、第3のマグネ
ットとを設けたものである。
SUMMARY OF THE INVENTION The present invention is directed to a rotary shaft that rotates at a high speed, a bearing that rotatably holds the rotary shaft and performs radial bearings, a housing that supports the bearing, and a rotary shaft. A dynamic pressure groove formed in a spiral shape on the outer peripheral surface or on the inner peripheral surface of the bearing facing the outer peripheral surface, a rotor portion integrally provided on the rotary shaft, and rotating with the rotary shaft, and the rotor portion and the housing. First on one of the facing parts
Magnets and windings on the other side to generate a rotating magnetic field of the rotor part and a rotating magnetic field generating mechanism that repels each other on the circumference of the rotor part or the rotating shaft and the outer peripheral surface of the rotating shaft of the bearing. The second and third magnets are provided to levitate the rotating shafts with the same poles facing each other so as to face each other in the thrust direction.

【0008】[0008]

【作用】このような構成の本発明においては、回転軸は
第2、第3のマグネットによりスラスト方向に浮上する
とともに軸心の位置出しが行われる。こうしてスラスト
方向の軸受けが非接触で行われる。この状態で回転磁界
発生機構により回転磁界が発生すると回転軸は軸受に支
持されて高速回転する。そのとき動圧溝により発生する
空気圧により回転軸は軸受に対してラジアル方向に非接
触で保持される。こうしてラジアル方向の軸受けも非接
触で行われる。
In the present invention having such a structure, the rotary shaft is floated in the thrust direction by the second and third magnets and the axial center is positioned. In this way, the bearing in the thrust direction is performed without contact. When a rotating magnetic field is generated by the rotating magnetic field generating mechanism in this state, the rotating shaft is supported by bearings and rotates at high speed. At that time, the rotary shaft is held in the radial direction in a non-contact manner with the bearing by the air pressure generated by the dynamic pressure groove. In this way, the radial bearing is also performed without contact.

【0009】[0009]

【実施例】以下、本発明の実施例を図面を参照して説明
する。図1に示すように、中央部を筒状にしたハウジン
グ21の中央部に円筒状の軸受22を固定し、この軸受
22内に高速回転する回転軸23を回転自在に保持して
いる。すなわち、前記軸受22はラジアル方向の軸受と
なっている。
Embodiments of the present invention will be described below with reference to the drawings. As shown in FIG. 1, a cylindrical bearing 22 is fixed to the central portion of a housing 21 having a cylindrical central portion, and a rotating shaft 23 rotating at high speed is rotatably held in the bearing 22. That is, the bearing 22 is a radial bearing.

【0010】前記回転軸23はその外周面にスパイラル
状の動圧溝24を設けている。前記ハウジング21の下
方の開口部は閉塞部材25をネジ止めして閉塞してい
る。、前記回転軸23の上端側にはロータ部26が一体
に取付けられている。このロータ部26は円板形状のロ
ータヨーク27の下面に第1、第2のマグネット28,
29を取付けている。
The rotary shaft 23 is provided with a spiral dynamic pressure groove 24 on its outer peripheral surface. The lower opening of the housing 21 is closed by screwing a closing member 25. A rotor portion 26 is integrally attached to the upper end of the rotary shaft 23. The rotor portion 26 includes a first and second magnets 28, 28
29 is attached.

【0011】前記ロータヨーク27の上部には、例えば
ポリゴンミラー30をネジ止めして取付けている。前記
ハウジング21の上端にプリント回路基板31を取付
け、この基板31の下面の前記第1のマグネット28と
対向する位置に偏平な巻線32を取付けている。前記第
1のマグネット28及び巻線32は回転磁界発生機構を
構成している。
A polygon mirror 30, for example, is attached to the upper portion of the rotor yoke 27 by screwing. A printed circuit board 31 is mounted on the upper end of the housing 21, and a flat winding 32 is mounted on the lower surface of the board 31 at a position facing the first magnet 28. The first magnet 28 and the winding 32 constitute a rotating magnetic field generating mechanism.

【0012】また、前記軸受22の上端の前記第2のマ
グネット29と対向する位置にその第2のマグネット2
9と同極が対向するようにして円板状の第3のマグネッ
ト33を取付けている。すなわち、図2に示すように、
前記軸受22の上端に外周側が短くなる段差部34を円
周に沿って設け、この段差部34に前記第3のマグネッ
ト33をそのマグネット33の上端面が前記回路基板3
1の上端面と面一になるようにして取付けている。
Further, the second magnet 2 is provided at a position facing the second magnet 29 on the upper end of the bearing 22.
A disk-shaped third magnet 33 is attached such that the same poles as 9 face each other. That is, as shown in FIG.
A step portion 34 having a shorter outer peripheral side is provided along the circumference at the upper end of the bearing 22, and the third magnet 33 is provided on the step portion 34 so that the upper end surface of the magnet 33 is the circuit board 3.
It is attached so that it is flush with the upper end surface of 1.

