JPS62157403A - Manufacture of both-side metal clad dielectric base for plane antenna - Google Patents

Manufacture of both-side metal clad dielectric base for plane antenna

Info

Publication number
JPS62157403A
JPS62157403A JP29345785A JP29345785A JPS62157403A JP S62157403 A JPS62157403 A JP S62157403A JP 29345785 A JP29345785 A JP 29345785A JP 29345785 A JP29345785 A JP 29345785A JP S62157403 A JPS62157403 A JP S62157403A
Authority
JP
Japan
Prior art keywords
silane
dielectric
film
denatuard
thick
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29345785A
Other languages
Japanese (ja)
Inventor
Mitsunori Yasukui
安喰 満範
Toshiaki Yagi
八木 俊明
Masaru Koga
甲賀 賢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP29345785A priority Critical patent/JPS62157403A/en
Publication of JPS62157403A publication Critical patent/JPS62157403A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/032Organic insulating material consisting of one material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal

Landscapes

  • Waveguide Aerials (AREA)
  • Details Of Aerials (AREA)

Abstract

PURPOSE:To attain excellent high frequency characteristic, heat resistance, smoothness and weatherobility by using a silane denatuard crosslinked polyethylene. CONSTITUTION:In the titled manufacture, the entire rear face of a dielectric base is used as a ground conductor and the surface is provided with a circularly polarized wave radiation microstrip element in the both-side metal clad dielectric base for a plane antenna, a silane denatuard crosslinked polyethylene is used as part of the dielectric, which is formed into the silane denatuard crosslinked polyethylene by heat forming. Thus, the polyethylene with a small gel forming ratio (in fact not cross-linked) before press forming is bonded to a copper foil while being crosslinked by heat/press forming, they are incorporated strongly to obtain a plane antenna base with excellent heat resistance and dielectric characteristic. As required, glass cloth, epoxy resin impregnated glass cloth prepreg, fluorine group resin sheet or film, or a fluororesin impregnated glass cloth prepreg and a silane denatuard crosslinked polyethylene sheet or film are made composite to improve various characteristic such as heat resistance and weatherobility.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、誘電体損の極めて少ない平面アンテナ用両面
金属張シ誘電体基板に関するものである0 〔従来技術〕 平面アンテナの技術内容等については、[将来の衛星放
送受信用を目指して開発が進む平面アンテナJ  (N
IKKEI ELECTRONIC51984,7,1
6)に詳明に説明されている。平面アンテナは衛星放送
受信用に開発が進められておシ、ノξラボラアンテナと
比較して積雪、風圧の影響が少ないことを特長としてい
るが、現時点では利得が若干低いというン°ガラスクロ
ス基板、架橋ポリエチレン基板が使用されている。この
ような誘電体基板は、価格が高いこと、誘電体損が大き
く、高利得が得られないこと、及び平面アンテナの製造
工程中での加工性の問題、マイクロストリップ素子の密
着性、更に平面アンテナとしての平滑性(反シのないこ
と)、耐熱性、寸法安定性、耐候性等で問題があり、改
良を必要としている。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a double-sided metal-clad dielectric substrate for a planar antenna with extremely low dielectric loss.0 [Prior Art] Regarding the technical content of a planar antenna, etc. [Planar antenna J (N), which is being developed for future satellite broadcast reception.
IKKEI ELECTRONIC51984,7,1
6) is explained in detail. Planar antennas are being developed for satellite broadcast reception, and are characterized by being less affected by snowfall and wind pressure than standard laboratory antennas, but at present they have slightly lower gain. , a cross-linked polyethylene substrate is used. Such dielectric substrates are expensive, have large dielectric loss, cannot obtain high gain, have problems with workability during the manufacturing process of planar antennas, have problems with the adhesion of microstrip elements, and have problems with flat surfaces. There are problems with smoothness (no cracks), heat resistance, dimensional stability, weather resistance, etc. as an antenna, and improvements are needed.

