JP3820479B2 - Flywheel equipment - Google Patents

Flywheel equipment Download PDF

Info

Publication number
JP3820479B2
JP3820479B2 JP11456796A JP11456796A JP3820479B2 JP 3820479 B2 JP3820479 B2 JP 3820479B2 JP 11456796 A JP11456796 A JP 11456796A JP 11456796 A JP11456796 A JP 11456796A JP 3820479 B2 JP3820479 B2 JP 3820479B2
Authority
JP
Japan
Prior art keywords
flywheel
axial
magnetic bearing
magnetic
rotating shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11456796A
Other languages
Japanese (ja)
Other versions
JPH09308185A (en
Inventor
拓知 上山
学 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP11456796A priority Critical patent/JP3820479B2/en
Publication of JPH09308185A publication Critical patent/JPH09308185A/en
Application granted granted Critical
Publication of JP3820479B2 publication Critical patent/JP3820479B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0474Active magnetic bearings for rotary movement
    • F16C32/0489Active magnetic bearings for rotary movement with active support of five degrees of freedom, e.g. two radial magnetic bearings combined with an axial bearing
    • F16C32/0491Active magnetic bearings for rotary movement with active support of five degrees of freedom, e.g. two radial magnetic bearings combined with an axial bearing with electromagnets acting in axial and radial direction, e.g. with conical magnets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0459Details of the magnetic circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0474Active magnetic bearings for rotary movement
    • F16C32/0493Active magnetic bearings for rotary movement integrated in an electrodynamic machine, e.g. self-bearing motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2361/00Apparatus or articles in engineering in general
    • F16C2361/55Flywheel systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、余剰電力をフライホイールの回転運動エネルギに変換して貯蔵する電力貯蔵装置などに使用されるフライホイール装置に関する。
【0002】
【従来の技術および発明が解決しようとする課題】
この種のフライホイール装置として、従来、フライホイールが設けられた鉛直回転軸をその周囲に配置された上下2組のラジアル磁気軸受と1組のアキシアル磁気軸受で非接触支持し、電動機で回転軸を回転駆動するものが知られている。
【0003】
このような従来のフライホイール装置では、各ラジアル磁気軸受は回転軸を互いに直交する2つのラジアル方向から挟むように配置された2対(4個)の電磁石を備え、アキシアル磁気軸受は回転体のフランジ部をアキシアル方向から挟むように配置された1対(2個)の電磁石を備えている。したがって、装置全体で10個の電磁石が必要であり、電磁石による消費電力が大きいという問題がある。また、回転軸の周囲に電動機と3組の磁気軸受をアキシアル方向に並べて配置する必要があるので、回転軸が長くなる。そのため、回転軸の重量が大きくなるとともに、固有振動数が低くなり、高速回転が困難になるという問題がある。
【0005】
この発明の目的は、上記の問題を解決し、電磁石による消費電力を小さくするとともに、回転軸あるいは回転体を短くすることができ、回転軸あるいは回転体が長くなることによる問題を解消できるフライホイール装置を提供することにある。
【0006】
【課題を解決するための手段および発明の効果】
この発明によるフライホイール装置は、軸方向中間部にフライホイールが設けられた鉛直回転軸を複数組の磁気軸受により非接触支持するフライホイール装置において、前記フライホイールに関し前記回転軸の外周の上下2箇所に、軸方向中間部から軸端方向に向かって先細のテーパ状の軸受面が形成され、前記各軸受面の周囲の固定部分に、円周方向に所定の間隔をおいて配置された3個の電磁石を備えたアキシアル・ラジアル兼用磁気軸受がそれぞれ設けられ、前記各磁気軸受が、共通の磁極に吸引コイルとモータコイルが巻かれたモータ一体型磁気軸受であることを特徴とするものである。
【0007】
回転軸は、テーパ状の軸受面の周囲に設けられた上下2組のアキシアル・ラジアル兼用磁気軸受により非接触支持される。したがって、3組の磁気軸受が設けられていた従来のフライホイール装置に比べ、磁気軸受の数が1組少なくてすむ。しかも、各磁気軸受は3個の電磁石からなる3極構造のものであるから、電磁石の数は6個で、10個の電磁石が設けられていた従来のフライホイール装置に比べ、4個少なくてすむ。このため、電磁石による消費電力を小さくすることができる。さらに、各磁気軸受が共通の磁極に吸引コイルとモータコイルが巻かれたモータ一体型磁気軸受であるから、電動機用の磁極を別に設ける必要がない。そして、このように回転軸の周囲に電動機用の磁極を別に設ける必要がなく、しかも上記のように回転軸の周囲に設けられる磁気軸受が1組少なくてすむため、回転軸を従来のものより短くすることができる。したがって、回転軸の重量を小さくするとともに、固有振動数を高くすることができ、高速回転が可能になる。
【0008】
たとえば、前記フライホイールのアキシアル方向端面とこれに対向する固定部分との間に、前記回転軸の重量の少なくとも一部を支持するアキシアル補助磁気軸受が設けられている。その場合、好ましくは、前記アキシアル補助磁気軸受が、前記フライホイールの下端面に設けられた永久磁石と、この永久磁石と反発するように前記固定部分に設けられた永久磁石とを備えている。
【0009】
回転体のアキシアル方向の位置の制御はアキシアル・ラジアル磁気軸受を制御することにより行うことができるので、アキシアル補助軸受は回転軸の重量の少なくとも一部を支持するだけのものでよい。そして、アキシアル補助軸受により回転軸の重量の少なくとも一部が支持されるので、アキシアル・ラジアル兼用磁気軸受の電磁石による消費電力がさらに小さくてすむ。アキシアル補助磁気軸受を電磁石により構成する場合でも、回転軸の重量を支持するだけでよいので、電磁石に一定の励磁電流を流しておくだけでよく、したがって、アキシアル補助磁気軸受の電磁石による消費電力の増加は小さくてすむ。また、フライホイールの端面と固定部分の対向面とに電磁石を設けるだけでよく、これによる回転軸の長さの増加は小さくてすむ。アキシアル補助磁気軸受が永久磁石の反発力により回転軸の重量を支持するものである場合、アキシアル補助磁気軸受による消費電力の増加は全くなく、上記同様、フライホイールの下端面と固定部分の対向面とに永久磁石を設けるだけでよく、これによる回転軸の長さの増加は小さくてすむ。