【0013】前記第2のマグネット29はロータヨーク
27と接触する側をS極とし、第3のマグネット33と
対向する側をN極としている。また、前記第3のマグネ
ット33は前記第2のマグネット29と対向する側をN
極とし、反対側をS極としている。前記第2のマグネッ
ト29と第3のマグネット33との間隔は、モータ性能
である騒音、駆動電流等が最適値を示すような間隔に設
定する。また、間隔については前記第2のマグネット2
9及び第3のマグネット33の磁界発生のための有効面
積を変化させて調整する。
The second magnet 29 has an S pole on the side in contact with the rotor yoke 27 and an N pole on the side facing the third magnet 33. The third magnet 33 has an N-side surface facing the second magnet 29.
It is a pole and the opposite side is an S pole. The distance between the second magnet 29 and the third magnet 33 is set so that the noise such as motor performance, the driving current, and the like show optimum values. Regarding the spacing, the second magnet 2
The effective areas for generating the magnetic fields of the ninth and third magnets 33 are changed and adjusted.

【0014】前記巻線32は、図3に示すように、例え
ば6個の偏平な巻線321 〜326を前記回路基板31
に回転軸23を中心とした円周上に位置するするように
して等間隔に配置して構成されている。
As shown in FIG. 3, the winding 32 includes, for example, six flat windings 321 to 326 and the circuit board 31.
In addition, they are arranged at equal intervals so as to be located on the circumference around the rotation shaft 23.

【0015】前記第1、第2のマグネット28,29は
図4に示すように共通の円板状のマグネット部材35で
構成し、第1のマグネット28は、前記巻線32と対応
した円周上にN極とS極を交互に6極配置して構成さ
れ、第2のマグネット29は第1のマグネット28の領
域の内側に円周上すべてをN極として構成されている。
The first and second magnets 28 and 29 are composed of a common disk-shaped magnet member 35 as shown in FIG. 4, and the first magnet 28 has a circumference corresponding to the winding 32. Six N poles and S poles are alternately arranged on the upper side, and the second magnet 29 is formed inside the region of the first magnet 28 with all N poles on the circumference.

【0016】前記マグネット部材35に第1、第2のマ
グネット28,29を形成する着磁方法は、図5に示す
ように、着磁ヨーク36に導線37を得たい向きの磁界
が発生するように巻装し、その着磁ヨーク36の上にマ
グネット部材35を積層し、さらにそのマグネット部材
35の上にバックヨーク38を積層する。そして前記導
線37に図中矢印で示す方向に大きな電流を流して強磁
界を発生させる。これによりマグネット部材35は図4
に示すように着磁されることになる。
As shown in FIG. 5, the magnetizing method for forming the first and second magnets 28 and 29 on the magnet member 35 is such that a magnetic field is generated in the magnetizing yoke 36 in the direction in which the conductor 37 is desired to be obtained. The magnet member 35 is laminated on the magnetizing yoke 36, and the back yoke 38 is further laminated on the magnet member 35. Then, a large current is applied to the conductor 37 in the direction indicated by the arrow in the figure to generate a strong magnetic field. As a result, the magnet member 35 is
It will be magnetized as shown in.

【0017】このような構成の実施例においては、第2
のマグネット29と第3のマグネット33は互いに反発
し合い、しかも円周上において均一に反発し合うので、
スラスト方向及びラジアル方向共に各マグネット29,
33間に均一なクリアランスを得ることができる。
In an embodiment having such a configuration, the second
Since the magnet 29 and the third magnet 33 repel each other, and further repel each other evenly on the circumference,
Each magnet 29 in both the thrust and radial directions
A uniform clearance can be obtained between the 33.

【0018】この状態で第1のマグネット28と巻線3
2により回転磁界が発生すると回転軸23及びロータ部
26は軸受22に支持されて高速回転する。このとき動
圧溝24により発生する空気圧により回転軸23は軸受
22に対してラジアル方向に非接触で保持される。
In this state, the first magnet 28 and the winding 3
When a rotating magnetic field is generated by 2, the rotating shaft 23 and the rotor portion 26 are supported by the bearing 22 and rotate at high speed. At this time, the rotary shaft 23 is held in the radial direction in a non-contact manner with the bearing 22 by the air pressure generated by the dynamic pressure groove 24.