〔発明の目的〕[Purpose of the invention]

本発明は、従来の平面アンテナ用誘電体基板では得られ
なかった優れた高周波特性、耐熱性、平滑性、耐候性等
を得るために、シラン変性可架橋性ぽりエチレンを使用
するととくより、前記特性を改良できるという知見を得
、本発明を完成するに至ったものである。
The present invention uses silane-modified crosslinkable polyethylene in order to obtain excellent high-frequency characteristics, heat resistance, smoothness, weather resistance, etc. that could not be obtained with conventional dielectric substrates for planar antennas. The present invention was completed based on the knowledge that the above characteristics can be improved.

〔発明の構成〕[Structure of the invention]

本発明は、誘電体基板の裏面全体を地導体とし、表面に
円偏波放射マイクロス) IJフッ素子を設ける平面ア
ンテナ用両面金属張シ誘電体基板の製造方法において、
誘電体の少なくとも一部としてシラン変性可架橋性yt
 IJエチレンを用い、加熱体基板の製造方法である。
The present invention provides a method for manufacturing a double-sided metal-clad dielectric substrate for a planar antenna, in which the entire back surface of the dielectric substrate is used as a ground conductor, and a circularly polarized wave radiation microscopy (IJ) fluoride element is provided on the surface.
Silane-modified crosslinkable yt as at least part of the dielectric
This is a method of manufacturing a heating body substrate using IJ ethylene.

本発明において用いられるシラン変性可架橋性セ17エ
チレンeζついては、特公昭60−49422に詳細に
述べられている。厚さ0.03〜3−0m+の該シラン
変性可架橋性ぎりエチレン層の片面に銅箔を積層し、他
の片面に、銅箔又は、アルミニウム板を積層し、熱盤温
度180℃、プレス圧力20kf/Jで加熱加圧して一
体成形することによシ、平面アンテナ用両面金属張シ誘
電体基板を提供することができる。
The silane-modified crosslinkable se17ethylene eζ used in the present invention is described in detail in Japanese Patent Publication No. 60-49422. A copper foil is laminated on one side of the silane-modified crosslinkable ethylene layer having a thickness of 0.03 to 3-0 m+, and a copper foil or an aluminum plate is laminated on the other side, and the platen temperature is 180°C and pressed. By heating and pressing at a pressure of 20 kf/J and integrally molding, a double-sided metal-clad dielectric substrate for a planar antenna can be provided.

この場合、シラン変性可架橋性ポリエチレンのゲル分率
は20%以下とすることが銅箔との密着性、成形性等の
点で好ましく、特に5%以下とすま− ることか好ましい。20%以畢では銅箔との密着性が不
十分である。
In this case, the gel fraction of the silane-modified crosslinkable polyethylene is preferably 20% or less in terms of adhesion to copper foil, moldability, etc., and particularly preferably 5% or less. If it is more than 20%, the adhesion to the copper foil is insufficient.

加熱加圧成形後のシラン変性架橋タリエチレンはゲル分
率が通常70%以上となるが、50%以ましくけゲル分
率が80%以上である。
The gel fraction of the silane-modified crosslinked polyethylene after hot-pressure molding is usually 70% or more, preferably 50% or more, and 80% or more.

本発明においては、加熱加圧成形前においてはゲル分率
の小さい(事実上架橋していない)セリエチレ/を加熱
加圧成形によシ架橋させなから綱引− 箔と接着せしめ、強固に一体化した耐熱性停会すぐれ、
訴電特性、のすぐれた平面アンテナ用基板を得ることが
できるのである。該誘電体基板は周波数12 GHz(
12x 10’Hz)において、25℃で誘電率2,2
、誘電正接25 X 10−’である。また熱変形温度
は120℃以上であシ、耐候性、寸法安定性、反り等の
点でも比較的優れた特性を有している。
In the present invention, before hot-pressing molding, SerieTile® with a small gel fraction (virtually non-crosslinked) is cross-linked by hot-pressing molding, and then it is bonded to the tug-of-war foil and firmly integrated. Excellent heat resistance,
A substrate for a planar antenna with excellent electromagnetic characteristics can be obtained. The dielectric substrate has a frequency of 12 GHz (
12x 10'Hz), dielectric constant 2,2 at 25°C
, and the dielectric loss tangent is 25×10−′. Furthermore, the heat deformation temperature is 120° C. or higher, and it has relatively excellent properties in terms of weather resistance, dimensional stability, warping, etc.