【0010】
たとえば、前記アキシアル・ラジアル兼用磁気軸受が、前記吸引コイルを位置検出用のコイルとして共用するセンサレス磁気軸受である
【0012】
【発明の実施の形態】
以下、図面を参照して、この発明のいくつかの実施形態について説明する。
【0013】
図1〜図3は、この発明をインナーロータ型のフライホイール装置に適用した実施形態(第1実施形態)を示している。
【0014】
図1に示すように、フライホイール装置は、ハウジング(固定部分)(1) と、その内側に配置された鉛直回転軸(2) とを備えている。回転軸(2) の外周の上下方向(アキシアル方向)のほぼ中央部に、フライホイール(3) が形成されている。回転軸(2) のフライホイール(3) より上側の外周に斜め上方を向く先細テーパ面が形成され、その下側半分以上の大径の部分がロータ部を兼ねる軸受面(上側軸受面)(4) 、上端近傍の小径の部分が被検出面(上側被検出面)(5) となっている。上側軸受面(4) に対向するハウジング(1) の内周部分にアキシアル・ラジアル兼用磁気軸受(上側磁気軸受)(6) が、上側被検出面(5) に対向するハウジング(1) の内周部分に位置センサユニット(上側センサユニット)(7) が設けられている。回転軸(2) のフライホイール(3) より下側の外周に、同様に、アキシアル方向に関して上側軸受面(4) と反対側を向くロータ部を兼ねる軸受面(下側軸受面)(8) および被検出面(9) が形成され、これらにそれぞれ対向するハウジング(1) の内周部分にアキシアル・ラジアル兼用磁気軸受(下側磁気軸受)(10)および位置センサユニット(下側センサユニット)(11)が設けられている。フライホイール(3) の下端面とこれに対向するハウジング(1) の上向き環状面(12)との間に、アキシアル補助磁気軸受(13)が設けられている。回転軸(2) の上端部および下端部の外周に環状溝(14)(15)が形成され、これらに対応するハウジング(1) の内周にタッチダウン軸受(16)(17)が設けられている。
【0015】
上側磁気軸受(6) は3組の吸引用電磁石(18)よりなる3極構造のものであり、その詳細が図2に示されている。これらの電磁石(18)は、ハウジング(1) の内周に設けられた1つの環状ステータ部(19)に円周方向に等間隔(120度間隔)をおいて一体状に形成されている。ステータ部(19)の内周に、ラジアル方向内側に突出した6つの磁極(18a) が円周方向に等間隔(60度間隔)をおいて一体に形成されている。各磁極(18a) の吸引面(18b) は、軸受面(4) に対応するテーパ面になっている。隣り合う2つの磁極(18a) が1組の電磁石(18)を構成しており、各組の電磁石(18)の2つの磁極(18a) の先端側の部分に共通の吸引コイル(20)が巻かれている。また、磁気軸受(6) は回転軸(2) を回転駆動する電動駆動機能を有するモータ一体型磁気軸受であり、6つの磁極(18a) の基端側の部分にモータコイル(21)が巻かれている。
【0016】
下側磁気軸受(10)は上側磁気軸受(6) と同じ構成のものであり、対応する部分に同一の符号を付している。
【0017】
上側センサユニット(7) は、図3に詳細に示すように、互いに直交する2つのラジアル方向外側から回転軸(2) の被検出面(5) を挟むように配置された2対(4個)の位置センサ(22)を備えている。各位置センサ(22)の検出面(22a) は、被検出面(5) に対応するテーパ面になっている。
【0018】
下側センサユニット(11)は上側センサユニット(7) と同じ構成のものであり、対応する部分に同一の符号を付している。
【0019】
アキシアル補助磁気軸受(13)は、フライホイール(3) の下端面に設けられた環状の永久磁石(23)と、これに対向するようにハウジング(1) の環状面(12)に設けられた環状の永久磁石(24)とからなり、これらが互いに反発するようになっている。
【0020】
各電磁石(18)の吸引コイル(20)、各磁極(18a) のモータコイル(21)および位置センサ(22)は、図示しない制御装置に接続されており、制御装置が、モータコイル(21)に交流電流(駆動電流)を供給するとともに、位置センサ(22)の出力信号に基づいて吸引コイル(20)に供給する直流電流(励磁電流)を制御するようになっている。
【0021】
上記のフライホイール装置において、補助磁気軸受(13)の永久磁石(23)(24)の磁気反発力により、回転軸(2) の重量の少なくとも一部、好ましくはほぼ全体が支持される。制御装置から吸引コイル(20)に直流電流を供給することにより、電磁石(18)がテーパ状の軸受面(4)(8)を吸引し、回転軸(2) がアキシアル方向およびラジアル方向に非接触支持される。制御装置からモータコイル(21)に交流電流を供給することにより、ステータ部(19)に回転磁界が発生して、回転軸(2) が回転駆動され、この交流電流の大きさおよび周波数を制御することにより、回転軸(2) の回転駆動力および回転速度が制御される。各位置センサ(22)は、自身の検出面(22a) と対向する被検出面(5)(9)との空隙の大きさに対応した信号をそれぞれ出力する。そして、制御装置において、位置センサ(22)の出力信号を演算処理することにより、回転軸(2) のアキシアル方向およびラジアル方向の位置が検出され、この検出結果に基づいて吸引コイル(20)に供給する直流電流を制御することにより、回転軸(2) のアキシアル方向およびラジアル方向の位置が制御される。
【0022】
第1実施形態の場合、位置センサユニット(7)(11) は4個の位置センサ(22)を用いて回転軸(2) の位置を検出しているが、磁気軸受(6)(10) の電磁石(18)と同様に配置された3個の位置センサを用いて回転軸(2) の位置を検出することもできる。
【0023】
図4は、この発明をインナーロータ型のフライホイール装置に適用した他の実施形態(第2実施形態)を示している。第2実施形態は、上記の第1実施形態から上下の位置センサユニット(7)(11) を除いたものであり、対応する部分には同一の符号を付している。
【0024】
第2実施形態の場合、磁気軸受(6)(10) は、回転軸(2) を非接触支持するための電磁石(18)の吸引コイル(20)を回転軸(2) の位置検出用のコイルとして共用するいわゆるセンサレス磁気軸受となっている。そして、制御装置が、吸引コイル(20)に流れる励磁電流の変化に基づいて回転軸(2) のアキシアル方向およびラジアル方向の位置を検出するようになっている。他は、第1実施形態の場合と同様である。
【0025】
第1および第2実施形態の場合、補助磁気軸受(13)は永久磁石(23)(24)の反発力により回転軸(2) の重量を支持するようになっているが、フライホイール(3) の上端面とこれに対向するハウジング(1) の下向き環状面とに設けた永久磁石の吸引力により回転軸(2) の重量を支持するものであってもよい。また、永久磁石(23)(24)のかわりに電磁石を設けて、電磁石の反発力あるいは吸引力によって回転軸(2) の重量を支持するようにしてもよい。場合によっては、アキシアル補助磁気軸受が設けられないこともある。
【0038】
フライホイール装置の各部の構成は、上記実施形態のものに限らず、適宜変更可能である。
【図面の簡単な説明】
【図1】 図1は、この発明の第1実施形態を示すフライホイール装置の縦断面図である。
【図2】 図2は、図1のII−II線の断面図である。
【図3】 図3は、図1のIII−III線の断面図である。
【図4】 図4は、この発明の第2実施形態を示すフライホイール装置の縦断面図である
【符号の説明】
(1) ハウジング(固定部分)
(2) 回転軸
(3) フライホイール
(4)(8) 軸受面
(6)(10) アキシアル・ラジアル磁気軸受
(13) アキシアル補助磁気軸受
(18) 電磁石
(23)(24) 永久磁石