【0019】このように回転軸23は第2のマグネット
29と第3のマグネット33の反発によりスラスト方向
に浮上し、かつ軸心位置出しが行われる。従って、回転
軸23が軸受と接触することなく高速回転ができ、ま
た、回転軸23の振れや起動、停止時の回転軸23と軸
受22との接触も生じることがないので、長時間にわた
って安定した高速回転を維持することができ、また長寿
命化を図ることができる。
As described above, the rotary shaft 23 is floated in the thrust direction by the repulsion of the second magnet 29 and the third magnet 33, and the axial center is positioned. Therefore, the rotary shaft 23 can rotate at high speed without contacting the bearing, and the run-out of the rotary shaft 23 and the contact between the rotary shaft 23 and the bearing 22 at the time of starting and stopping do not occur, and thus stable for a long time. The high-speed rotation can be maintained and the life can be extended.

【0020】また、回転軸23が軸受と接触することが
ないので、軸振動の発生を極力防止でき、軸振動を充分
に小さくできる。さらに、回転軸23は軸受22に対し
ても非接触で回転するので、回転軸23と軸受22との
接触摩耗も防止できる。
Further, since the rotary shaft 23 does not come into contact with the bearing, the occurrence of shaft vibration can be prevented as much as possible, and the shaft vibration can be sufficiently reduced. Further, since the rotary shaft 23 also rotates without contact with the bearing 22, contact wear between the rotary shaft 23 and the bearing 22 can be prevented.

【0021】なお、第1のマグネット28及び第2のマ
グネット29の着磁形状は前記実施例のものに限定され
るものではなく、図6に示すような形状であっても良
い。なお、前記実施例では第1のマグネット28と第2
のマグネット29を共通のマグネット部材35で構成し
たものについて述べたが必ずしもこれに限定されるもの
ではなく、第1のマグネット28と第2のマグネット2
9を別々のマグネット部材で構成したものであってもよ
い。
The magnetized shapes of the first magnet 28 and the second magnet 29 are not limited to those in the above embodiment, and may be the shapes shown in FIG. In the above embodiment, the first magnet 28 and the second magnet 28
Although the magnet 29 of the above is configured by the common magnet member 35, the present invention is not necessarily limited to this, and the first magnet 28 and the second magnet 2 are not limited thereto.
9 may be composed of separate magnet members.

【0022】また、前記実施例では動圧溝24を回転軸
23の外周面に形成したものについて述べたが必ずしも
これに限定されるものではなく、軸受22の内周面に形
成したものであってもよい。
In the above embodiment, the dynamic pressure groove 24 is formed on the outer peripheral surface of the rotary shaft 23. However, the present invention is not limited to this, and it is formed on the inner peripheral surface of the bearing 22. May be.

【0023】さらに、前記実施例では第2のマグネット
29をロータヨーク27に取付けたが、必ずしもこれに
限定されるものではなく、第2のマグネット29を回転
軸23の外周面に取付けてもよい。
Further, although the second magnet 29 is attached to the rotor yoke 27 in the above embodiment, the present invention is not limited to this, and the second magnet 29 may be attached to the outer peripheral surface of the rotary shaft 23.

【0024】[0024]

【発明の効果】以上詳述したように本発明によれば、ラ
ジアル方向は勿論、スラスト方向に対しても非接触で軸
受けできるので、長時間にわたって安定した高速回転を
維持でき、また、軸振動を防止でき、さらに、回転軸が
ラジアル方向の軸受と接触摩耗するのを防止できる動圧
軸受回転装置を提供できる。
As described in detail above, according to the present invention, since the bearing can be contacted not only in the radial direction but also in the thrust direction, stable high speed rotation can be maintained for a long time, and the shaft vibration can be maintained. It is possible to provide a dynamic pressure bearing rotating device capable of preventing the above-mentioned problem and preventing the rotating shaft from contacting and wearing the bearing in the radial direction.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示す断面図。FIG. 1 is a sectional view showing an embodiment of the present invention.

【図2】同実施例の要部構成を拡大して示す部分断面
図、
FIG. 2 is a partial cross-sectional view showing an enlarged main part configuration of the embodiment,

【図3】同実施例の巻線の構成を示す図。FIG. 3 is a diagram showing a configuration of a winding wire of the embodiment.

【図4】同実施例の第1、第2のマグネットの構成例を
示す図。
FIG. 4 is a diagram showing a configuration example of first and second magnets of the same embodiment.

【図5】同実施例の第1、第2のマグネットを得るため
の着磁方法を示す図。
FIG. 5 is a diagram showing a magnetizing method for obtaining the first and second magnets of the same embodiment.

【図6】同実施例の第1、第2のマグネットの他の構成
例を示す図。
FIG. 6 is a diagram showing another configuration example of the first and second magnets of the same embodiment.

【図7】従来例を示す断面図。FIG. 7 is a sectional view showing a conventional example.