前記誘電体の積層構成を基本にして、必要に応じて、ガ
ラスクロス、エゼキシ樹脂含浸ガラスクロスプリゾレグ
、フッ素系樹脂(例えばテフロン■等)シート又はフィ
ルム、フッ素樹脂含浸ガラスクロスクリプレグ、プリサ
ルホン、デリエーテルサルホ/、ヒリエーテルイミド等
の高周波特性に優れたエンジニアリングプラスチックシ
ート又はフィルムと、前記シラン変性可架橋性イリエチ
レンのシート又はフィルムとを複合化し、耐熱性、耐候
性等の緒特性の向上を計ることもできる。さらに、中空
のガラスマイクロバルーンをシラン変性再架橋性ポリエ
チレン中に分散させ誘電率を低下させることもできる。
Based on the laminated structure of the dielectric, if necessary, glass cloth, ezoxy resin-impregnated glass cloth presoleg, fluororesin (for example, Teflon ■, etc.) sheet or film, fluororesin-impregnated glass cloth clipreg, presulfone may be added. , deriether sulfo/, hyrietherimide, or other engineering plastic sheet or film with excellent high frequency properties and the silane-modified crosslinkable ethylene sheet or film are combined to improve properties such as heat resistance and weather resistance. can also be measured. Furthermore, the dielectric constant can be lowered by dispersing hollow glass microballoons in silane-modified recrosslinkable polyethylene.

シラン変性可架橋性ピリエチレンについては特公昭60
−49422に詳述しているが、住人ベークライト■製
のモルデックス■を使用することができる。そルデック
ス■の架橋のためには、シラノール縮合触媒と加熱を併
用するのが望ましいが、150℃、60分以上の加熱だ
けによっても、適度な架橋物を得ることができる。
Regarding silane-modified cross-linkable pyriethylene,
-49422, it is possible to use Moldex ■ made by Tensei Bakelite ■. Although it is desirable to use a silanol condensation catalyst and heating in combination for crosslinking of Soldex (1), a moderately crosslinked product can be obtained by heating alone at 150° C. for 60 minutes or more.

シラノール縮合触媒を使用する場合、シラン変性可架橋
性ピリエチレンのシート又はフィルムの表面に塗布して
加熱してもよいし、前記エポキシ樹脂含浸ガラスクロス
・プリプレグを使用する場合には、エピキシ樹脂中にあ
らかじめ添加しておいてもよい。シラノール縮合触媒に
ついては、特開昭59−221324に詳述しである。
When using a silanol condensation catalyst, it may be applied to the surface of a silane-modified crosslinkable pyriethylene sheet or film and heated, or when using the epoxy resin-impregnated glass cloth prepreg, it may be applied to the surface of a silane-modified crosslinkable pyriethylene sheet or film. It may be added in advance. The silanol condensation catalyst is described in detail in JP-A-59-221324.

ゲル分率の測定方法としては、120’Cキシレン溶液
中で24時間溶解後の該シラン変性架橋41Jエチレン
の重量を溶解前の重量で除して、百分率で求めることが
できる。
The gel fraction can be determined in percentage by dividing the weight of the silane-modified crosslinked 41J ethylene after dissolving in a 120'C xylene solution for 24 hours by the weight before dissolution.