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a flywheel device used in a power storage device that converts surplus power into rotational kinetic energy of a flywheel and stores it.
[0002]
[Background Art and Problems to be Solved by the Invention]
As a flywheel device of this type, conventionally, a vertical rotating shaft provided with a flywheel is supported in a non-contact manner by two sets of upper and lower radial magnetic bearings and one set of axial magnetic bearings arranged around it, and the rotating shaft is driven by an electric motor. There is known one that rotationally drives the motor.
[0003]
In such a conventional flywheel device, each radial magnetic bearing is provided with two pairs (four) of electromagnets arranged so as to sandwich the rotating shaft from two radial directions orthogonal to each other, and the axial magnetic bearing is a rotating body. A pair of (two) electromagnets arranged so as to sandwich the flange portion from the axial direction are provided. Therefore, ten electromagnets are required for the entire apparatus, and there is a problem that power consumption by the electromagnets is large. Moreover, since it is necessary to arrange | position an electric motor and three sets of magnetic bearings along an axial direction around a rotating shaft, a rotating shaft becomes long. For this reason, there is a problem that the weight of the rotating shaft increases, the natural frequency decreases, and high-speed rotation becomes difficult.
[0005]
An object of the present invention is a flywheel that solves the above problems, reduces the power consumption by the electromagnet, shortens the rotating shaft or the rotating body, and eliminates the problem caused by the length of the rotating shaft or the rotating body. To provide an apparatus.
[0006]
[Means for Solving the Problems and Effects of the Invention]
The flywheel device according to the present invention is a flywheel device in which a vertical rotation shaft provided with a flywheel at an intermediate portion in the axial direction is supported in a non-contact manner by a plurality of sets of magnetic bearings. A tapered tapered bearing surface is formed at a location from the axially intermediate portion toward the axial end direction, and is arranged at a predetermined interval in the circumferential direction at a fixed portion around each bearing surface. Axial / radial combined magnetic bearings each having an electromagnet are provided, and each magnetic bearing is a motor-integrated magnetic bearing in which a suction coil and a motor coil are wound around a common magnetic pole. is there.
[0007]
The rotary shaft is supported in a non-contact manner by two sets of upper and lower axial / radial magnetic bearings provided around the tapered bearing surface. Accordingly, the number of magnetic bearings can be reduced by one compared to the conventional flywheel device in which three sets of magnetic bearings are provided. Moreover, since each magnetic bearing has a three-pole structure composed of three electromagnets, the number of electromagnets is six, which is four less than the conventional flywheel device provided with ten electromagnets. I'm sorry. For this reason, the power consumption by an electromagnet can be made small. Furthermore, since each magnetic bearing is a motor-integrated magnetic bearing in which a suction coil and a motor coil are wound around a common magnetic pole, there is no need to provide a separate magnetic pole for the electric motor. In addition, it is not necessary to separately provide a magnetic pole for the motor around the rotating shaft as described above, and the number of magnetic bearings provided around the rotating shaft can be reduced as described above. Can be shortened. Therefore, the weight of the rotating shaft can be reduced, the natural frequency can be increased, and high-speed rotation is possible.