【符号の説明】[Explanation of symbols]

21…ハウジング 22…軸受 23…回転軸 24…動圧溝 26…ロータ部 28…第1のマグネット 29…第2のマグネット 32…巻線 33…第3のマグネット 21 ... Housing 22 ... Bearing 23 ... Rotating shaft 24 ... Dynamic pressure groove 26 ... Rotor part 28 ... First magnet 29 ... Second magnet 32 ... Winding 33 ... Third magnet

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 高速回転する回転軸と、この回転軸を回
転自在に保持し、ラジアル方向の軸受けを行う軸受と、
この軸受を支持するハウジングと、前記回転軸の外周
面、又はこの外周面と対向する前記軸受の内周面にスパ
イラル状に形成された動圧溝と、前記回転軸に一体に設
けられ、その回転軸と共に回転するロータ部と、このロ
ータ部と前記ハウジングとの対向部の一方に第1のマグ
ネットを配置すると共に他方に巻線を配置し、前記ロー
タ部の回転磁界を発生させる回転磁界発生機構と、前記
ロータ部又は前記回転軸と前記軸受の前記回転軸の外周
面に沿った円周上に互いに反発しあうように同極を対向
させて配置した前記回転軸をスラスト方向に浮上させる
第2、第3のマグネットとを設けたことを特徴とする動
圧軸受回転装置。
1. A rotary shaft that rotates at high speed, and a bearing that rotatably holds the rotary shaft and performs radial bearings.
A housing supporting the bearing, a dynamic pressure groove formed in a spiral shape on the outer peripheral surface of the rotating shaft, or on the inner peripheral surface of the bearing facing the outer peripheral surface, and integrally provided on the rotating shaft. Rotating magnetic field generation for generating a rotating magnetic field of the rotor part by arranging a rotor part rotating with a rotating shaft and a first magnet in one of the facing parts of the rotor part and the housing and a winding in the other part. The mechanism and the rotor shaft having the same poles facing each other so as to repel each other on the circumference of the rotor portion or the rotary shaft and the outer circumferential surface of the rotary shaft of the bearing are levitated in the thrust direction. A hydrodynamic bearing rotation device comprising a second magnet and a third magnet.
JP2652994A 1994-02-24 1994-02-24 Dynamic-pressure bearing turning gear Pending JPH07236252A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2652994A JPH07236252A (en) 1994-02-24 1994-02-24 Dynamic-pressure bearing turning gear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2652994A JPH07236252A (en) 1994-02-24 1994-02-24 Dynamic-pressure bearing turning gear

Publications (1)

Publication Number Publication Date
JPH07236252A true JPH07236252A (en) 1995-09-05

Family

ID=12196017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2652994A Pending JPH07236252A (en) 1994-02-24 1994-02-24 Dynamic-pressure bearing turning gear

Country Status (1)

Country Link
JP (1) JPH07236252A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000324755A (en) * 1999-04-28 2000-11-24 Matsushita Electric Ind Co Ltd Rotary device, and processor equipped therewith
CN101979978A (en) * 2010-11-16 2011-02-23 北京航空航天大学 Electromagnetic force calibrating device for micro impulse test

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000324755A (en) * 1999-04-28 2000-11-24 Matsushita Electric Ind Co Ltd Rotary device, and processor equipped therewith
CN101979978A (en) * 2010-11-16 2011-02-23 北京航空航天大学 Electromagnetic force calibrating device for micro impulse test

Similar Documents

Publication Publication Date Title
CN101277052A (en) Motor
JPH09133133A (en) Thrust magnetic bearing device
JP3820479B2 (en) Flywheel equipment
US6710493B2 (en) Dynamo-electric machine having tapered magnets secured to yoke
JPH07236252A (en) Dynamic-pressure bearing turning gear
JP2006217744A (en) Bearing structure of motor using permanent magnet
JP2001016820A (en) Attachment structure for rotational shaft of dynamo- electric machine
JP3611414B2 (en) Motor bearing structure
JPS61294218A (en) Fluid bearing device
JPH11341734A (en) Disk type motor
JPH1155918A (en) Spindle motor, and rotating apparatus adopting spindle motor
JP4427828B2 (en) Magnetic bearing
JPH0638442A (en) Motor
KR200144413Y1 (en) Permanent Magnet Synchronous Motor
KR0144947B1 (en) Motor structure
JPH08149775A (en) Spindle unit
JPS576549A (en) Induction motor
JPH08308171A (en) Induction motor
KR100360485B1 (en) Magnetic bearing device in axial direction
JPH0416014Y2 (en)
JP2978212B2 (en) motor
JPH1175342A (en) Flat coreless vibrating motor with increased shift of center of gravity
JPH05115163A (en) Outer rotor type electric rotating machine
JPH0222063U (en)
JPH11341737A (en) Dynamic pressure bearing device for fan motor