〔発明の効果〕 本発明に従うと、高周波特性、耐熱性、寸法安定性、耐
候性の点で優れた平面アンテナ用両面金属張り誘電体基
板を製造することができる。
[Effects of the Invention] According to the present invention, a double-sided metal-clad dielectric substrate for a planar antenna that is excellent in high frequency characteristics, heat resistance, dimensional stability, and weather resistance can be manufactured.

従って、今後の衛星放送の受信システムの一環として、
その普及の上で大きな貢献を果すものである。
Therefore, as part of the future satellite broadcasting reception system,
This will make a major contribution to its spread.

〔実施例〕〔Example〕

本発明による平面アンテナ用両面金属張シ誘電体基板に
ついて、以下に実施例及び比較例にょシ説明する。
Examples and comparative examples of the double-sided metal-clad dielectric substrate for a flat antenna according to the present invention will be described below.

実施例−1 35μm厚電解銅電解鋼箔0μm厚モルデックス■フィ
ルム/ 2. Ortan厚アルミニウム板をこの順に
積層し、黙然温度180℃、圧力20kF/uで加熱加
圧し一体成形した。
Example-1 35 μm thick electrolytic copper electrolytic steel foil 0 μm thick Moldex ■ film / 2. Ortan thick aluminum plates were laminated in this order and integrally molded by heating and pressing at a temperature of 180° C. and a pressure of 20 kF/u.

実施例−2 35μm厚無酸素鋼箔/800μm厚モルデノクス■フ
ィルム/ 2. Oym厚アルミニウム板をこの順に積
層し、黙然温度180’C1圧カ20に7/肩で加熱加
圧し一体成形した。
Example-2 35 μm thick oxygen-free steel foil/800 μm thick Moldenox film/2. Oym thick aluminum plates were laminated in this order and integrally molded by heating and pressing at a temperature of 180'C and a pressure of 20°C.

実施例−3 35μm厚無酸素鋼箔150μm厚テフロン■フィルム
/ 80011m厚モルデックス■フィルム/ 2.0
薗厚アルミニウム板をこの屓に積層し、黙然温度350
℃、圧力20 ky / cイで加熱加圧し一体成形し
た。
Example-3 35 μm thick oxygen-free steel foil 150 μm thick Teflon film / 80011 m thick Moldex film / 2.0
A Sonatsu aluminum plate is laminated on this layer, and the temperature is kept at 350℃.
It was integrally molded by heating and pressing at a temperature of 20 ky/cm.

実施例−4 35μm厚電解銅電解5oI!m厚テフロン■フィルム
/200μm厚テフロン・ガラスのプリプレグ/600
Irm厚モルデックス■フィルム/2.0mm厚フルミ
ニウム板をこの項に積層し、黙然温度350℃、圧力4
0kf/−で加熱加圧し一体成形した。
Example-4 35μm thick electrolytic copper electrolysis 5oI! m thickness Teflon ■ film / 200μm thickness Teflon glass prepreg / 600
Irm thick Moldex ■ film / 2.0mm thick fulminium plate was laminated on this item, and the temperature was 350℃ and the pressure was 4.
It was heated and pressurized at 0 kf/- to be integrally molded.

実施例−5 35#1厚無酸素鋼箔/200μm厚モルデノクス■フ
ィルム/100μmJlカーyスクロス1500μm厚
モルデノクス■フィルム/ 2. Owm厚アルミニウ
ム板をこの順に積層し、黙然温度180’C1圧力20
kp/cJtで加熱加圧し一体成形した。
Example-5 35 #1 thick oxygen-free steel foil / 200 μm thick Moldenox ■ film / 100 μm Jl car y scross 1500 μm thick Moldenox ■ film / 2. Owm thick aluminum plates were laminated in this order, and the temperature was 180'C1 and the pressure was 20°C.
It was integrally molded by heating and pressing at kp/cJt.