[0008]
For example, an axial auxiliary magnetic bearing that supports at least a part of the weight of the rotary shaft is provided between the axial end face of the flywheel and a fixed portion facing the axial end face. In that case, preferably, the axial auxiliary magnetic bearing includes a permanent magnet provided on a lower end surface of the flywheel and a permanent magnet provided on the fixed portion so as to repel the permanent magnet.
[0009]
Since the axial position of the rotating body can be controlled by controlling the axial and radial magnetic bearings, the axial auxiliary bearing only needs to support at least part of the weight of the rotating shaft. Since at least a part of the weight of the rotary shaft is supported by the axial auxiliary bearing, the power consumption by the electromagnet of the axial / radial combined magnetic bearing can be further reduced. Even when the axial auxiliary magnetic bearing is composed of an electromagnet, it is only necessary to support the weight of the rotating shaft, and therefore, it is only necessary to pass a constant excitation current through the electromagnet. Therefore, the power consumption by the electromagnet of the axial auxiliary magnetic bearing is reduced. The increase is small. Moreover, it is only necessary to provide electromagnets on the end face of the flywheel and the opposing surface of the fixed part, and the increase in the length of the rotating shaft due to this is small. When the axial auxiliary magnetic bearing supports the weight of the rotating shaft by the repulsive force of the permanent magnet, there is no increase in power consumption due to the axial auxiliary magnetic bearing. It is only necessary to provide a permanent magnet, and the increase in the length of the rotating shaft due to this is small.
[0010]
For example, the axial / radial combined magnetic bearing is a sensorless magnetic bearing sharing the suction coil as a position detection coil .
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Several embodiments of the present invention will be described below with reference to the drawings.
[0013]
1 to 3 show an embodiment (first embodiment) in which the present invention is applied to an inner rotor type flywheel device.
[0014]
As shown in FIG. 1, the flywheel device includes a housing (fixed portion) (1) and a vertical rotation shaft (2) disposed inside thereof. A flywheel (3) is formed at substantially the center in the vertical direction (axial direction) of the outer periphery of the rotating shaft (2). A tapered surface that faces diagonally upward is formed on the outer periphery above the flywheel (3) of the rotating shaft (2), and a bearing surface (upper bearing surface) in which the large-diameter portion of the lower half or more also serves as the rotor part ( 4) The small diameter part near the upper end is the detected surface (upper detected surface) (5). An axial / radial combined magnetic bearing (upper magnetic bearing) (6) is placed on the inner peripheral part of the housing (1) facing the upper bearing surface (4), and the inner surface of the housing (1) facing the upper detected surface (5). A position sensor unit (upper sensor unit) (7) is provided around the circumference. On the outer periphery below the flywheel (3) of the rotating shaft (2), the bearing surface (lower bearing surface) that also serves as the rotor facing the upper bearing surface (4) opposite to the axial direction (8) And a detected surface (9) are formed, and axial and radial combined magnetic bearings (lower magnetic bearing) (10) and a position sensor unit (lower sensor unit) are formed on the inner peripheral portion of the housing (1) facing each other. (11) is provided. An axial auxiliary magnetic bearing (13) is provided between the lower end surface of the flywheel (3) and the upward annular surface (12) of the housing (1) facing the flywheel (3). Annular grooves (14), (15) are formed on the outer periphery of the upper end and lower end of the rotating shaft (2), and touchdown bearings (16), (17) are provided on the inner periphery of the housing (1) corresponding thereto. ing.
[0015]
The upper magnetic bearing (6) has a three-pole structure composed of three sets of attracting electromagnets (18), the details of which are shown in FIG. These electromagnets (18) are formed integrally with one annular stator portion (19) provided on the inner periphery of the housing (1) at equal intervals (120 degree intervals) in the circumferential direction. Six magnetic poles (18a) protruding radially inward are integrally formed on the inner circumference of the stator portion (19) at equal intervals (60-degree intervals) in the circumferential direction. The suction surface (18b) of each magnetic pole (18a) is a tapered surface corresponding to the bearing surface (4). Two adjacent magnetic poles (18a) constitute a set of electromagnets (18), and a common attraction coil (20) is provided at the tip of the two magnetic poles (18a) of each set of electromagnets (18). It is rolled up. The magnetic bearing (6) is a motor-integrated magnetic bearing having an electric drive function for rotationally driving the rotating shaft (2), and a motor coil (21) is wound around the proximal end portion of the six magnetic poles (18a). It has been.
[0016]
The lower magnetic bearing (10) has the same configuration as the upper magnetic bearing (6), and the corresponding parts are denoted by the same reference numerals.
[0017]
As shown in detail in FIG. 3, the upper sensor unit (7) has two pairs (four pieces) arranged so as to sandwich the detected surface (5) of the rotating shaft (2) from the two radially outer sides orthogonal to each other. ) Position sensor (22). The detection surface (22a) of each position sensor (22) is a tapered surface corresponding to the detected surface (5).
[0018]
The lower sensor unit (11) has the same configuration as that of the upper sensor unit (7), and corresponding parts are denoted by the same reference numerals.
[0019]
The axial auxiliary magnetic bearing (13) is provided on the annular permanent magnet (23) provided on the lower end surface of the flywheel (3), and on the annular surface (12) of the housing (1) so as to be opposed thereto. It consists of an annular permanent magnet (24), and these repel each other.
[0020]
The attraction coil (20) of each electromagnet (18), the motor coil (21) of each magnetic pole (18a), and the position sensor (22) are connected to a control device (not shown), and the control device is connected to the motor coil (21). An alternating current (driving current) is supplied to the power source, and a direct current (excitation current) supplied to the suction coil (20) is controlled based on an output signal of the position sensor (22).
[0021]
In the above flywheel device, at least a part of the weight of the rotating shaft (2), preferably substantially the whole, is supported by the magnetic repulsive force of the permanent magnets (23) and (24) of the auxiliary magnetic bearing (13). By supplying a direct current from the controller to the suction coil (20), the electromagnet (18) attracts the tapered bearing surfaces (4) and (8), and the rotating shaft (2) is not axially or radially non-rotated. Contact supported. By supplying alternating current from the control device to the motor coil (21), a rotating magnetic field is generated in the stator section (19) and the rotating shaft (2) is driven to rotate, and the magnitude and frequency of this alternating current are controlled. By doing so, the rotational driving force and rotational speed of the rotating shaft (2) are controlled. Each position sensor (22) outputs a signal corresponding to the size of the gap between the detection surface (5) and (9) facing the detection surface (22a) thereof. Then, the control device detects the position of the rotary shaft (2) in the axial direction and the radial direction by calculating the output signal of the position sensor (22), and based on the detection result, the suction coil (20) By controlling the supplied direct current, the position of the rotating shaft (2) in the axial direction and the radial direction is controlled.
[0022]
In the case of the first embodiment, the position sensor units (7) and (11) detect the position of the rotating shaft (2) using four position sensors (22), but the magnetic bearings (6) (10) The position of the rotary shaft (2) can also be detected using three position sensors arranged in the same manner as the electromagnet (18).
[0023]
FIG. 4 shows another embodiment (second embodiment) in which the present invention is applied to an inner rotor type flywheel device. The second embodiment is obtained by removing the upper and lower position sensor units (7) and (11) from the first embodiment, and corresponding portions are denoted by the same reference numerals.
[0024]
In the case of the second embodiment, the magnetic bearings (6) and (10) are used to detect the position of the rotating shaft (2) by using the attracting coil (20) of the electromagnet (18) for non-contact support of the rotating shaft (2). This is a so-called sensorless magnetic bearing shared as a coil. And a control apparatus detects the position of the axial direction of a rotating shaft (2) and a radial direction based on the change of the exciting current which flows into an attraction coil (20). Others are the same as those in the first embodiment.
[0025]
In the case of the first and second embodiments, the auxiliary magnetic bearing (13) supports the weight of the rotating shaft (2) by the repulsive force of the permanent magnets (23) and (24). ) And the weight of the rotating shaft (2) may be supported by the attractive force of a permanent magnet provided on the lower annular surface of the housing (1) facing the upper end surface. Further, an electromagnet may be provided instead of the permanent magnets (23) and (24), and the weight of the rotating shaft (2) may be supported by the repulsive force or attractive force of the electromagnet. In some cases, an axial auxiliary magnetic bearing may not be provided.
[0038]
The configuration of each part of the flywheel device is not limited to that of the above embodiment, and can be changed as appropriate.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a flywheel device showing a first embodiment of the present invention.
FIG. 2 is a sectional view taken along line II-II in FIG.
3 is a cross-sectional view taken along line III-III in FIG.
FIG. 4 is a longitudinal sectional view of a flywheel device showing a second embodiment of the present invention .
[Explanation of symbols]
(1) Housing (fixed part)
(2) Rotating shaft
(3) Flywheel
(4) (8) Bearing surface
(6) (10) Axial / radial magnetic bearings
(13) Axial auxiliary magnetic bearing
(18) Electromagnet
(23) (24) Permanent magnet