実施例−6 35μm厚無r素鋼素銅箔/200μm厚モルデックス
■フィルム/100μm厚ガラスクロス15ooIRn
厚モルデックス■フィルム/35μm厚無r11素銅箔
150μm厚エピキシ樹脂系接着剤フィルム/2.。
Example-6 35 μm thick R-free raw steel copper foil / 200 μm thick Moldex ■ film / 100 μm thick glass cloth 15ooIRn
Thick Moldex■ film/35 μm thick R11 bare copper foil 150 μm thick epixy resin adhesive film/2. .

簡素のアルミニウム板をこの顆に積層し、黙然温度18
0℃、圧力20 ky/Jで加熱加圧し一体成形した。
A simple aluminum plate was laminated to this condyle, and the temperature was silently lowered to 18
It was integrally molded by heating and pressing at 0°C and a pressure of 20 ky/J.

実施例−7 35μm厚電解銅電解銅箔スバルーン含有8o。Example-7 35 μm thick electrolytic copper foil containing 80% sparoon.

μm厚モルデックス■フィルム/ 2. Ovan厚ア
ルミニウム板をこの順に積層し、黙然温度180℃、圧
力20kp/cJtで加熱加圧し一体成形した。
μm thick Moldex ■ film / 2. Ovan thick aluminum plates were laminated in this order and integrally molded by heating and pressing at a temperature of 180° C. and a pressure of 20 kp/cJt.

比較例−1 35μm厚電解銅電解50μm厚テフロン■フィルム/
200μm厚テフロン■ガラスクロスプリプレグ4枚1
50μm厚テフロン■フィルム/ 2.0 m厚アルミ
ニウム板をこの順に積層し、黙然温度350℃、プレス
圧力4okg/cr;lで加熱加圧し一体成形した。
Comparative Example-1 35 μm thick electrolytic copper electrolytic 50 μm thick Teflon film/
200μm thick Teflon ■ 4 pieces of glass cloth prepreg 1
A 50 μm thick Teflon film and a 2.0 m thick aluminum plate were laminated in this order and integrally molded by heating and pressing at a temperature of 350° C. and a press pressure of 4 kg/cr;l.

比較例−2 35μm厚電解銅電解鋼箔0μm厚架橋テ17エチレン
フイルム/low厚アルミニウム板をこのINF積層し
、黙然温度350℃、プレス圧力40にり/dで加熱加
圧し一体成形した。
Comparative Example 2 A 35 μm thick electrolytic copper electrolytic steel foil, a 0 μm thick cross-linked 17 ethylene film, and a low thickness aluminum plate were laminated with this INF and silently heated and pressed at a temperature of 350° C. and a press pressure of 40 mm/d to integrally form.

前記実施例及び比較例で使用した素材について説明する
The materials used in the Examples and Comparative Examples will be explained.

モルデックス■:住友ベークライト■製 シラン変性可
架橋性ポリエチレンフィルム(ゲル分率5%) 実施例−7では、プレス成形の前に該シート表面に、シ
ラノール縮合触媒として三共有機合成■のスタンBHの
希薄溶液(アセトンによる10wt%の希薄溶液)を塗
布しておいた。
Moldex ■: Silane-modified cross-linkable polyethylene film made by Sumitomo Bakelite ■ (gel fraction 5%) In Example 7, before press molding, a stun BH of trivalent compound synthesis ■ was added to the surface of the sheet as a silanol condensation catalyst. A dilute solution of (10 wt % dilute solution with acetone) was applied.

2.0%厚アルミニウム板:接着面を陽極酸化処理し、
接着力の向上を計った。
2.0% thick aluminum plate: The adhesive surface is anodized,
We aimed to improve adhesive strength.

無酸素鋼箔:日立電線■裂OFC箔 テフロン■フィルム:三井フロロケミカル■裂PFAフ
ィルム テフロン・ガラスクロスのプリプレグ:凸版印刷■のケ
ムファプ■T、C,G、F No 1008エゼキシ樹
脂接着剤フィルム:東し■製 ノーイソ−# OX −
072F ガラスマイクロバルーン:富士ゲル販売■のジーオスフ
ィア(平均粒径3μm>  10wt%6frカレ架橋
イリエチレンシート:ソリジュールジヤノぞン■のソリ
ジュール■ 実施例及び比較例で得られた両面金属張シ誘電体基板の
特性を評価するため、銅箔をエツチングしてストリップ
ラインを形成し、周波数12 GHz(”12 x 1
09Hz)にて温度25℃での誘電率(g)、誘電正接
(tenδ)を測定した。その結果を表−1に示す。な
お、高周波回路における誘電体損失?)は、t−ten
δの積に比例するため、小さいことが望ましいものであ
る。
Oxygen-free steel foil: Hitachi Cable ■Cracked OFC foil Teflon ■Film: Mitsui Fluorochemical ■Cracked PFA film Teflon/glass cloth prepreg: Toppan Printing ■Chemfap ■T, C, G, F No 1008 epoxy resin adhesive film: Made by Toshi■ No ISO-# OX-
072F Glass microballoon: Geosphere (average particle size 3 μm > 10 wt% 6fr) from Fuji Gel Sales ■ Solidur cross-linked ethylene sheet: Solidur ■ from Solidur Diamond ■ Double-sided metal cladding obtained in Examples and Comparative Examples In order to evaluate the characteristics of the dielectric substrate, we etched a copper foil to form a strip line and set it at a frequency of 12 GHz ("12 x 1
The dielectric constant (g) and dielectric loss tangent (ten δ) were measured at a temperature of 25° C. (09 Hz). The results are shown in Table-1. By the way, what about dielectric loss in high frequency circuits? ) is t-ten
Since it is proportional to the product of δ, it is desirable that it be small.

表−1から判るように、実施例1〜7で得られた両面金
属張り誘電体基板は、比較例と比較して、低価格、低誘
電率、低誘電正接であシ、銅箔との密着強度が高く、は
んだ耐熱性に優れているため、平面アンテナ用素材とし
て、極めて優秀なものである。
As can be seen from Table 1, the double-sided metal-clad dielectric substrates obtained in Examples 1 to 7 are lower in price, have a lower dielectric constant, a lower dielectric loss tangent, and are more compatible with copper foil than the comparative examples. It has high adhesion strength and excellent solder heat resistance, making it an extremely excellent material for planar antennas.

また電解鋼箔と無酸素銅箔との差については、表−1で
は明らかでないが、実際の平面アンテナとしての利得で
評価した結果、無酸素銅箔の方が1dB良好でアシ、そ
の効果が明らかになった。
The difference between electrolytic steel foil and oxygen-free copper foil is not clear in Table 1, but as a result of evaluating the gain as an actual planar antenna, the oxygen-free copper foil was 1 dB better. It was revealed.

また、実施例−6の構成にすることによシ、実施例−5
と比較して、粗面化されたアルミニウム板ではなく、比
較的表面平滑な無酸素銅箔面で電波を放射できることに
よシ、0.5 dBはど高利得であった。
Moreover, by adopting the configuration of Example-6, Example-5
In comparison, the gain was as high as 0.5 dB due to the fact that radio waves could be radiated from the oxygen-free copper foil surface, which had a relatively smooth surface, rather than from the roughened aluminum plate.

銅箔の密着強度、はんだ耐熱性のテスト方法はJIS 
C6481によった。
JIS test method for copper foil adhesion strength and soldering heat resistance
According to C6481.

Claims (3)

【特許請求の範囲】[Claims] (1)誘電体基板の裏面全体を地導体とし、表面に円偏
波放射マイクロストリップ素子を設ける平面アンテナ用
両面金属張り誘電体基板の製造方法において、誘電体の
少なくとも一部としてシラン変性可架橋性ポリエチレン
を用い、加熱成形によりこれをシラン変性架橋ポリエチ
レンとすることを特徴とした平面アンテナ用両面金属張
り誘電体基板の製造方法。
(1) In a method for manufacturing a double-sided metal-clad dielectric substrate for a planar antenna in which the entire back surface of the dielectric substrate is used as a ground conductor and a circularly polarized wave radiation microstrip element is provided on the surface, a silane-modified crosslinker is used as at least a part of the dielectric. 1. A method for manufacturing a double-sided metal-clad dielectric substrate for a planar antenna, comprising using polyethylene and converting it into silane-modified cross-linked polyethylene by heat molding.
(2)前記誘電体の少なくとも1つの表面の金属が無酸
素銅箔であることを特徴とする特許請求の範囲第1項記
載の両面金属張り誘電体基板の製造方法。
(2) The method for manufacturing a double-sided metal-clad dielectric substrate according to claim 1, wherein the metal on at least one surface of the dielectric is oxygen-free copper foil.
(3)前記シラン変性可架橋性ポリエチレンが中空のガ
ラスマイクロバルーンを含むものであることを特徴とす
る特許請求の範囲第1項記載の両面金属張り誘電体基板
の製造方法。
(3) The method for manufacturing a double-sided metal-clad dielectric substrate according to claim 1, wherein the silane-modified crosslinkable polyethylene contains hollow glass microballoons.
JP29345785A 1985-12-28 1985-12-28 Manufacture of both-side metal clad dielectric base for plane antenna Pending JPS62157403A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29345785A JPS62157403A (en) 1985-12-28 1985-12-28 Manufacture of both-side metal clad dielectric base for plane antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29345785A JPS62157403A (en) 1985-12-28 1985-12-28 Manufacture of both-side metal clad dielectric base for plane antenna

Publications (1)

Publication Number Publication Date
JPS62157403A true JPS62157403A (en) 1987-07-13

Family

ID=17794997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29345785A Pending JPS62157403A (en) 1985-12-28 1985-12-28 Manufacture of both-side metal clad dielectric base for plane antenna

Country Status (1)

Country Link
JP (1) JPS62157403A (en)

Similar Documents

Publication Publication Date Title
JP7166334B2 (en) copper clad laminate
JP6405817B2 (en) Laminate for electronic circuit board and electronic circuit board
US5541366A (en) Foam printed circuit substrates
CN210157469U (en) Metal-based copper-clad laminate
TW201900742A (en) Fluororesin film and laminate, and method for producing hot laminate
TWI766320B (en) Prepreg and metallic clad laminate
CN112109391B (en) Metal foil laminate and method for producing the same
CN105393647A (en) High-frequency printed circuit board and wiring material
CN115139589B (en) High-heat-conductivity copper-clad plate and preparation method thereof
CN103702511A (en) High thermal conductivity metal substrate and manufacturing method thereof
US4963891A (en) Planar antenna
JP2004123870A (en) Prepreg manufacturing process and transfer sheet
KR20220009342A (en) Composite and copper clad laminate made therefrom
JPS62157403A (en) Manufacture of both-side metal clad dielectric base for plane antenna
EP0642412B1 (en) Printed circuit substrates
CN210579458U (en) Metal-based copper-clad laminate
JPS63275204A (en) One body molded product of high frequency antenna substrate and its manufacture
JPS62149201A (en) Both side metal clad dielectric base for plane antenna
JPS6386313A (en) Substrate for planar antenna
JP2004238465A (en) Method for producing composite substrate
JPH0732544A (en) Coppered laminate with paper base and its manufacture
JP2022181861A (en) Metallic foil laminated resin sheet and method for manufacturing the same
CN116262382A (en) High-frequency high-speed flexible copper-clad plate and preparation method and application thereof
JPS63126120A (en) Substrate for planar antenna
JPH0740628B2 (en) Substrate for high frequency circuit