Claims (4)

軸方向中間部にフライホイールが設けられた鉛直回転軸を複数組の磁気軸受により非接触支持するフライホイール装置において、
前記フライホイールに関し前記回転軸の外周の上下2箇所に、軸方向中間部から軸端方向に向かって先細のテーパ状の軸受面が形成され、前記各軸受面の周囲の固定部分に、円周方向に所定の間隔をおいて配置された3個の電磁石を備えたアキシアル・ラジアル兼用磁気軸受がそれぞれ設けられ、前記各磁気軸受が、共通の磁極に吸引コイルとモータコイルが巻かれたモータ一体型磁気軸受であることを特徴とするフライホイール装置。
In a flywheel device that supports a vertical rotation shaft provided with a flywheel in an axially intermediate portion in a non-contact manner by a plurality of sets of magnetic bearings,
Tapered bearing surfaces that are tapered from the middle in the axial direction toward the end of the shaft are formed at two locations above and below the outer periphery of the rotary shaft with respect to the flywheel. Axial and radial magnetic bearings each having three electromagnets arranged at predetermined intervals in the direction are provided, and each of the magnetic bearings has a common magnetic pole wound with a suction coil and a motor coil. A flywheel device characterized by being a body-type magnetic bearing.
前記フライホイールのアキシアル方向端面とこれに対向する固定部分との間に、前記回転軸の重量の少なくとも一部を支持するアキシアル補助磁気軸受が設けられていることを特徴とする請求項1のフライホイール装置。  2. The fly according to claim 1, wherein an axial auxiliary magnetic bearing that supports at least a part of the weight of the rotary shaft is provided between an axial end face of the flywheel and a fixed portion facing the axial end face. Wheel device. 前記アキシアル補助磁気軸受が、前記フライホイールの下端面に設けられた永久磁石と、この永久磁石と反発するように前記固定部分に設けられた永久磁石とを備えていることを特徴とする請求項2のフライホイール装置。  The axial auxiliary magnetic bearing includes a permanent magnet provided on a lower end surface of the flywheel and a permanent magnet provided on the fixed portion so as to repel the permanent magnet. 2 flywheel devices. 前記アキシアル・ラジアル兼用磁気軸受が、前記吸引コイルを位置検出用のコイルとして共用するセンサレス磁気軸受であることを特徴とする請求項1のフライホイール装置。2. The flywheel device according to claim 1, wherein the axial / radial combined magnetic bearing is a sensorless magnetic bearing sharing the attraction coil as a position detecting coil.
JP11456796A 1996-05-09 1996-05-09 Flywheel equipment Expired - Fee Related JP3820479B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11456796A JP3820479B2 (en) 1996-05-09 1996-05-09 Flywheel equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11456796A JP3820479B2 (en) 1996-05-09 1996-05-09 Flywheel equipment

Publications (2)

Publication Number Publication Date
JPH09308185A JPH09308185A (en) 1997-11-28
JP3820479B2 true JP3820479B2 (en) 2006-09-13

Family

ID=14641059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11456796A Expired - Fee Related JP3820479B2 (en) 1996-05-09 1996-05-09 Flywheel equipment

Country Status (1)

Country Link
JP (1) JP3820479B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11329530B2 (en) * 2017-06-30 2022-05-10 Lappeenrannan-Lahden Teknillinen Yliopisto Lut Electric machine system

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6664680B1 (en) * 2000-12-20 2003-12-16 Indigo Energy, Inc. Flywheel device with active magnetic bearings
US6897587B1 (en) * 2003-01-21 2005-05-24 Calnetix Energy storage flywheel with minimum power magnetic bearings and motor/generator
KR100676854B1 (en) * 2005-11-23 2007-02-01 한국기계연구원 Hybrid magnetic bearing for spindle
JP5120053B2 (en) * 2008-05-01 2013-01-16 株式会社明電舎 Magnetic bearing device
US9148037B2 (en) * 2011-11-13 2015-09-29 Rotonix Hong Kong Limited Electromechanical flywheel
WO2014031905A1 (en) * 2012-08-23 2014-02-27 Amber Kinetics, Inc. Apparatus and method for magnetically unloading a rotor bearing
CN107327487A (en) * 2017-08-29 2017-11-07 南京磁谷科技有限公司 A kind of U-shaped field structure of sloping magnetic poles magnetic bearing
CN108050157B (en) * 2017-11-23 2020-08-14 燕山大学 Magnetic-liquid double-suspension bearing breaking type conical bearing
CN108050158B (en) * 2017-11-23 2020-08-14 燕山大学 Magnetic-liquid double-suspension supporting conical bearing
CN109450157A (en) * 2018-12-06 2019-03-08 哈尔滨电气股份有限公司 The big energy storage capacity variable cross-section rotor flywheel energy storage system of Permanent-magnet bearing and electromagnetic bearing mixing bearing
CN115853901A (en) * 2023-02-10 2023-03-28 山东天瑞重工有限公司 Magnetic suspension bearing system and magnetic suspension motor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11329530B2 (en) * 2017-06-30 2022-05-10 Lappeenrannan-Lahden Teknillinen Yliopisto Lut Electric machine system

Also Published As

Publication number Publication date
JPH09308185A (en) 1997-11-28

Similar Documents

Publication Publication Date Title
CA2233707A1 (en) Integrated magnetic levitation and rotation system
JP3820479B2 (en) Flywheel equipment
KR20010070351A (en) Motor of magnetic lifting type
CA2233998A1 (en) Rotodynamic machine for the forwarding of a fluid
KR100701550B1 (en) Bearingless step motor
CN201754550U (en) Permanent magnetism bearing double-stator disc type brushless direct current motor for artificial heart
JPH08178011A (en) Flywheel device
JP3850195B2 (en) Magnetic levitation motor
GB2134326A (en) Motor for a pump
US5717264A (en) Concentric-double-shaft simultaneously rotating apparatus
JP2000197211A (en) Electric vehicle
US6362549B1 (en) Magnetic bearing device
Morrison Bearingless switched reluctance motor
JP3930834B2 (en) Axial type magnetic levitation rotating equipment and centrifugal pump
JPH0332338A (en) Magnetic bearing formed integrally with motor
JPH06141512A (en) Magnetic levitation motor
JPH10299772A (en) Bearing device
JP3470216B2 (en) Flywheel type power storage device
JPH08242569A (en) Commutatorless motor
JPS6399742A (en) Magnetic bearing integrating type motor
JP2002130177A (en) Magnetically levitating pump
JP4427828B2 (en) Magnetic bearing
JPH08107662A (en) Brushless dc motor
JPH03255221A (en) Drive supporting mechanism of rotating body
JPH0369819A (en) Bearing device for electric motor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050218

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050530

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050630

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050705

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050913

A313 Final decision of rejection without a dissenting response from the applicant

Free format text: JAPANESE INTERMEDIATE CODE: A313

Effective date: 20051205

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060605

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees